|
[1] B.D. Acharya & M.K. Gill, On the index of gracefulness of a graph and the gracefulness of two-dimensional square lattice graphs. Indian Journal Math Vol.23, 81-94, 1981. [2] S.K. Ayyaswamy, B. Krishnakumari, C. Natarajan & Y.B. Venkatakrishnan, Bounds on the hop domination number of a tree, Proceedings - Mathematical Sciences Vol.125, 449–455, 2015. [3] W. W. Rouse Ball, Mathematical Recreation and Problems of Past and Present Times, 1892. [4] A. M. Barcalkin & L. F. German, The external stability number of the Cartesian product of graphs. Bul. Akad. ˘Stiince RSS Moldoven. no.1 5-8, 1979. [5] S.C. Barman, M. Pal & S. Mondal, An optimal algorithm to find minimum k-hop dominating set of interval graphs, Discrete Mathematics Algorithms and Applications Vol.11(2), 1950016: 1–18, 2019. [6] C. Berge, Theory of Graphs and its Applications. Methuen, London, 1962. [7] G. Chen, W. Piotrowski & W. Shreve, A partition approach to Vizing’s conjecture. J. Graph Theory 21 103-111, 1996. [8] E. J. Cockayne & S. T. Hedetniemi, Towards a theory of domination in graphs. Networks, 7:247-261, 1977. [9] R.S. Coelho, P.F.S. Moura & Y. Wakabayashi, The k-hop connected dominating set problem: hardness and polyhedra, Electronic Notes in Discrete Mathematics Vol.50, 59–64, 2015. [10] R.S. Coelho, P.F.S. Moura & Y. Wakabayashi, The k-hop connected dominating set problem: approximation and hardness, Journal of Combinatorial Optimization Vol.34, 1060–1083, 2017. [11] R. J. Faudree, R. H. Schelp & W. e. Shreve, The domination number for the product of graphs. Congr. Numer. 79 29-33, 1990. [12] C.X. gang & W.Y. feng, On total domination and hop domination in diamond-free graphs, Bulletin of the Malaysian Mathematical Sciences Society Vol.43, 1885–1891, 2020. [13] B. L. Hartnell & D. F. Rall, Vizings conjecture and the one-half argument. Discuss. Math. Graph Theory, 15(2):205-216, 1995. [14] M.A. Henning & N.J. Rad, On 2-step and hop dominating sets in graphs, Graphs and Combinatorics Vol.33:913–927, 2017. [15] M.A. Henninga, S. Palb & D. Pradhanb, Algorithm and hardness results on hop domination in graphs, Information Processing Letters Vol.153, 105872: 1–8, 2020. [16] C. F. De Jaenisch, Applications de l’Analyse mathematique an Jen des Echecs, 1862. [17] D.A. Mojdeh & A.S. Emadi, Hop domination polynomial of graphs, Journal of Discrete Mathematical Sciences and Cryptography, 1–16, 2019. [18] C. Natarajan & S.K. Ayyaswamy, Hop domination in graphs-II, Versita Vol. 23(2),187–199, 2015. [19] O. Ore, Theory of Graphs. Amer. Math. Soc. Colloq. Publ., 38 (Amer. Math. Soc., Providence, RI), 1962. [20] N.J. Rad, A. Poureidi, On hop roman domination in trees, Communications in Combinatorics and Optimization Vol.4(2), 201–208, 2019. [21] R.C. Rakim, C.J.C. Saromines & H.M. Rara, Perfect hop domination in graphs, Applied Mathematical Sciences, Vol.12(13), 635–649, 2018. [22] Jennifer M. Tarr, Domination in Graphs, Graduate Theses and Dissertations, 2010. [23] V. G. Vizing, The Cartesian product of graphs. Vy˘cisl. Sistemy 9: 30-43, 1963. [24] H.D. Yang, A study of disjunctive total domination problem on tori and grid graphs, National Dong Hwa University Thesis. [25] Y. Zhao, L. Mia & Z. Liao, A linear-time algorithm for 2-step domination in block graphs, Journal of Mathematical Research with Applications Vol.35(3), 285–290, 2015.
|