帳號:guest(3.145.186.204)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李雨婕
作者(英文):Yu-Chieh Lee
論文名稱:以脈衝雷射系統成長鉿鈮鉭鈦鋯高熵薄膜材料
論文名稱(英文):The growth of HfNbTaTiZr high-entropy-alloy thin films on Si (111) by pulsed laser deposition
指導教授:余英松
指導教授(英文):Ing-Song Yu
口試委員:黃清安
王誠佑
口試委員(英文):Ching-An Huang
Cheng-Yu Wang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610722002
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:126
關鍵詞:高熵合金脈衝雷射沉積鉿鈮鉭鈦鋯薄膜準分子雷射高熵合金薄膜
關鍵詞(英文):high entropy alloyPLDthin filmHfNbTaTiZr
相關次數:
  • 推薦推薦:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
本論文乃以脈衝雷射在矽 (111)基板沉積HfNbTaTiZr高熵合金薄膜,並探討所備製高熵合金薄膜之機械及電化學特性。薄膜成長及處理條件有四個變數,即雷射功率大小、沉積薄膜時間、雷射鍍膜之基材溫度及薄膜退火溫度。
HfNbTaTiZr高熵合金薄膜之機械性質係以奈米壓痕測試其奈米硬度及楊氏模數。X射線光電子光譜分析所製備之HfNbTaTiZr薄膜成分。高熵合金薄膜之電化學性質在選用HCl溶液,分別以循環伏安及交流阻抗測試薄膜之電化學特性。以原子力顯微鏡觀察分析所備製薄膜之表面形貌及表面粗糙度變化。高熵合金薄膜顯微結構及表面形貌則以場射掃描式及穿透式電子顯微鏡深入分析。
研究結果顯示,原子力顯微分析常溫下成長之HfNbTaTiZr薄膜表面粗糙度在0.31- 0.36 nm間,退火後及加溫成長之試片,薄膜表面粗糙度皆較高。奈米壓痕測試所備製之高熵合金薄膜試樣,常溫下成長2小時,其測得硬度及彈性模數與矽基材雷同;而成長3小時之試片可測得薄膜硬度及彈性模數值分別為10.96 GPa及107.92 GPa,此硬度值比塊材型態之HfNbTaTiZr高約三倍。電化學測試結果顯示在0.3 M HCl溶液測得之薄膜循環伏安電流密度值低,其交流阻抗測試所得之電荷傳導阻抗 (Rct)比AISI 304不銹鋼大,意謂在此溶液中,HfNbTaTiZr薄膜比AISI 304不銹鋼更耐蝕,且具兩串聯Randle電路;而在0.5 M HCl溶液測試,其電流密度值比在0.3 M HCl溶液中提升105倍,其交流阻抗測得之Rct反而比AISI 304不銹鋼小。顯微結構分析中,由TEM繞射圖可見,常溫成長之HfNbTaTiZr薄膜具BCC結構,且經退火後其結構不變;而在加溫情況下製備之薄膜,由於與大量氧反應,形成氧化物而為非晶結構。
In this dissertation, high-entropy-alloy HfNbTaTiZr thin films were prepared on the Si (111) substrate by pulsed laser deposition (PLD). Four parameters were conducted for the growth including PLD power, deposition time, substrate temperature, and post annealing treatment. The mechanical and electrochemical properties of HfNbTaTiZr thin films were studied by nano-indenter, cyclic voltammetry scanning and alternate current impedance. Surface morphologies and roughness values of HfNbTaTiZr thin films were examined by scanning electron microscopy and atomic force microscopy. Microstructures of HfNbTaTiZr films were characterized by transmission electron microscopy (TEM) equipped with energy-dispersive x-ray spectroscopy (EDS).
Experimental results show that surface roughness (Sq) values of HfNbTaTiZr thin films prepared with different PLD powers are between 0.32 and 0.36 nm which are even lower Si (111) substrate of 0.47 nm. A relatively high surface roughness was detected on the films prepared at higher temperatures and with annealing treatment. Based on the nano-indention measurement, Young’s modulus and nano-hardness values of with PLD within 2 hrs are closed to Si. However, Young’s modulus and nano-hardness value of HfNbTaTiZr films in 3-hour deposition are 10.96 GPa and 107.92 GPa, respectively. The hardness of HfNbTaTiZr thin film is about three-time higher than the as-cast HfNbTaTiZr bulk specimen. From the results of TEM and EDS, HfNbTaTiZr films grown at room temperature and after annealing show the BCC structure and have the high composition of oxygen.
Moreover, the results of electrochemical tests show that a very low current density of few 10-6 mA/cm2 by cyclic voltammetry scanning test in the 0.3 M HCl solution. The charge transfer resistance values of HfNbTaTiZr/Si are higher than those of austenitic stainless steel (AISI 304) and copper foil. This indicates that the corrosion resistance of HfNbTaTiZr/Si specimen is better than that of AISI 304 in the 0.3 M HCl solution. The Nyquist plots also show two parallel connections of Randle’s circuits in the same solution.
第1章 緒論 1
1.1. 前言 1
1.2. 高熵合金 2
1.3. 高熵合金的效應及應用 3
1.4. 以脈衝雷射沉積成長高熵合金薄膜 5
1.5. HfNbTaTiZr高熵合金薄膜 6
1.6. 高熵合金之電化學測試 7
1.7. 高熵合金之顯微組織分析 11
1.8. 高熵合金之機械性質分析 14
第2章 研究動機 19
第3章 實驗儀器 21
3.1. 薄膜備製 21
3.1.1. 脈衝雷射沉積 (PLD) 21
3.1.2. 準分子雷射 24
3.1.3. 電化學 25
3.2. 薄膜分析 27
3.2.1. 掃描式電子顯微鏡 (SEM) 27
3.2.2. X射線能量散佈光譜儀 (EDS) 28
3.2.3. X-射線光電子光譜 (XPS) 30
3.2.4. X射線繞射儀 (XRD) 32
3.2.5. 原子力顯微鏡 (AFM) 35
3.2.6. 奈米壓痕 (Nano Indenter) 37
3.2.7. 穿透式電子顯微鏡 (TEM) 40
3.2.8. 雙束型聚焦離子束系統 (FIB) 41
第4章 實驗 43
4.1. 靶材製備 43
4.2. PLD 雷射鍍膜系統操作程序 44
4.2.1. 填充雷射氣體 44
4.2.2. 建立真空環境 44
4.2.3. 置放試片 45
4.2.4. 取出試片 45
4.3. 電化學測試 46
4.4. PLD實驗參數 47
第5章 結果與討論 49
5.1. 雷射功率與能量大小之測試結果 49
5.2. A系列 改變成長功率 51
5.2.1. SEM 觀察分析 52
5.2.2. AFM表面形貌分析 53
5.2.3. Nanoindenter 55
5.2.4. XRD量測 56
5.2.5. XPS圖譜 57
5.2.6. A系列結論 60
5.3. B系列 改變PLD鍍膜時間 61
5.3.1. SEM觀察分析
5.3.2. AFM表面形貌分析 63
5.3.3. Nanoindentor 65
5.3.4. XRD量測 66
5.3.5. XPS圖譜 67
5.3.6. B系列結論 71
5.4. C系列 改變退火溫度 72
5.4.1. SEM觀察分析 73
5.4.2. AFM表面形貌分析 74
5.4.3. Nanoindentor 76
5.4.4. XRD量測 77
5.4.5. XPS圖譜 78
5.4.6. TEM 82
5.4.7. C系列結論 86
5.5. D系列 改變成長溫度 87
5.5.1. XRD量測 88
5.5.2. AFM表面形貌分析 89
5.5.3. 電化學測試 91
5.5.4. 交流阻抗測試 101
5.5.5. TEM 105
5.5.6. D系列結論 111
第6章 結論 113
第7章 參考文獻 115


[1] Yeh, J.W., et al. (2004). Nanostructured High-Entropy Alloys with Multiple Principal Elements:Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6(5): p. 299-303.
[2] Chang, S., et al. (2020). Irradiation-induced swelling and hardening in HfNbTaTiZr refractory high-entropy alloy. Materials Letters, 272: p. 127832.
[3] Yeh, J.-W. (2006). Recent progress in high-entropy alloys. Annales de Chimie Science des Matériaux, 31(6): p. 633-648.
[4] Ming-Hung Tsai, J.-W.Y. (2014). High-Entropy Alloys: A Critical Review. Materials Research Letters, p.107-123.
[5] Lukac, F., et al. (2018). Defects in High Entropy Alloy HfNbTaTiZr Prepared by High Pressure Torsion. Acta Physica Polonica A, 134(3): p. 891-894.
[6] Senkov, O.N., et al. (2011). Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 509(20): p.6043-6048.
[7] Zhang, Y., et al. (2014). Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61: p.1-93.
[8] Lin, C.-M., et al. (2015). Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys. Journal of Alloys and Compounds, 624: p.100-107.
[9] Senkov, O.N. (2014). S.V. Senkova, and C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Materialia, 68: p.214-228.
[10] Guo, N.N., et al. (2016). Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi) BCC /M5Si3 in-situ compound. Journal of Alloys and Compounds, 660: p.197-203.
[11] Liu, C.M., et al. (2014). Microstructure and oxidation behavior of new refractory high entropy alloys. Journal of Alloys and Compounds, 583: p.162-169.
[12] Cao, Y.-k., et al. (2019). Effects of Al and Mo on high temperature oxidation behavior of refractory high entropy alloys. Transactions of Nonferrous Metals Society of China, 29(7): p.1476-1483.
[13] Yurchenko, N.Y., et al. (2017). Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x =0-1.5) high-entropy alloys. Materials Science and Engineering: A, 704: p.82-90.
[14] Ye, Q., G. Yang, and B. Yang. (2019). Effect of aging on microstructure and property of AlCoCrFeMo0.05Ni2 high entropy alloy. Materials Science and Engineering: A, 760: p.1-6.
[15] Motallebzadeh, A., et al. (2019). Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications. Intermetallics, 113.
[16] Pei, Z. (2018). An overview of modeling the stacking faults in lightweight and high-entropy alloys: Theory and application. Materials Science and Engineering: A, 737: p.132-150.
[17] Azhari-Saray, H., et al. (2020). Dissimilar resistance spot welding of 6061-T6 aluminum alloy/St-12 carbon steel using a high entropy alloy interlayer. Intermetallics, 124: p.106876.
[18] Yi, H.K., et al. (2008). Application of a combined heating system for the warm hydroforming of lightweight alloy tubes. Journal of Materials Processing Technology, 203(1-3): p.532-536.
[19] Zhang, Y., et al. (2020). Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy. Journal of Materials Science & Technology, 44: p.140-147.
[20] Senkov, O.N., et al. (2013). Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis. Acta Materialia, 61(5): p.1545-1557.
[21] Stepanov, N.D., et al. (2015). Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Materials Letters, 142: p.153-155.
[22] Youssef, K.M., et al. (2014). A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures. Materials Research Letters, 3(2): p.95-99.
[23] Otto, F., et al. (2013). The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 61(15): p.5743-5755.
[24] Cropper, M.D. (2018). Thin films of AlCrFeCoNiCu high-entropy alloy by pulsed laser deposition. Applied Surface Science, 455: p.153-159.
[25] Lu, T.-W., et al. (2019). Microstructures and mechanical properties of CoCrFeNiAl0.3 high-entropy alloy thin films by pulsed laser deposition. Applied Surface Science, 494: p.72-79.
[26] Gueye, M., et al. (2020). Study of the stability under in vitro physiological conditions of surface silanized equimolar HfNbTaTiZr high-entropy alloy: A first step toward bio-implant applications. Surface and Coatings Technology, 385: p.125374.
[27] Laplanche, G., et al. (2019). Temperature dependence of elastic moduli in a refractory HfNbTaTiZr high-entropy alloy. Journal of Alloys and Compounds, 799: p.538-545.
[28] 魏耀光, 郭.刚., 李静, 曾一畔, 何婧, (2019). 難熔高熵合金在航空發動機上的應用. Journal of Aeronautical Materials, 39: p.82-93.
[29] Wenqian Wu, S.N., Yong Liu, and Min Song. (2016). Effects of cold rolling and subsequent annealing on the microstructure of a HfNbTaTiZr high-entropy alloy. 31(24): p.3815-3823.
[30] Dirras, G., et al. (2016). Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy. Materials Science and Engineering: A, 654: p.30-38.
[31] Couzinié, J.P., et al. (2014). Microstructure of a near-equimolar refractory high-entropy alloy. Materials Letters, 126: p.285-287.
[32] Čížek, J., et al. (2018). Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation. Journal of Alloys and Compounds, 768: p.924-937.
[33] Wu, Y.D., et al. (2014). A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Materials Letters, 130: p.277-280.
[34] Huang, C.A., et al. (2003). The electrochemical behavior of tin-doped indium oxide during reduction in 0.3 M hydrochloric acid. Electrochimica Acta, 48(24): p.3599-3605.
[35] Soare, V., et al. (2015). Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films. Applied Surface Science, 358: p.533-539.
[36] Poletti, M.G., et al. (2016). Equilibrium high entropy phases in X-NbTaTiZr (X = Al,V,Cr and Sn) multiprincipal component alloys. Journal of Alloys and Compounds, 655: p.138-146.
[37] Lifer21. (2005). Cyclovoltammogram.
[38] Nanakoudis, A. (2019). EDX Analysis with a Scanning Electron Microscope (SEM): How Does it Work?
[39] 科研界的小學生. (2018). 從原理到實例教你玩轉XPS.; Retrieved from: https://reurl.cc/Qd0RN9.
[40] Kee, L.Y., et al., X-Ray Crystallography.
[41] T. Huelser*, S.M.S., H. Wiggers*,**, C. Schulz*,**. (2010). Gas Phase Synthesis of Highly Specific Nanoparticles on the Pilot Plant Scale. 1.
[42] 原子力顯微鏡原理. ; Retrieved from: http://web1.knvs.tp.edu.tw/AFM/ch4.htm.
[43] Olympus. 表面粗糙度測量―評估參數. ; Retrieved from: https://reurl.cc/8GQveX.
[44] 閎康. (2016). 原子力顯微鏡 (AFM) 分析服務.
[45] 卡爾. (2019). 簡單理解奈米壓痕基礎原理與應用!哪裡有量測資源? ;
Retrieved from: https://reurl.cc/oLlyrQ.
[46] 杜正恭、詹佑晨, Technology Development, Processing and Characterization
Methodology in Nano Scale Hard Coatings.科儀新知, 100.第三十三卷第三期
[47] Mussert, K.M., et al. (2002). A nano-indentation study on the mechanical behaviour of the matrix material in an AA6061 - Al2O3 MMC. Journal of Materials Science, 37(4): p.789-794.
[48] Bobji, M.S. and S.K. Biswas (1998). Estimation of hardness by nanoindentation of rough surfaces. Journal of Materials Research, 13(11): p.3227-3233.
[49] Bhushan, B. (1999). Handbook of Micro/Nano Tribology. CRC Press.
[50] M. Wittling, A.B., P.J.Martin and M.V.Swain (1995). Influence of thickness and substrate on the hardness and deformation of thin films. Thin solid films, 270: p.283-288.
[51] Weppelmann, E. and M.V. Swain (1996). Investigation of the stresses and stress intensity factors responsible for fracture of thin protective films during ultra-micro indentation tests with spherical indenters. Thin Solid Films, 286(1-2): p.111-121.
[52] 張瑞慶, 奈米壓痕技術與應用, Retrieved from: https://reurl.cc/1xrYvX.
[53] Worsfold, P., et al. (2019). Encyclopedia of Analytical Science (Third Edition).: Oliver Walter.
[54] 國立中央大學, FEI Versa 3D高解析雙束型聚焦離子束系統FIB. Retrieved from: https://reurl.cc/kdGZMr.
[55] Hopcroft, M.A. (2010). W.D. Nix, and T.W. Kenny, What is the Young's Modulus of Silicon? Journal of Microelectromechanical Systems, 19(2): p.229-238.
[56] Ebrahimi, F. and L. Kalwani (1999). Fracture anisotropy in silicon single crystal. Materials Science and Engineering: A, 268(1-2): p.116-126.
[57] Meka, S.R., et al. (2016). Generating duplex microstructures by nitriding; nitriding of iron based Fe–Mn alloy. Materials Science and Technology, 32(9): p.883-889.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *