帳號:guest(3.15.143.241)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:江照澤
作者(英文):Zhao-Ze Jiang
論文名稱:探討Bi摻雜對Cu2SnSe3熱電性能影響
論文名稱(英文):Enhancement of thermoelectric performance by doping Bi content in Cu2SnSe3 compound
指導教授:郭永綱
指導教授(英文):Yung-Kang Kuo
口試委員:吳慶成
蔡漢彰
口試委員(英文):Ching-Cherng Wu
Han-Zhang Cai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610714215
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:94
關鍵詞:Cu2SnSe3熱電材料PGEC
關鍵詞(英文):Cu2SnSe3Thermoelectric materialPGEC
相關次數:
  • 推薦推薦:0
  • 點閱點閱:9
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
研究了Bi摻雜對Cu_2SnSe3的熱電性能的影響。所有樣品的粉末X射線衍射(XRD)圖譜均顯示立方結構。系列樣品Cu_2Sn_(1-x)BixSe3(x = 0.00、0.02、0.04、0.06、0.08、0.10)中對電阻率(ρ),熱導率(κ)和塞貝克係數(S),進行測量溫度範圍為10 K – 350 K。電阻率隨摻雜量的增加而降低。根據X射線光電子能譜(XPS)結果。Seebeck係數結果表明,在低溫區域,線性趨勢有所偏離,懷疑受到聲子阻力的影響。由於摻雜後電阻率顯著下降,因此電子導熱率所佔比例增加,總導熱率隨摻雜量而增加。場發射掃描電子顯微鏡(FESEM)圖像顯示,晶粒尺寸隨摻雜量的增加而增加,這可能是摻雜後晶格導熱係數的聲子散射峰變得更尖銳的原因。對於樣品Cu_2Sn0.92Bi0.08Se3,ZT的在350 K時有最大值,約為0.0267,大約是原始樣品的兩倍。
The effect of Bi doping on the thermoelectric properties of Cu2SnSe3 was investigated. The powder X-ray diffraction (XRD) patterns for all samples showed a cubic structure. Electrical resistivity (ρ), thermal conductivity (κ), and Seebeck coefficient (S) measurements were performed on a series of samples Cu2Sn1-xBixSe3 (x = 0.00, 0.02, 0.04, 0.06, 0.08, 0.10) in the temperature range 10 K – 350 K. In general, the electrical resistivity decreases significantly with increasing Bi content. The Seebeck coefficient data show a deviation from linearity at low temperatures, presumably due to the phonon drag effect. The overall thermal conductivity is found to increase with the Bi substitution, most likely attributed to the reduction in the grain-boundary scattering. The field emission scanning electron microscope (FESEM) images confirm that the grain size increase with the Bi content, consistent with the thermal conductivity measurements. The highest figure of merit at 350 K is about 0.0267 for the Cu2Sn0.92Bi0.08Se3 sample, which is about two times larger than that of the pristine sample.
第一章 緒論 1
1.1 熱電材料 1
1.2 論文回顧 4
1.2.1 電性傳輸網絡 5
1.2.2 特殊的聲子散射機制 7
1.3 研究動機 7
第二章 實驗原理 9
2.1 電阻率(Resistivity) 9
2.1.1 電子的碰撞機制 11
2.2 熱電勢 (Thermoelectric Power) 14
2.2.1 Seebeck 效應 14
2.2.2 Seebeck 係數 16
2.3 熱傳導率 (Thermoconductivity) 21
2.3.1 電子熱傳導率 (κe) 22
2.3.2 聲子熱傳導率 (κph) 23
2.4 比熱 27
2.4.1 聲子比熱 27
第三章 實驗原理 29
3.1 量測系統 29
3.1.1 低溫冷卻系統 29
3.1.2 電阻率量測方法 31
3.1.3 熱傳導率量測方法 32
3.1.4 Seebeck 係數量測方法 33
3.2 實驗控制程式 35
第四章 實驗結果與分析 43
4.1 XRD 分析 ( X-ray diffraction ) 43
4.2 XPS 分析 45
4.3 FESEM 分析 51
4.4 電阻率(Electrical Resistivity) 55
4.5 熱電勢(Seebeck coefficient) 61
4.5.1 Mott’s VRH & 擴散熱電勢 Sd 62
4.5.2 低溫線性偏離行為 65
4.6 熱導率(Thermal conductivity) 71
4.6.1 電子熱導率 κe 71
4.6.2 聲子熱導率 κL 72
4.6.3 聲子熱導率 κL /總熱導率 κ 75
4.7 Figure of merit 79
第五章 結論 81
Reference 83
Reference
1. Brian C. Sales. Scienc 295, 1248 (2002)
2. G. Jeffrey Snyder & Eric S. Toberer. Nature Materials volume 7, pages 105–114 (2008)
3. Muhammad Siyar, Jun-Young Cho, Yong Youn, Seungwu Han, Miyoung Kim, Sung-Hwan Bae and Chan Park. J. Mater. Chem. C, 6, 1780-1788 (2018)
4. L. Xi, Y. B. Zhang, X. Y. Shi, J. Yang, X. Shi, L. D. Chen, and W. Zhang. PHYSICAL REVIEW B 86, 155201 (2012)
5. XiaoyaShi, LiliXi, JingFan, WenqingZhang and Lidong Chen. Chem. Mater. 22, 6029–6031 6029 (2010)
6. Yuyang Li, Guanghua Liu, Jiangtao Li, Kexin Chen, Laifeng Li, Yemao Han, Min Zhou, Mingjun Xia, Xingxing Jiang and Zheshuai Lin. NewJ.Chem.40,5394 (2016)
7. J. Zhang , L.L. Huang , X.G. Zhu , Z.M. Wang , C.J. Song , H.X. Xin , D. Li , X.Y. Qin. Scripta Materialia, 15 January 2019, Pages 46-50
8. Shyam Prasad K, Ashok Rao, Bhasker Gahtori , Sivaiah Bathula , Ajay Dhar , Jia-Shiun Du , Yung-Kang Kuo. Materials Research Bulletin 83 160–166 (2016)
9. D. D. Pollock, Thermoelectricity, p111-132
10. J. López, O. F. de Lima, P. N. Lisboa-Filho, and F. M. Araujo-Moreira, Phys. Rev. B66, 214402 (2002)
11. C. Kittel, Introduction to Solid State Physics, 8th Edition, Wiley
12. Ch Raju, M. Falmbigl, P. Rogl, P. Heinrich, E. Royanian, E. Bauer, Ramesh Chandra Mallik. Materials Chemistry and Physics 1471022e1028 (2014)
13. .Acta Cryst. A32, 751 (1976).
14. Riya Thomas; Ashok Rao; Zhao-Ze Jiang; Yung-Kang Kuo. JMSC-D-20-04950 (2020)
15. Shyam Prasad K, Ashok Raoa, Bhasker Gahtori, Sivaiah Bathula, Ajay Dhar, Chia-Chi Chang, Yung-Kang Kuo. Physica B 520 7–12 (2017)
16. Kang Min Kim, Hitoshi Tampo, Hajime Shibata, Shigeru Niki. Thin Solid Films 536 111–114 (2013)
17. 喻祖祥, 林志忠 鋁鈦合金無序程度與德拜溫度關係
18. David J. Singh. PHYSICAL REVIEW B 81, 195217 (2010)
19. K. Shyam Prasad, Ashok Rao. Journal of Materials Science: Materials in Electronics (2019) 30:16596–16605
20. K. Gurukrishna , Ashok Rao, Zhao-Ze Jiang, Yung-Kang Kuo. Intermetallics 122 (2020) 106803
21. Frank L. Madarasz, Frank Szmulowicz, John R. McBath. J. Appl. Phys. 58 (1), 1 July 1985
22. Manuel Cardona. PHYSICAL REVIEW VOLUME 121, NUMBER 3 FEBRUARY 1, 1961
23. 王詩雯, 林志忠. 無序金鈀合金厚膜之熱電勢研究
24. D.M. Rowe. CRC Handbook of Thermoelectrics. D.M. Rowe. CRC Press, Jul 14, 1995 - Technology & Engineering
25. Joseph Callaway. PHYSICAL REVIEW VOLUME 213, NUMBER 4 FEBRUARY 25, 2959
26. Joseph Callaway, Hans C.von Bakyer. PIVSICAI REVIEN VOLUME 120, NUMBER 4 NOVEMBER 15, 1960
27. Hyun-Sik Kim, Zachary M. Gibbs, Yinglu Tang, Heng Wang, and G. Jeffrey Snyder. APL Materials 3, 041506 (2015)
28. P G Klemens Proc. Phys. Soc. A68 1113 (1955)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *