帳號:guest(18.222.116.168)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李宗翰
作者(英文):Tsung-Han Lee
論文名稱:跳躍支配在網格圖上之研究
論文名稱(英文):A Study of Hop Domination on Grid Graphs
指導教授:彭勝龍
指導教授(英文):Sheng-Lung Peng
口試委員:謝孫源
楊慶隆
口試委員(英文):Sun-Yuan Hsieh
Ching-Nung Yang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:資訊工程學系
學號:610721222
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:27
關鍵詞:網格圖支配跳躍支配近似解
關鍵詞(英文):grid graphsdominationhop dominationapproximate solution
相關次數:
  • 推薦推薦:0
  • 點閱點閱:9
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏收藏:0
支配問題是一個經典問題,可以應用於許多不同的實際問題上,給定一個圖形 G=(V,E),一個點集合 D⊆V 是圖形 G 的支配集,表示任一個不在 D 中的點都有一個鄰居在 D 中。跳躍支配是支配問題的一種變體,目前尚未得到廣泛的研究。給定一個圖形 G=(V,E),若一個點集合 S⊆V 滿足對 V 上的每一個不屬於 S 的點,都有一個以上在 S 的點與其距離為2,這個點集合 S 被稱為是圖形 G 的一個跳躍支配集。圖形 G 的最小跳躍支配集的元素個數以 〖 γ〗_h (G) 表示。網格圖(Grid graphs)又被稱為網狀圖(Mesh),通常可以畫成二維的長方形格子圖,一般用 G_(m×n) 來表示,其中 m 表列數,n 為行數。在本研究中,我們計算任一個網格圖 G_(m×n) 的 〖 γ〗_h (G_(m×n)) 數值,針對 1≤m≤5 時,我們得出 〖 γ〗_h (G_(m×n)) 的最佳解,而 6≤m 時,我們計算 〖 γ〗_h (G_(m×n)) 的近似解。
Domination problem is a classical problem that can be applied on many different real applications. Given a graph G=(V,E), a vertex subset D⊆V is a dominating set if for every vertex v, v has a neighbor in D. Hop domination is a variant of domination problem which is not well-studied for the time being. For a graph G=(V,E), we say a vertex subset S⊆V is a hop dominating set of graph G if every vertex v∈V∖S there is a vertex u∈S such that the distance of u and v is 2. The minimum cardinality of a hop dominating set of 𝐺 is called the hop domination number of G and is denoted by〖 γ〗_h (G). Grid graphs are a kind of graphs that can be depicted as a two dimensional matrix. Usually, it is denoted as G_(m×n), where m is the number of rows and n is the number of columns. In this study, we compute 〖 γ〗_h (G_(m×n)). In particular, if 1≤m≤5, we find the optimal solutions for 〖 γ〗_h (G_(m×n)). However, for 6≤m, we obtain approximate solutions for 〖 γ〗_h (G_(m×n) ).
Chapter 1 Introduction 1
Chapter 2 Main Results 5
Chapter 3 Conclusion and Future Work 23
Bibliography 25

[1] B.D. Acharya & M.K. Gill, On the index of gracefulness of a graph and the gracefulness of two-dimensional square lattice graphs. Indian Journal Math Vol.23, 81-94, 1981.
[2] S.K. Ayyaswamy, B. Krishnakumari, C. Natarajan & Y.B. Venkatakrishnan, Bounds on the hop domination number of a tree, Proceedings - Mathematical Sciences Vol.125, 449–455, 2015.
[3] W. W. Rouse Ball, Mathematical Recreation and Problems of Past and Present Times, 1892.
[4] A. M. Barcalkin & L. F. German, The external stability number of the Cartesian product of graphs. Bul. Akad. ˘Stiince RSS Moldoven. no.1 5-8, 1979.
[5] S.C. Barman, M. Pal & S. Mondal, An optimal algorithm to find minimum k-hop dominating set of interval graphs, Discrete Mathematics Algorithms and Applications Vol.11(2), 1950016: 1–18, 2019.
[6] C. Berge, Theory of Graphs and its Applications. Methuen, London, 1962.
[7] G. Chen, W. Piotrowski & W. Shreve, A partition approach to Vizing’s conjecture. J. Graph Theory 21 103-111, 1996.
[8] E. J. Cockayne & S. T. Hedetniemi, Towards a theory of domination in graphs. Networks, 7:247-261, 1977.
[9] R.S. Coelho, P.F.S. Moura & Y. Wakabayashi, The k-hop connected dominating set problem: hardness and polyhedra, Electronic Notes in Discrete Mathematics Vol.50, 59–64, 2015.
[10] R.S. Coelho, P.F.S. Moura & Y. Wakabayashi, The k-hop connected dominating set problem: approximation and hardness, Journal of Combinatorial Optimization Vol.34, 1060–1083, 2017.
[11] R. J. Faudree, R. H. Schelp & W. e. Shreve, The domination number for the product of graphs. Congr. Numer. 79 29-33, 1990.
[12] C.X. gang & W.Y. feng, On total domination and hop domination in diamond-free graphs, Bulletin of the Malaysian Mathematical Sciences Society Vol.43, 1885–1891, 2020.
[13] B. L. Hartnell & D. F. Rall, Vizings conjecture and the one-half argument. Discuss. Math. Graph Theory, 15(2):205-216, 1995.
[14] M.A. Henning & N.J. Rad, On 2-step and hop dominating sets in graphs, Graphs and Combinatorics Vol.33:913–927, 2017.
[15] M.A. Henninga, S. Palb & D. Pradhanb, Algorithm and hardness results on hop domination in graphs, Information Processing Letters Vol.153, 105872: 1–8, 2020.
[16] C. F. De Jaenisch, Applications de l’Analyse mathematique an Jen des Echecs, 1862.
[17] D.A. Mojdeh & A.S. Emadi, Hop domination polynomial of graphs, Journal of Discrete Mathematical Sciences and Cryptography, 1–16, 2019.
[18] C. Natarajan & S.K. Ayyaswamy, Hop domination in graphs-II, Versita Vol. 23(2),187–199, 2015.
[19] O. Ore, Theory of Graphs. Amer. Math. Soc. Colloq. Publ., 38 (Amer. Math. Soc., Providence, RI), 1962.
[20] N.J. Rad, A. Poureidi, On hop roman domination in trees, Communications in Combinatorics and Optimization Vol.4(2), 201–208, 2019.
[21] R.C. Rakim, C.J.C. Saromines & H.M. Rara, Perfect hop domination in graphs, Applied Mathematical Sciences, Vol.12(13), 635–649, 2018.
[22] Jennifer M. Tarr, Domination in Graphs, Graduate Theses and Dissertations, 2010.
[23] V. G. Vizing, The Cartesian product of graphs. Vy˘cisl. Sistemy 9: 30-43, 1963.
[24] H.D. Yang, A study of disjunctive total domination problem on tori and grid graphs, National Dong Hwa University Thesis.
[25] Y. Zhao, L. Mia & Z. Liao, A linear-time algorithm for 2-step domination in block graphs, Journal of Mathematical Research with Applications Vol.35(3), 285–290, 2015.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *