帳號:guest(3.145.76.31)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Mhikee Janella. N. Descanzo
作者(英文):Mhikee Janella. N. Descanzo
論文名稱:羧酸化與氧化爆炸法合成奈米鑽石的定量吸附免疫球蛋白G研究
論文名稱(英文):Quantitative mass analysis of Immunoglobulin G adsorption on carboxylated/oxidized nanodiamonds
指導教授:彭文平
指導教授(英文):Wen-Ping Peng
口試委員:鄭嘉良
蘇伯琦
口試委員(英文):Chia-Liang Cheng
Po-Chi Soo
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610714301
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:42
關鍵詞(英文):nanodiamondsquantitative mass analysisImmunoglobulin G
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
Immunoglobulin G (IgG) – the second most abundant protein in human blood plasma and extra cellular fluid – plays a vital role in the immune system. Moreover, this protein has been in demand for many medical applications. For this reason, development of analytical methods using modern instruments for better understanding of IgG is becoming one of the greatest interests of researchers. Herein, a quantitative mass analysis technique using nanodiamond (ND)-assisted sample preparation for matrix assisted laser desorption/ ionization time of flight mass spectrometry (MALDI-TOF MS) is proposed. The method allows the direct detection of IgG with concentration as low as ~2 nM. It demonstrated a high reproducibility of different matrix-analyte crystal thus, verifying its applicability for quantitation. The study further aims to use the quantitation technique to compare the maximum loading capacities of untreated and differently treated carboxylated/oxidized NDs. It was found out that despite having a lot of similar properties air-oxidized ND (aoND) and commercially obtained carboxylated ND (cND) have different maximum loading capacity: ~50 nM and ~ 27 nM respectively.
Acknowledgements ………………………………………………………………………….. i
Abstract ……………………………………………………………………………………… ii
Table of Contents ……………………………………………………………………………. iii
Index of Figures ……………………………………………………………………………... iv
Tables ………………………………………………………………………………………... v
Chapter 1: Introduction ………………………………………………………………………. 1
1.1. Quantitation Methods for Protein (Immunoglobulin G) ………………………………. 1
1.2. MALDI-TOF MS application in protein analysis ……………………………………... 3
1.2.1. MALDI-TOF MS with nanodiamond (ND) …………………………………….. 4
1.3. Research Motivation …………………………………………………………………... 6
Chapter 2: Experimental Section …………………………………………………………….. 8
2.1. Preparation of ND samples for surface characterization ……………………...……….. 8
2.1.1. FTIR measurement ……………………………………………………………… 8
2.1.2. Raman Spectroscopy ……………………………………………………………. 9
2.1.3. Particle size and zeta potential measurement …………………………………… 9
2.2. IgG sample preparation ………………………………………………………………... 9
2.3. MALDI sample preparations …………………………………………………………... 9
2.3.1. Matrix …………………………………………………………………………… 9
2.3.2. IgG-ND complex ……………………………………………………...……….. 10
2.3.3. MALDI-TOF mass analysis …………………………………………………… 10
2.4. Microscope Imaging …………………………………………………………………… 10
Chapter 3: Results and Discussion …………………………………………………………... 11
3.1. Characterization of ND surfaces ……………………………………………………… 11
3.1.1. FTIR spectroscopy …………………………………………………………….. 11
3.1.2. Raman spectroscopy and
size distribution measurement …………………………………………………. 12
3.1.3. Physical adsorption of IgG on ND surfaces ……………………………………. 15
3.2. Mass spectra with/without diamond particles ………………………………………... 16
3.3. Shot to shot (within the spot) signal intensity variation of different
matrix crystals formed with ND …………………………………………………...…. 17
3.4. Quantitation analysis with MALDI-TOF MS ………………………………………... 18
Chapter 4: Conclusion ………………………………………………………………………. 28
References …………………………………………………………………………………... 29
Appendix A: Protein to ND ratio ……………………………………………………………. 32
[1] Introduction to Immunoglobulins. Retrieved from: www.biotest.com. Retrieved on: Feb. 21, 2020.
[2] S. Joles, S.C. Jordan, J.S. Orange, I.N. van Schaik. BSI Clin Exp Immunol., 178, (2014), 163-168.
[3] S. Tamburin, K. Borg, X.J. Caro, et al. Pain Med., 15, (2014), 1072-1082.
[4] J. Horak, A. Ronacher, W. Linder. J. Chromatogr. A., 1217, (2010), 5092-5102.
[5] Protein Quantitation using a UV-Visible Spectrophotometer. Retrieved from: www.jacoinc.com. Retrieved on: Feb 21, 2020.
[6] Thermo Scientific Pierce Protein Assay Technical Handbook 2. Retrieved from: www.thermoscientific.com. Retrieved on: Feb. 21, 2020.
[7] SDS-PAGE Analysis Retrieved from: https://www.bio-rad.com/en-tw/applications-technologies/sds-page-analysis?ID=LW7FGX4VY. Retrieved on: May 27,2020.
[8] D. M. Smith (2017) Proteins: Extraction, Quantitation, and Electrophoresis. In: Food Analysis Laboratory Manual. Food Science Text Series. Springer, Cham.
[9] Z. Huang, X.D. Pan. RSC Adv., 7, (2017), 20212-20218.
[10] N. C. Bell, C. Minelli, A. G. Shard. Anal. Methods., 5, (2013), 4591-4601.
[11] T. Bonk, A. Humeny. The Neuroscientist., 7, (2001), 6-12.
[12] J. K. Lewis, J. Wei, G. Siuzadak. Encyclopedia of Analytical Chemistry R.A. Ed. (2000) p. 5880-5894.
[13] A. E. Counterman, M. S. Thompson, D. E. Clemmer. J. Chem Ed., 80-2, (2003), 177-180.
[14] DJC. Pappin, P. Horjup, AJ. Bleasby. Current Biology., 3, (1993), 327-332.
[15] J.K. Lewis, Arizona State University, ‘Protein Structural Characterization Using Bioreactive Mass Spectrometer Probes’, Ph.D. Thesis Dissertation (1997).
[16] A. Staub, D. Guillarme, J. Schappler, J. L. Veuthey, S. Rudaz. J. Pharm. Biomed., 55, (2011), 820-822.
[17] K. Teramoto, H. Sato, L. Sun, M. Torimura, H. Tao. J. Proteome Res., 6, (2007), 3900-3907.
[18] X. L. Kong, L. C. L. Huang, C.-M. Hsu, W.-H. Chen, C.-C. Han, H.-C. Chang. Anal. Chem., 77, (2005), 259-265.
[19] C.-L. Lin, C.-H. Lin, H.-C. Chang, M.-C. Su. J. Phys. Chem. A., 119, (2015), 7704-7711.
[20] J.-C. Arnault. Surface modifications of nanodiamonds and current issues for their biomedical applications. (b) N. Yang. Novel Aspects of Diamond - From Growth to Applications, 121 (Chapter 4), Springer Verlag, pp.85-122, 2015, Topics in Applied Physics.
[21] Monodispersed Nanodiamonds and their Applications by O. Shenderova
Retrieved from: https://www.sigmaaldrich.com/technical-documents/articles/technology-spotlights/monodispersed-nanodiamonds-applications.html Retrieved on: June 5, 2020.
[22] L.M. Wei, Y. Xue, X.W. Zhou, H. Jin, Q. Shi, H.J. Lu, P.Y. Yang, Talanta., 74, (2008), 1363-1370.
[23] J. Paci, H. Man, B. Saha, D. Ho, G. Schatz, J. Phys. Chem., 117, (2013), 17256-17267.
[24] L.C.L. Huang, H.C. Chang, Langmuir., 20, (2004), 5879.
[25] T. Ando, S. Inoue, M. Ishii, M. Kamo, Y. Sato, O. Yamada, T. Nakano, J. Chem. Soc., Faraday Trans., 89, (1993), 749. (b) T. Ando, K. Yamamoto, M. Ishii, M. Kamo, Y. Sato, J. Chem. Soc., Faraday Trans., 89, (1993), 3635.
[26] T. Petit, L. Puskar, Diam Relat Mater., 89, (2018), 52-66.
[27] L. Gines, S. Mandal, A.-I. Ahmed, C.-L. Cheng, M. Sow, O. Williams, Nanoscale., 34, (2017), 12549-12555.
[28] C.-D. Chu, E. Perevedentseva, V. Yeh, S.-J. Cai, J.-S. Tu, C.-L. Cheng. Diam Relat Mater., 18, (2009), 76-81.
[29] T. Gaebel, C. Bradac, J. Chen, P. Hemmer, J. R. Rabeau. Diam Relat Mater., 21, (2012), 28-32.
[30] S. Osswald, G. Yushin, V. Mochalin, S. Kucheyev, Y. Gogotsi. J. Am. Chem. Soc., 128, (2006), 11635-11642.
[31] V. Mochalin, S. Osswald, Y. Gogotsi. Chem. Mater., 21, (2009), 273-279.
[32] R. Cukalevski, S. Ferreira, C. Dunning, T. Dunning, T. Berrgard, T Cedervall. Nano Res., 8, (2015), 2733-2743.
[33] A. Patil, C-K. Chiang, C-H. Wen, W-P. Peng. Anal. Chim., 1031, (2018), 128-133.
[34] Debye Screening – How it affects zeta potential? by U. Nobbmann
Retrieved from: www.materials-talks.com/blog/2018/10/03/debye-screening-how-it-affects-zeta-potential/ Retrieved on: July 10, 2020.
[35]Debye Length
Retrieved from: www.tf.uni-kiel.de/matwis/amat/elmat_en/kap_2/backbone/r2_4_2.html Retrieved on: July 10, 2020.
[36] A. M. Schrand, S. A. Ciftan Hens, O. A. Shenderova. Crit Rev Solid State., 34, (2009), 18-74.
[37] O. Williams. (2014). Nanodiamonds. Cambridge, UK. The Royal Society of Chemistry.
[38] Yu. V. Butenko, V. L. Keznetsov, A. I. Boronin, S. V. Kosheev. Fullerenes, Nanotubes, Carbon Nanostruct. 14, (2006), 557.
[39] H. Xie, W. Yu, Y. Li. J. Phys. Rev. B., 42, (2006), 095413.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *