帳號:guest(3.146.65.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Rivan Muhfidin
作者(英文):Rivan Muhfidin
論文名稱:The Effect of Graphite Sheet as Heat Dissipator on the Performance of Photovoltaic Modules
論文名稱(英文):The Effect of Graphite Sheet as Heat Dissipator on the Performance of Photovoltaic Modules
指導教授:余英松
指導教授(英文):Ing-Song Yu
口試委員:李炤佑
廖威勝
口試委員(英文):Chao-Yu Lee
Wei-sheng Liao
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610722021
出版年(民國):109
畢業學年度:108
語文別:英文
論文頁數:86
關鍵詞(英文):silicon solar celltemperatureefficiencygraphite sheet
相關次數:
  • 推薦推薦:0
  • 點閱點閱:16
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
A photovoltaic (PV) cell is a semiconductor device that is sensitive to the temperature. The solar radiation will convert into electricity through the PV cell, and the rest is converted into thermal, which raises the temperature of the PV cell. The performance of a photovoltaic (PV) module depends on some factors, such as the cell materials, PV system devices, and environmental. Temperature is one of the significant factors that affect the PV module efficiency due to the exposure of the solar radiation. The thermal management of the PV module is essential for PV applications. Graphene has unique properties that make it interesting for fundamental studies and future applications. One of the applications is solar cells. Graphene has a high thermal conductivity. Propose as a good heat sinking and low-temperature rise on the device. Graphene, in the form of a graphite sheet, can be used as a layer on a silicon solar cell. Applying the graphite sheet on the silicon solar cell, which sensitive to the temperature, could suggest a graphite sheet as a heat dissipator on the module to gain better performance of the silicon solar cell module. The PV module consists of glass, ethyl vinyl acetate (EVA), solar cell, graphite sheet, EVA, and polyvinyl fluoride (PVF) from top to bottom.
The experimental method was divided into two parts, simulation, and actual condition. Software simulation is used to predict the actual condition of the solar cell. The software uses in this experiment are PC1D and ANSYS. Second, the experiment was done by the real condition. The simulation and measurement under the real conditions show that the increasing temperature is decreasing the efficiency of the solar module. Results of PC1D show that under different temperatures, 20 to 50°C, the temperature affects the current and the voltage of the solar cell. It also means the fill factor and efficiency affected. The voltage is inversely proportional to the temperature. Since the temperature increases, the voltage will decrease. However, the current is directly proportional to the temperature. The temperature increase will slightly increase the current of the solar cell. Increasing the temperature will reduce its bandgap. The result of the ANSYS simulation shows similar results. The module temperature gets higher, and its efficiency will lower. Meanwhile, the difference in the temperature between the original PV module and the PV module with one layer of graphite sheet is around 2°C. The average temperature on the original PV module is 40.277°C, and the PV module with the graphite sheet reaches 37.461°C. The thicker graphite sheet can reduce the temperature of the solar module. It can reach 6°C different from the original one. The graphite sheet plays the central role of the most heat absorber.
In real conditions, the investigation was done in several days. Under the low solar irradiation, the difference between the original and the module with the graphite sheet is insignificant, around 0.2°C – 0.8°C. The difference in the temperature of about 2°C – 3°C reaches under high solar irradiation on a sunny day. This result is supporting the simulation result using ANSYS. The difference in the simulation around 2°C. The trend of reducing efficiency is significant since the temperature increase in the original PV module. On the other hand, the efficiency in the PV module with the graphite sheet is more stable. The graphite sheet is successful works as the heat dissipator on the PV module. From all of the results, we can conclude that the usage of the graphite sheet as a layer is successful in reducing the temperature on the PV modules.
Title page..............................i
Certificate of Approval...............iii
Acknowledgment..........................v
Abstract..............................vii
Table of Content.......................ix
List of Tables.........................xi
List of Figures......................xiii
Chapter 1 Introduction..................1
1.1.Overview............................3
1.2.Introduction to Solar cell..........5
1.3.Introduction to Graphite Sheet......9
Chapter 2 Literature Review............13
2.1.Solar cell.........................15
2.2.Graphite Sheet.....................27
2.3.Propose of study...................31
Chapter 3 Experimental Method..........33
3.1.PC1D Simulation....................35
3.2.ANSYS Simulation...................40
3.3.Experiment.........................46
Chapter 4 Results and Discussions......51
4.1.PC1D results.......................53
4.2.ANSYS results......................56
4.3.Experiment results.................62
Chapter 5 Conclusions..................69
Chapter 6 Future Work..................75
References.............................77
Appendix...............................83
Appendix A.............................83
Appendix B.............................84

[1] J. A. Turner, "A Realizable Renewable Energy Future," Science, vol. 285, pp. 687-689, 1999.
[2] IEA, "Electricity generation mix in advanced economies, 1971-2019," [Online]. Available: https://www.iea.org/data-and-statistics/charts/electricity-generation-mix-in-advanced-economies-1971-2019.
[3] H. A. R. F. B. Omar Ellabban, "Renewable energy resources: Current status, future prospects and their enabling technology," pp. 748-764, 2014.
[4] L. B. a. R. A. Gary Cook, Photovoltaic Fundamentals, Washington DC: National Renewable Energy Labolatory, 1995.
[5] M. A. Green, Solar Cells Operating Principles, Technology, And System Applications, United States: Prentice-Hall, Inc., 1982.
[6] L. M. Frass, Low-Cost Solar Electric Power, Switzerland: Springer, 2014.
[7] A. S. R. P. N. Mehul Bhogaita, "Recent advances in hybrid solar cells based on natural dye extracts from Indian plant pigment as sensitizers," Solar Energy, vol. 137, pp. 212-224, 2016.
[8] M. M. F. Dincer, "Critical Factors that Affecting Efficiency of Solar Cells," Smart Grid and Renewable Energy, vol. 1, pp. 47-50, 2010.
[9] A. N. K. Geim, "The rise of graphene," Nature Mater, vol. 6, p. 183–191, 2007.
[10] A. K. G. S. V. M. D. J. Y. Z. S. V. D. I. V. G. A. A. F. K. S. Novoselov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, no. 5696, pp. 666-669, 2004.
[11] A. I. E. R. T. T. K. Y. T. S. C. Oshima, "A hetero-epitaxial-double-atomic-layer system of monolayer graphene/monolayer h-BN on Ni(111)," Solid State Communications, vol. 116, no. 1, pp. 37-40, 2000.
[12] J.-M. T. a. J.-M. D. I. Forbeaux, "Heteroepitaxial graphite on 6H-SiC (0001) : Interface formation through conduction-band electronic structure," Physical Review B, vol. 58, p. 16396, 1998.
[13] J. C. A. V. T. A.J. Van Bommel, "LEED and Auger electron observations of the SiC(0001) surface," Surface Science, vol. 48, no. 2, pp. 463-472, 1975.
[14] K. S. N. M. I. K. F. S. D. C. E. J. A. J. a. A. K. G. S. V. Morozov, "Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer," Physical Review Letters, vol. 100, p. 016602, 2008.
[15] C. D. K. A. J. D. B. F. H.-Y. C. A. G. P. A. Y.-M. Lin, "100-GHz Transistors from Wafer-Scale Epitaxial Graphene," Science, vol. 327, no. 5966, p. 662, 2010.
[16] J. B. Y. L. Y. Q. Y. H. X. D. Lei Liao, "High‐Performance Top‐Gated Graphene‐Nanoribbon Transistors Using Zirconium Oxide Nanowires as High‐Dielectric‐Constant Gate Dielectrics," Advanced Materials, vol. 22, no. 17, pp. 1941-1945, 2010.
[17] D. A. D. G. H. B. D. K. M. K. E. J. Z. E. A. S. R. D. P. S. T. N. a. R. S. R. Sasha Stankovich, "Graphene-based composite materials," Nature, vol. 442, p. 282–286, 2006.
[18] S. G. W. B. I. C. D. T. F. M. C. N. L. Alexander A. Balandin, "Superior Thermal Conductivity of Single-Layer Graphene," Nano Letters, vol. 8, pp. 902-907, 2008.
[19] Z. B. R. S. B. D. J. S. L. E. A. R. K. L. A. A. B. Fariborz Kargar, "Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers," ACS Applied Materials & Interfaces, vol. 10, p. 37555−37565, 2018.
[20] V. V. A. K. R. Eric Pop, "Thermal properties of graphene: Fundamentals and applications," MRS Bulletin, vol. 37, no. 12, pp. 1273-1281, 2012.
[21] C. F. D. L. M. E. K. S. H. S. U. H. M. U. T. M. Razykov, "Solar photovoltaic electricity: Current status and future prospects," Solar Energy, vol. 30, pp. 1488-1495, 2010.
[22] W. H. S. Armstrong, "A thermal model for photovoltaic panels under varying atmospheric conditions," Applied Thermal Engineering, Vols. 1488-1495, no. 11-12, p. 30, 2010.
[23] T. Saga, "Advances in crystalline silicon solar cell technology for industrial mass production," NPG Asia Materials, vol. 2, pp. 96-102, 2010.
[24] B. S. A. R. a. R. M. Michael Woodhouse, Crystalline Silicon Photovoltaic Module Manufacturing Costs and Sustainable Pricing: 1H 2018 Benchmark and Cost Reduction Road Map, National Renewable Energy Labolatory, 2020.
[25] P. H. Q. W. B. S. R. M. T. L. J. M. W. Alan Goodrich, "A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs," vol. 114, pp. 110-135, 2013.
[26] S. S. M. L. M. H. Priyanka Singha, "Temperature dependence of I–V characteristics and performance parameters of silicon solar cell," Solar Energy Materials and Solar Cells, vol. 92, no. 12, pp. 1611-1616, 2008.
[27] I. M. T. H. M. O. K.H. Hussein, "Maximum photovoltaic power tracking: An algorithm for rapidly changing atmospheric conditions," IEEE Proceedings Generation, Transmission, Distribution, vol. 142, pp. 59-64, 1995.
[28] P. T. K. R. J. T. R. R. J. K. Pallab Midya, "Dynamic maximum power point tracker for photovoltaic applications," 27th IEEE Power Electronics Specialists Conference, pp. 1710-1716, 1996.
[29] K. Vidyanandan, "An overview of factors affecting the performance of solar PV systems," Energy Scan, vol. 27, pp. 2-8, 2017.
[30] O. A.-L. A. M. Linus Idoko, "Enhancing PV modules efficiency and power output using multi-concept cooling technique," Energy Reports, vol. 4, pp. 357-369, 2018.
[31] J. P. E. Skoplaki, "On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations," Solar Energy, vol. 83, p. 614–624, 2009.
[32] J. N. S. B. S. Swapnil Dubey, "Temperature Dependent Photovoltaic (PV) Efficiency and Its Effect on PV Production in the World A Review," Energy Procedia, vol. 33, p. 311–321, 2013.
[33] D. Evans, "Simplified method for predicting photovoltaic array output," Solar Energy, vol. 27, no. 6, pp. 555-560, 1981.
[34] L. F. D.L. Evans, "Cost studies on terrestrial photovoltaic power systems with sunlight concentration," Solar Energy, vol. 19, no. 3, pp. 255-262, 1977.
[35] D. M. K. E. L. M. C. W. a. J. N. B. Kroposki, "Photovoltaic module energy rating methodology development," in Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference, Washington, DC, 1996.
[36] M. E. T. A. Olukan, "A Comparative Analysis PV Module Temperature Models," Energy Procedia, vol. 62, pp. 694-703, 2014.
[37] A. J. a. C. Underwood, "A thermal model for photovoltaic systems," Solar Energy, vol. 70, no. 4, pp. 349-359, 2001.
[38] N. B. J. C. S. A. M. K. J.C. Sanchez Barosso, "A computational analysis of coupled thermal and electrical behavior of PV panels," Solar Energy Materials & Solar Cells, vol. 148, pp. 73-86, 2016.
[39] S. V. H. T. D. M. N.-C. C. Cătălin George Popovici, "Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks," Energy Procedia, vol. 85, pp. 425-432, 2016.
[40] J. P. M. d. C. S. A. M. A. K. Nicolas Barth, "Thermal Analysis of Solar Panels," Proceedings of the TMS Middle East — Mediterranean Materials Congress on Energy and Infrastructure Systems (MEMA 2015), pp. 441-450, 2015.
[41] A. B. B. B. M. Belarbi, "Simulation of the Solar Cells with PC1D, Application to Cells Based on Silicon," Advanced Energy: An International Journal, vol. 1, no. 3, pp. 1-10, 2014.
[42] X. Z. Z. L. F. J. Q. Y. X. Cai, "An in-depth analysis of the silicon solar cell key parameters optimal magnitudes using PC1D simulations," Optik, vol. 164, pp. 105-113, 2018.
[43] A. R. A. M. H. H. R. Galib Hashmi, "Study of the Enhancement of the Efficiency of the Monocrystalline Silicon Solar Cell by Optimizing Effective Parameters Using PC1D Simulation," Silicon, vol. 10, p. 1653–1660, 2018.
[44] O. F. S. V. Giuseppe Acciani, "Analysis of the thermal heating of poly-Si and a-Si photovoltaic cell by means of FEM," International Conference on Renewable Energies and Power Quality, pp. 1240-1244, 2010.
[45] A. A. T. Yixian Lee, "Finite Element Thermal Analysis of a Solar Photovoltaic Module," Energy Procedia, vol. 15, pp. 413-420, 2012.
[46] G. A. O. F. S. Vergura, "3-D PV-cell model by means of FEM," IEEE International Conference on Clean Energy Power, pp. 35-40, 2009.
[47] G. T. a. R. Abate, "Experimental Verification of Thermal Behaviour of Photovoltaic Modules," 14th IEEE Mediterranean Electrotechnical Conference, pp. 579-584, 2008.
[48] H. M. a. K. Kurokawa, "Temperature Fluctuation Analysis of Photovoltaic Modules at Short Time Interval," 31st IEEE Photovoltaic Specialists Conference, pp. 1816-1819, 2005.
[49] Y. W. Y.-B. H. Tahmineh Mahmoudi, "Graphene and its derivatives for solar cells application," Nano Energy, vol. 47, pp. 51-65, 2018.
[50] J. Z. Q. H. X. C. C. T. H. C. Q. Y. H. Z. Zongyou Yin, "Graphene-Based Materials for Solar Cell Applications," Advanced Energy Materials, vol. 4, pp. 1-19, 2014.
[51] Y. H. Y. Z. G. S. L. D. Y. H. L. Q. Yan Li, "An Electrochemical Avenue to Green‐Luminescent Graphene Quantum Dots as Potential Electron‐Acceptors for Photovoltaics," Advanced Materials, vol. 23, p. 776–780, 2011.
[52] X. C. B. L. L.-s. L. Xin Yan, "Large, Solution-Processable Graphene Quantum Dots as Light Absorbers for Photovoltaics," Nano Letters, vol. 10, pp. 1869-1873, 2010.
[53] Y. L. W. L. W. Y. S. W. P. H. Q. Y. Q. M. C. L. a. H.-M. C. Shisheng Li, "Vertically Aligned Carbon Nanotubes Grown on Graphene Paper as Electrodes in Lithium‐Ion Batteries and Dye‐Sensitized Solar Cells," Advanced Energy Materials, vol. 1, no. 4, pp. 486-490, 2011.
[54] N. C. M. D. D. C. P. Earl Boysen, Graphene: Sheets of Carbon-based Nanoparticles, New York: John Wiley & Sons Inc., 2011.
[55] D. A. C. a. P. A. Basore, "PC1D Version 5: 32-bit Solar Cell Modelling on Personal Computers," in 26th IEEE Photovoltaic Specialists Conference, Anaheim, 1997.
[56] A. T. S. G.N. Tiwari, Handbook of Solar Energy: Theory, Analysis, and Applications, Singapore: Springer, 2016.
[57] Y. C. J. R. S. B. Mesude Bayrakcia, "Temperature Dependent Power Modeling of Photovoltaics," Energy Procedia, vol. 57, pp. 745-754, 2014.
[58] N. R. Priyanka Singh, "Temperature dependence of solar cell performance—an analysis," Solar Energy Materials & Solar Cells, vol. 101, pp. 36-45, 2012.
[59] C. H. a. S. Bowden, "Photovoltaics Education Website," 2019. [Online]. Available: www.pveducation.org.
[60] X. Y. D. Y. D. Q. Chengquan Xiao, "Impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells," Solar Energy Materials and Solar Cells, vol. 128, pp. 427-434, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *