帳號:guest(3.138.135.31)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:王珩
作者(英文):Hung Wang
論文名稱:以溶劑熱法合成硫化鈷化合物應用於染料敏化太陽能電池
論文名稱(英文):Synthesis of Cobalt Sulfile Compound By Solvothermal Method For Dye-Sensitized Solar Cells
指導教授:林育賢
指導教授(英文):Yu-Shyan Lin
口試委員:鄭岫盈
黃家華
林育賢
口試委員(英文):Shiou-Ying Cheng
Jia-Hua Huang
Yu-Shyan Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610722005
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:48
關鍵詞:染料敏化太陽能電池硫化鈷對電極
關鍵詞(英文):dye-sensitized solar cellcobalt sulfidecounter electrode
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
本實驗使用網版印刷法製作工作電極與散射層。工作電極使用P25-TiO2,散射層使用P200-TiO2與P25混合,得到最佳工作電極參數後搭配後處理再以硫化鈷之對電極與Pt對電極進行比較。
以溶劑熱法合成硫化鈷化合物,研究對電極的催化活性、電荷轉移電阻的差異,期望提高染料敏化太陽能電池效率,取代傳統Pt對電極。自製硫化鈷化合物呈奈米結構,提供許多活性位置,降低電荷轉移電阻。
In this experiment, the screen printing method was used to make the working electrode and the scattering layer. The working electrode uses P25-TiO2, and the scattering layer uses a mixture of
P200-TiO2 and P25. After obtaining the best working electrode parameters, it is matched and post-processed, and then the cobalt sulfide counter electrode is compared with the Pt counter electrode.
The solvothermal method is used to synthesize cobalt sulfide compounds to study the difference in the catalytic activity and charge transfer resistance of the counter electrode. It is expected to improve the efficiency of dye-sensitized solar cells and replace the traditional Pt counter electrode.The self-made cobalt sulfide compound has a nanostructure, which provides many active sites and reduces charge transfer resistance.

第一章 緒論 1
第一節 前言 1
第二節 研究動機 2
第二章 文獻回顧 3
第一節 太陽能電池發展簡介 3
第二節 太陽能電池材料種類 4
第三節 染料敏化太陽能電池 6
第四節 染料敏化太陽能電池之工作原理及組成架構 9
第五節 硫化鈷 17
第三章 實驗方法與裝置 17
第一節 實驗儀器設備 17
第二節 測量儀器設備 19
第三節 實驗藥品 23
第四節 實驗流程 25
第五節 以溶劑熱法合成硫化鈷化合物應用於對電極之製備 30
第四章 結果與討論 32
第一節 XRD晶相分析 32
第二節 FE-SEM表面分析 33
第三節 工作電極分析 36
第四節 對電極分析 40
第五節 元件電化學組抗分析 41
第六節 XPS分析 43
第五章 結論 45
[1] D. R. Kim, C. H. Lee, J. Weisse, “Shrinking and Growing: Grain Boundary Density Reduction for Efficient Polysilicon Thin-Film Solar Cells,” Nano Letters, vol. 12, pp. 6485-6491, 2012
[2] B. G. Budaguan, A. A. Sherchenkov, D. A. Stryahilev, “Amorphous hydrogenated silicon films for solar cell application obtained with 55 kHz plasma enhanced Chemical vapor deposition,” Journal Of The Electrochemical Society, vol. 145, pp. 2508-2512, 1998
[3] M. C. Wagener, P. J. Carrington, J. R. Botha, A. Krier, “Photocapacitance study of type-II GaSb/GaAs quantum ring solar cells,” Journal of Applied Physics, vol. 115, 2017
[4] B. O'regan & M .Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, pp. 737-740, 1991
[5] A. Ali, S. L. Cheow, A.W. Azhari, K. Sopian, Saleem H. Zaidi, “H Enhancing crystalline silicon solar cell efficiency with SixGe1− x layers,”
Results in physics, vol. 77, pp. 225-232, 2017.
[6] M. Yu, Y. Li, Q. Cheng, “Numerical simulation of graphene/GaAs heterojunction solar cells,” Solar Energy, vol. 182, pp. 453-461, 2019
[7] A. Gupta, V. Parikh, A. D. Compaan, “High efficiency ultra-thin sputtered CdTe solar cells,” Solar Energy Materials and Solar Cells, vol. 90, pp. 2263-2271, 2006
[8]經濟部能源局, “能源科技發展白皮書” , 2007
[9] J. H. Yum, E. Baranoff, S. Wenger, Md. K. Nazeeruddin and M. Grätzel, “Panchromatic engineering for dye-sensitized solar cells.” Energy & Environmental Science, vol. 4, pp. 842-857, 2011
[10] S. C. Ezike, C. N. Hyelnasinyi, “Synergestic effect of chlorophyll and anthocyanin Co-sensitizers in TiO2-based dye-sensitized solar cells,” Surfaces and Interfaces, vol. 22, 2021
[11] F. Ngaffoa, A. P. Caricatob, M. Fernandez, “Structural properties of single and multilayer ITO and TiO2 films deposited by reactive pulsed laser ablation deposition technique,” Applied Surface Science, vol. 253, pp. 6508-6511, 2007
[12] H. J. Kim, M. S. Lee, D. G. Lee, “Optimal ablation of fluorine-doped tin oxide (FTO) thin film layers adopting a simple pulsed Nd:YAG laser with TEM00 mode,” Optics and Lasers in Engineering, vol. 47, pp. 558-562, 2009

[13] S. U. Ekar, Ganga Shekhar, “Green synthesis and dye-sensitized solar cell application of rutile and anatase TiO2 nanorods,” Journal of Solid Sstate Electrochemistry, vol. 21, pp. 2713-2718, 2017
[14] C. Sahoo, A. K. Gupta, A. Pal, “Photocatalytic degradation of Methyl Red dye in aqueous solutions under UV irradiation using Ag+ doped TiO2,” Desalination, vol. 181, pp. 91-100, 2005.
[15] H. Ozawa, M. Awa, T. Ono, “Effects of Dye-Adsorption Solvent on the Performances of the Dye-Sensitized Solar Cells Based on Black Dye,” Chemistry An Asian Journal, vol. 7, pp. 156-162, 2012
[16]吳仁彰, “太陽能電池介紹,” 靜宜大學應用化學系,2012
[17] C. C. Yang, H. Q. Zhang, Y. R. Zheng, “DSSC with a novel Pt counter electrodes using pulsed electroplating techniques,” Current Applied Physics, vol. 11, pp. 147-153, 2011
[18] H. Wang, M. Xu, X. Li, “Effect of photo-doping on performance for solid-state dye-sensitized solar cell based on 2,2′7,7′-tetrakis-(N,N-di-p-methoxyphenyl-amine)-9,9′-spirobifluorene and carbon counter electrode,” Electrochimica Acta, vol. 99, pp. 238-241, 2013
[19] J. Y. Lin, J. H. Liao , T. C. Wei, “Honeycomb-like CoS counter electron for transparent dye-sensitized solar cells,” Electrochemical and Solid-State Letters, Volume 14, Number 4, 2011
[20] M. Adeel, K. Yoo, J. J. Lee, “Solvothermal growth of 3D flower-like CoS@FTO as high-performance counter electrode for dye-sensitized solar cell,” Journal of Materials Science: Materials in Electronics ,vol. 30, pp. 6929-6935, 2019
[21] K. Ashok Kumar, A. Pandurangan, S. Arumugam ,M. Sathiskumar, “Effect of Bi-functional Hierarchical Flower-like CoS Nanostructure
on its Interfacial Charge Transport Kinetics, Magnetic and Electrochemical Behaviors for Supercapacitor and DSSC Applications,” Scientific Repopts, vol. 9, pp. 374-379 , 2019
[22] 陳俊太,許千樹, “奈米結構於有機高分子太陽能電池的應用,” TCIA台灣化學科技產業會刊, 第十期 , 2012
[23] F. Yang, X. Tian, Y. Gu, “Mesoporous NiCo2O4 nanoflower constructed from nanosheets as electroactive materials for dyesensitized solar cells,” RSC Advance, 2019
[24] G. Zhuang, H. Liu, X. Chen, “High-performance dye-sensitized solar cells using Ag-doped CoS counter electrodes,” RSC Advance, 2018
[25] J. Y. Lin, J. H. Liao, “Mesoporous Electrodeposited-CoS Film as a Counter Electrode Catalyst in Dye-Sensitized Solar Cells,” Journal of The Electrochemical Society, vol. 159, 2011
(此全文20260808後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *