帳號:guest(3.149.250.144)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:葉威利
作者(英文):Wei-Li Yeh
論文名稱:氧化鋅的螢光放射與聲子相關弛放
論文名稱(英文):Luminescence emission and phonon-related relaxations in zinc oxide
指導教授:黃玉林
指導教授(英文):Yue-Lin Huang
口試委員:蔡宗惠
紀信昌
口試委員(英文):Tsung-Hui Tsai
Hsin-Chang Chi
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610714207
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:76
關鍵詞:氧化鋅光致螢光電聲耦合
關鍵詞(英文):Zinc OxidePhotoluminescenceElectron-Phonon Coupling
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
氧化鋅因具有高度穩定激子表現許多優異光電性質,吸引許多基礎與應用導向研究者,尤其關注其載子能量弛放與螢光現象。對於激子參與的近能隙放射過程,目前已有相當了解,另一方面,涉及缺陷深層能態放射的機制仍有待釐清。本研究以磊晶與多晶氧化鋅為比較對象,觀察近能隙放射與深層能態放射的螢光。我們發現激發源性質對各放射譜峰相對強弱有顯著影響,不同觀察設置的效果反映螢光放射的異向性。本文探討放射機制,並估計氧化鋅的載子-聲子耦合強度。
Having highly stable excitons, zinc oxide (ZnO) exhibits excellent optoelectronic properties. This attracts many researchers interested in fundamental and application-oriented issues, especially that related to energy relaxations of carriers in ZnO and its luminescence behaviors. The excitonic processes leading to near-band-edge emission (NBE) have been well understood, whereas the understanding of deep-level emission (DLE) mechanisms still need to be clarified. In this work, taking epitaxial and polycryslline ZnO for comparison, NBE and DLE luminescence has been observed. We found that the relative intensities of various luminescence emissions depend significantly on the excitation source’s property and power. Anisotropy of the emissions is indicated by effects of using different incidence-collection setups. Mechanisms leading to the emissions and carrier-phonon coupling strengths in ZnO will be discussed.
第1章 文獻回顧與研究問題 1
1.1 半導體中載子-聲子交互作用與光致螢光 1
1.2 氧化鋅的螢光特性與載子-聲子耦合 2
1.3 研究問題 7
第2章 實驗方法 8
2.1 螢光實驗 8
2.2 氧化鋅樣品 11
第3章 實驗結果 13
3.1 氧化鋅的典型螢光光譜 13
3.2 室溫觀察 18
3.2.1 螢光光譜 18
3.2.2光譜特徵 23
3.3 變溫觀察 26
3.3.1 螢光光譜 26
3.3.2 溫度對光譜特徵的影響 30
第4章 討論與結論 37
4.1 實驗觀察總結 37
4.2 熱淬滅與聲子耦合 41
4.3 激發光功率相依與螢光放射機制 44
4.5 展望 46
參考文獻 47
[1] Chernikov A, Bornwasser V, Koch M, Chatterjee S, Bottge C N, Feldtmann T, Kira M, Koch S W, Wassner T, Lautenschlager S, Meyer B K and Eickhoff M 2012 Phonon-assisted luminescence of polar semiconductors: Frohlich coupling versus deformation-potential scattering Phys. Rev. B 85 8
[2] Kelley A M 2010 Electron-Phonon Coupling in CdSe Nanocrystals J. Phys. Chem. Lett. 1 1296-300
[3] Spindler C, Galvani T, Wirtz L, Rey G and Siebentritt S 2019 Excitation-intensity dependence of shallow and deep-level photoluminescence transitions in semiconductors J. Appl. Phys. 126 9
[4] Finch G I and Wilman H 1934 The lattice dimensions of zinc oxide Journal of the Chemical Society 751-4
[5] Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J and Morkoc H 2005 A comprehensive review of ZnO materials and devices J. Appl. Phys. 98
[6] Djurisic A B and Leung Y H 2006 Optical properties of ZnO nanostructures Small 2 944-61
[7] Goniakowski J, Finocchi F and Noguera C 2008 Polarity of oxide surfaces and nanostructures Rep. Prog. Phys. 71 55
[8] Claus F. Klingshirn A W, Axel Hoffmann, Jean Geurts 2010 "Zinc Oxide: From Fundamental Properties Towards Novel Applications" Springer Series in Materials Science 120
[9] Ye H G, Su Z C, Tang F, Wang M Z, Chen G D, Wang J and Xu S J 2017 Excitation Dependent Phosphorous Property and New Model of the Structured Green Luminescence in ZnO Sci Rep 7 8
[10] Ahn C H, Kim Y Y, Kim D C, Mohanta S K and Cho H K 2009 A comparative analysis of deep level emission in ZnO layers deposited by various methods J. Appl. Phys. 105 5
[11] Hou D C, Voss T, Ronning C, Menzel A and Zacharias M 2014 Deep-level emission in ZnO nanowires and bulk crystals: Excitation-intensity dependence versus crystalline quality J. Appl. Phys. 115 7
[12] Gandhi A, Yeoh W-S, Wu M-A, Liao C-H, Chiu D-Y, Yeh W-L and Huang Y-L 2018 New Insights into the Role of Weak Electron–Phonon Coupling in Nanostructured ZnO Thin Films Nanomaterials 8
[13] Gandhi A C, Liao C H, Yeh W L and Huang Y L 2019 Non-monotonous size-dependent photoluminescence and excitonic relaxations in nanostructured ZnO thin films RSC Adv. 9 2180-8
[14] Simmons J G, Foreman J V, Liu J and Everitt H O 2013 The dependence of ZnO photoluminescence efficiency on excitation conditions and defect densities Applied Physics Letters 103 4
[15] Kodama K and Uchino T 2012 Thermally activated below-band-gap excitation behind green photoluminescence in ZnO J. Appl. Phys. 111 9
[16] Foreman J V, Simmons J G, Baughman W E, Liu J and Everitt H O 2013 Localized excitons mediate defect emission in ZnO powders J. Appl. Phys. 113 7
[17] Pickenhain R, Schmidt M, von Wenckstern H, Benndorf G, Poppl A, Bottcher R and Grundmann M 2018 Negative-U Properties of the Deep Level E3 in ZnO Phys. Status Solidi B-Basic Solid State Phys. 255 16
[18] Eliseev P G, Perlin P, Lee J Y and Osinski M 1997 ''Blue'' temperature-induced shift and band-tail emission in InGaN-based light sources Applied Physics Letters 71 569-71
[19] Li Y F, Deng Z, Ma Z G, Wang L, Jia H Q, Wang W X, Jiang Y and Chen H 2019 Visualizing carrier transitions between localization states in a InGaN yellow-green light-emitting-diode structure J. Appl. Phys. 126 6
[20] 謝至中 2015 反應式濺鍍氧化鋅的結構缺陷與發光性質/Structural disorders and luminescent properties of ZnO prepared by reactive sputtering 國立東華大學碩士論文
[21] 楊偉善 2018 氧化鋅在藍寶石上的磊晶成長與激子放射/Epitaxial Growth and Excitonic Emission of Zinc Oxide on Sapphire 國立東華大學碩士論文
[22] Bryche J F, Barbillon G, Bartenlian B, Dujardin G, Boer-Duchemin E and Le Modul E 2018 k-space optical microscopy of nanoparticle arrays: Opportunities and artifacts J. Appl. Phys. 124 16
[23] Xu S J, Li G Q, Wang Y J, Zhao Y, Chen G H, Zhao D G, Zhu J J, Yang H, Yu D P and Wang J N 2006 Quantum dissipation and broadening mechanisms due to electron-phonon interactions in self-formed InGaN quantum dots Applied Physics Letters 88 3
[24] 吳民安 2018 微奈米尺度氧化鋅的光致螢光與激子放射/Photoluminescence of Micro- and Nanoscale Zinc Oxide 國立東華大學碩士論文
[25] Reshchikov M A, Behrends A, Bakin A and Waag A 2009 Photoluminescence from ZnO nanowires Journal of Vacuum Science & Technology B 27 1688-92
[26] Mendelsberg R J, Allen M W, Durbin S M and Reeves R J 2011 Photoluminescence and the exciton-phonon coupling in hydrothermally grown ZnO Phys. Rev. B 83 8
[27] Klingshirn C, Hauschild R, Fallert J and Kalt H 2007 Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing Phys. Rev. B 75 9
[28] Matsuzaki R, Soma H, Fukuoka K, Kodama K, Asahara A, Suemoto T, Adachi Y and Uchino T 2017 Purely excitonic lasing in ZnO microcrystals: Temperature-induced transition between exciton-exciton and exciton-electron scattering Phys. Rev. B 96 8
[29] Chen R, Tay Y, Ye J, Zhao Y, Xing G Z, Wu T and Sun H D 2010 Investigation of Structured Green-Band Emission and Electron-Phonon Interactions in Vertically Aligned ZnO Nanowires Journal of Physical Chemistry C 114 17889-93
[30] Dominguez D, Alharbi N, Alhusain M, Bernussi A A and de Peralta L G 2014 Fourier plane imaging microscopy J. Appl. Phys. 116 7


(此全文20250812後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *