帳號:guest(3.128.199.105)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:吳致杰
作者(英文):Zhi-Jie Wu
論文名稱:氧化鋅異質結構之合成及光電化學應用
論文名稱(英文):Synthesis of Zinc Oxide Heterostructure for Photoelectrochemical Applications
指導教授:徐裕奎
指導教授(英文):Yu-Kuei Hsu
口試委員:陳盈竹
蔡志宏
口試委員(英文):Ying-Chu Chen
Chih-Hung Tsai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610725001
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:113
關鍵詞:氧化鋅鉍金屬氧化銅氧化銦光電化學表面增強拉曼散射
關鍵詞(英文):ZnOBiCuOIn2O3PhotoelectrochemicalSurface-enhanced Raman scattering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:33
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
本研究運用簡單且低成本的水熱法,透過降低成長溫度,將溫度從90 ℃降低為65 ℃後,成功的成長出富含缺陷的氧化鋅,而此富含缺陷的氧化鋅能增加氧化鋅對於可見光的吸收,將其應用於光電流的量測上,在1 V的電壓下可以產生出的光電流為0.76 mA/cm2,接著將其氧化鋅應用於其他異質結構的合成上

透過簡單的化學合成法,將鉍離子還原成鉍金屬顆粒於氧化鋅表面,顆粒大小為5 ~ 10 nm,因為鉍奈米金屬顆粒具有的表面電漿共振特性可以吸收可見光,所以將其應用於光電化學產氫與表面增強拉曼散射的量測上。在光電流的表現方面,在0.3 V的電壓下可以產生出的光電流為0.66 mA/cm2。在表面增強拉曼散射的表現方面,以脯酸胺作為標把物質,其增益因子表現為7.5×105。

運用簡單的化學合成法,將緩衝層氧化銦與吸光層氧化銅成長在氧化鋅表面。透過氧化銅幫助吸收可見光以及氧化銦幫助載子在能階上的移動,讓氧化鋅的異質結構能在光電化學產氫有更好的表現。光電流在1 V的電壓下可以產生出的光電流為1.23 mA/cm2,在實際的產氫效率上則是效率為每小時3 μmol。

實驗證實了氧化鋅可透過成長不同性質的異質結構,能提升在光電化學領域的表現,為一種不錯的光電化學電極材料。
Synthesis of zinc oxide heterostructure by the low cost process was proposed in this investigation for photoelectochemical applications. Synthesis of defects-rich zinc oxide was achieved by hydrothermal method of low temperature at 65℃. The photocurrent of defects-rich zinc oxide shows 0.76 mA/cm2 at the potential of 1 V.

The bismuth ions were reduced to bismuth metal particles on the surface of zinc oxide with a particle size of 5 ~ 10 nm for photoelectrochemical (PEC) hydrogen generation and surface enhanced Raman scattering (SERS). The photocurrent has 0.66 mA/cm2 at the potential of 0.3V. In terms of surface-enhanced Raman scattering, the enhancement factor was 7.5×105 for proline as target material.

Synthesis of ZnO/In2O3/CuO core-shell nanowires by the low cost process was proposed in this investigation for photoelectrochemical hydrogen generation. The photocurrent has 70% enhancement of the photocurrent in comparison to the pristine ZnO and the CuO/In2O3/ZnO core-shell photoelectrode produces 3 µmol of hydrogen per hour.

This work demonstrated that zinc oxide heterostructure is an effective electrochemical electrode meterial structure in photoelectrochemical.
第一章 緒論 1
1-1能源概述 1
1-2太陽能 3
1-3氫能 6
第二章 文獻回顧 9
2-1材料介紹 9
2-2電化學 15
2-3表面增強拉曼散射 18
2-4太陽能光電化學轉換 20
2-5研究動機 25
第三章 實驗方法與步驟 27
3-1以不同成長溫度水熱法成長的氧化鋅製備流程 27
3-2氧化鋅/鉍金屬奈米顆粒結構製備流程 29
3-3氧化鋅/氧化銦/氧化銅核殼結構製備流程 30
3-4材料分析儀器介紹 32
3-5電化學分析儀器介紹 40
第四章 實驗結果與討論 47
4-1探討以不同成長溫度水熱法成長的氧化鋅之光電化學特性分析 47
4-2製備氧化鋅/鉍奈米金屬顆粒異質結構於光電化學產氫之應用 67
4-3製備氧化鋅/氧化銦/氧化銅核殼奈米柱於光電化學產氫之應用 91
第五章 結論與未來展望 105
第六章 參考資料 107
1.李怡靜,“葡萄糖修飾氧化鋅表面應用於染料敏化太陽能電池之研究”,國立東華大學光電工程研究所碩士論文,2015。

2.尤俊皓,“奈米結構之氧化亞銅應用於光電化學分解分產氫之研究”,國立東華大學光電工程研究所碩士論文,2013。

3.SOLARGIS (2016). World solar resource maps. G. H. I. (GHI).

4.Hyperphysics (2005). Wien's Displacement Law. P. o. i. v. f. plot.

5.Wikipedia (2007). Air mass (solar energy). S. i. s. a. a. a. a. surface.

6.再生能源展望-氫能
https://www.re.org.twknowledgemore.aspxcid=201&id=2158

7.Das, S., & Srivastava, V. C. (2017). Synthesis and characterization of ZnO/CuO nanocomposite by electrochemical method. Materials Science in Semiconductor Processing, 57, 173-177.

8.Woodhouse, M., & Parkinson, B. A. (2009). Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chemical Society Reviews, 38(1), 197-210.

9.Chen, H. M., Chen, C. K., Chang, Y. C., Tsai, C. W., Liu, R. S., Hu, S. F., ... & Chen, K. H. (2010). Quantum dot monolayer sensitized ZnO nanowire‐array photoelectrodes: true efficiency for water splitting. Angewandte Chemie International Edition, 49(34), 5966-5969.

10.Sohila, S., Rajendran, R., Yaakob, Z., Teridi, M. A. M., & Sopian, K. (2016). Photoelectrochemical water splitting performance of flower like ZnO nanostructures synthesized by a novel chemical method. Journal of Materials Science: Materials in Electronics, 27(3), 2846-2851.

11.Cucka, P., & Barrett, C. S. (1962). The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi. Acta Crystallographica, 15(9), 865-872.

12.Liu, Y., & Allen, R. E. (1995). Electronic structure of the semimetals Bi and Sb. Physical Review B, 52(3), 1566.

13.Hofmann, P. (2006). The surfaces of bismuth: Structural and electronic properties. Progress in surface science, 81(5), 191-245.

14.Yang, F. Y., Liu, K., Hong, K., Reich, D. H., Searson, P. C., & Chien, C. L. (1999). Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science, 284(5418), 1335-1337.

15.Needs, R. J., Martin, R. M., & Nielsen, O. H. (1986). Total-energy calculations of the structural properties of the group-V element arsenic. Physical Review B, 33(6), 3778.

16.Tompkins H.I.G.H,(Academic,New York,1972),pp.Organometallics 10 (1991)652

17.Wang, Z., Jiang, C., Huang, R., Peng, H., & Tang, X. (2013). Investigation of optical and photocatalytic properties of bismuth nanospheres prepared by a facile thermolysis method. The Journal of Physical Chemistry C, 118(2), 1155-1160.

18.Bezerra, A. G., Cavassin, P., Machado, T. N., Woiski, T. D., Caetano, R., & Schreiner, W. H. (2017). Surface-enhanced Raman scattering using bismuth nanoparticles: a study with amino acids. Journal of Nanoparticle Research, 19(11), 362.

19.Chiang, C. Y., Epstein, J., Brown, A., Munday, J. N., Culver, J. N., & Ehrman, S. (2012). Biological templates for antireflective current collectors for photoelectrochemical cell applications. Nano letters, 12(11), 6005-6011.

20.Masudy-Panah, S., Siavash Moakhar, R., Chua, C. S., Tan, H. R., Wong, T. I., Chi, D., & Dalapati, G. K. (2016). Nanocrystal engineering of sputter-grown CuO photocathode for visible-light-driven electrochemical water splitting. ACS applied materials & interfaces, 8(2), 1206-1213.

21.Masudy-Panah, S., Moakhar, R. S., Chua, C. S., Kushwaha, A., Wong, T. I., & Dalapati, G. K. (2016). Rapid thermal annealing assisted stability and efficiency enhancement in a sputter deposited CuO photocathode. Rsc Advances, 6(35), 29383-29390.

22.Zhao, X., Wang, P., Yan, Z., & Ren, N. (2014). Ag nanoparticles decorated CuO nanowire arrays for efficient plasmon enhanced photoelectrochemical water splitting. Chemical Physics Letters, 609, 59-64.

23.Hong, K. S., Kim, J. W., Bae, J. S., Hong, T. E., Jeong, E. D., Jin, J. S., ... & Kim, J. P. (2017). Structure, chemical bonding states, and optical properties of the hetero-structured ZnO/CuO prepared by using the hydrothermal and the electrospinning methods. Physica B: Condensed Matter, 504, 103-108.

24.Xu, Y., & Schoonen, M. A. (2000). The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist, 85(3-4), 543-556.

25.Chi, W. H., Yen, K. Y., Su, H. L., Li, S. C., & Gong, J. R. (2011). On the physical properties of In 2 O 3 films grown on (0001) sapphire substrates by atomic layer deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29(3), 03A105.

26.黃瑞雄, 顏溪成, 科學發展, 2002, 359, 22

27.Bard, A. J., Faulkner, L. R., Leddy, J., & Zoski, C. G. (1980). Electrochemical methods: fundamentals and applications (Vol. 2). New York: wiley.

28.Ding, S. Y., Zhang, X. M., Ren, B., & Tian, Z. Q. (2006). Surface‐Enhanced Raman Spectroscopy (SERS): General Introduction. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation, 1-34.

29.Contreras-Cáceres, R., Sierra-Martín, B., & Fernández-Barbero, A. (2011). Surface-enhanced Raman scattering sensors based on hybrid nanoparticles. In Microsensors. IntechOpen.

30.Fateixa, S., Nogueira, H. I., & Trindade, T. (2015). Hybrid nanostructures for SERS: materials development and chemical detection. Physical Chemistry Chemical Physics, 17(33), 21046-21071.

31.Časas, A. (2010). Fotosintezė ir Fotokatalizė. From
https://www.slideshare.net/AlgimantasEmpire/photosynthesis-photocatalysis

32.陳維新,“能源概論”,高立圖書有限公司,2012。

33.陳彥志, & 陳良益. (2015). 以鈦摻雜赤鐵礦奈米結構光陽極進行太陽光電分析。

34.Murphy, A. B., Barnes, P. R. F., Randeniya, L. K., Plumb, I. C., Grey, I. E., Horne, M. D., & Glasscock, J. A. (2006). Efficiency of solar water splitting using semiconductor electrodes. International journal of hydrogen energy, 31(14), 1999-2017.

35.Bolton, J. R., & Hall, D. O. (1979). Photochemical conversion and storage of solar energy. Annual Review of Energy, 4(1), 353-401.

36.Weber, M. F., & Dignam, M. J. (1984). Efficiency of splitting water with semiconducting photoelectrodes. Journal of The Electrochemical Society, 131(6), 1258-1265.

37.Bora, T., & Dutta, J. (2014). Applications of nanotechnology in wastewater treatment—a review. Journal of nanoscience and nanotechnology, 14(1), 613-626.

38.Fujishima, A., & Honda, K. (1972). Electrochemical photolysis of water at a semiconductor electrode. nature, 238(5358), 37.

39.林宏勳,“用電化學沉積法製成氧化亞銅氧化鋅之異質型 p-n 太陽能電池之研究”,國立東華大學光電工程研究所碩士論文,2013。

40.Wang, J., Wang, Z., Huang, B., Ma, Y., Liu, Y., Qin, X., ... & Dai, Y. (2012). Oxygen vacancy induced band-gap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS applied materials & interfaces, 4(8), 4024-4030.

41.Nicholas, N. J., Franks, G. V., & Ducker, W. A. (2012). The mechanism for hydrothermal growth of zinc oxide. CrystEngComm, 14(4), 1232-1240.

42.Hsu, Y. K., Fu, S. Y., Chen, M. H., Chen, Y. C., & Lin, Y. G. (2014). Facile synthesis of Pt nanoparticles/ZnO nanorod arrays for photoelectrochemical water splitting. Electrochimica Acta, 120, 1-5.

43.Jiao, Z., Shang, M., Liu, J., Lu, G., Wang, X., & Bi, Y. (2017). The charge transfer mechanism of Bi modified TiO2 nanotube arrays: TiO2 serving as a “charge-transfer-bridge”. Nano Energy, 31, 96-104.

44.Chen, Y. C., Chang, H. H., & Hsu, Y. K. (2018). Synthesis of CuInS2 Quantum Dots/In2S3/ZnO Nanowire Arrays with High Photoelectrochemical Activity. ACS Sustainable Chemistry & Engineering, 6(8), 10861-10868.

45.Xu, C., Shin, P., Cao, L., & Gao, D. (2009). Preferential growth of long ZnO nanowire array and its application in dye-sensitized solar cells. The Journal of Physical Chemistry C, 114(1), 125-129.

46.Mwankemwa, B. S., Nambala, F. J., Kyeyune, F., Hlatshwayo, T. T., Nel, J. M., & Diale, M. (2017). Influence of ammonia concentration on the microstructure, electrical and raman properties of low temperature chemical bath deposited ZnO nanorods. Materials Science in Semiconductor Processing, 71, 209-216.

47.Dai, K., Zhu, G., Liu, Z., Liu, Q., Chen, Z., & Lu, L. (2012). Facile preparation and growth mechanism of zinc oxide nanopencils. Materials Letters, 67(1), 193-195.

48.Lupan, O., Chow, L., Chai, G., & Heinrich, H. (2008). Fabrication and characterization of Zn–ZnO core–shell microspheres from nanorods. Chemical Physics Letters, 465(4-6), 249-253.

49.鄭信民,林麗娟 工業科學雜誌 2003,201,109 。

50.羅聖全科學研習 材料世界網 2013-05 No52-5。

51.陳建淼 洪連輝 現代科技簡介 2009 09 09。

52.羅聖全 工業材料雜誌 2003 201 90。

53.Mahalingam, T., Chitra, J. S. P., Rajendran, S., Jayachandran, M., & Chockalingam, M. J. (2000). Galvanostatic deposition and characterization of cuprous oxide thin films. Journal of Crystal Growth, 216(1-4), 304-310.

54.俞姿宇 2016 X射線光電子能譜儀。

55.張立信. 2012. 表面化學分析技術. 國家奈米元件實驗室奈米通訊, 19(4)。

56.汪建民1998,材料分析,中國材料科學學會。

57.鄭天佑,“氧化物半導體之光學特性研究”,國立中山大學光電工程研究所碩士論文,2006。

58.R.A. Meyers (Ed。),Encyclopedia of Analytical Chemistry ,Wiley ,Chichester (2000 ),p。12188.

59.Bontempelli, G., Dossi, N., & Toniolo, R. (2016). Linear Sweep and Cyclic☆. Reference Module in Chemistry.

60.Fan, W., Ge, Y., Chen, B., Bai, H., & Shi, W. (2017). Fabrication of stable photoanode built from ZnO nanosheets in situ decorated with carbon film. Functional Materials Letters, 10(05), 1750068.

61.Barsoukov, E., & Macdonald, J. R. (Eds.). (2005). Impedance spectroscopy.

62.Instrument, G. “ Basics of Electrochemical Impedance Spectroscopy” from https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/.

63.Gelderman, K., Lee, L., & Donne, S. W. (2007). Flat-band potential of a semiconductor: using the Mott–Schottky equation. Journal of chemical education, 84(4), 685.

64.Ghosh, J., Ghosh, R., & Giri, P. K. (2018). Tuning the visible photoluminescence in Al doped ZnO thin film and its application in label-free glucose detection. Sensors and Actuators B: Chemical, 254, 681-689.

65.Xue, X., Wang, T., Jiang, X., Jiang, J., Pan, C., & Wu, Y. (2014). Interaction of hydrogen with defects in ZnO nanoparticles–studied by positron annihilation, Raman and photoluminescence spectroscopy. CrystEngComm, 16(6), 1207-1216.

66.Yadav, K., Mehta, B. R., Bhattacharya, S., & Singh, J. P. (2016). A fast and effective approach for reversible wetting-dewetting transitions on ZnO nanowires. Scientific reports, 6, 35073.

67.Biroju, R. K., & Giri, P. K. (2017). Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation. Journal of Applied Physics, 122(4), 044302.

68.Lin, B., Fu, Z., & Jia, Y. (2001). Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied physics letters, 79(7), 943-945.

69.Tam, K. H., Cheung, C. K., Leung, Y. H., Djurišić, A. B., Ling, C. C., Beling, C. D., ... & Ding, L. (2006). Defects in ZnO nanorods prepared by a hydrothermal method. The Journal of Physical Chemistry B, 110(42), 20865-20871.

70.Erhart, P., Albe, K., & Klein, A. (2006). First-principles study of intrinsic point defects in ZnO: Role of band structure, volume relaxation, and finite-size effects. Physical Review B, 73(20), 205203.

71.Chen, H. M., Chen, C. K., Chang, Y. C., Tsai, C. W., Liu, R. S., Hu, S. F., ... & Chen, K. H. (2010). Quantum dot monolayer sensitized ZnO nanowire‐array photoelectrodes: true efficiency for water splitting. Angewandte Chemie International Edition, 49(34), 5966-5969.

72.Shao, M., Ning, F., Wei, M., Evans, D. G., & Duan, X. (2014). Hierarchical nanowire arrays based on ZnO core− layered double hydroxide shell for largely enhanced photoelectrochemical water splitting. Advanced Functional Materials, 24(5), 580-586.

73.Commandeur, D., Brown, G., Hills, E., Spencer, J., & Chen, Q. (2019). Defect-rich ZnO nanorod arrays for efficient solar water splitting. ACS Applied Nano Materials.

74.Li, X., Niu, F., Su, J., & Guo, L. (2018). Photoelectrochemical Performance Dependence on Geometric Surface Area of Branched ZnO Nanowires. ChemElectroChem, 5(23), 3717-3722.

75.Lu, Y., Zhang, J., Ge, L., Han, C., Qiu, P., & Fang, S. (2016). Synthesis of novel AuPd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity. Journal of colloid and interface science, 483, 146-153.

76.Wei, Y., Ke, L., Kong, J., Liu, H., Jiao, Z., Lu, X., ... & Sun, X. W. (2012). Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles. Nanotechnology, 23(23), 235401.

77.Rattanawarinchai, P., Khemasiri, N., Jessadaluk, S., Chananonnawathorn, C., Horprathum, M., Klamchuen, A., ... & Nukeaw, J. (2018). Growth Time Dependence On Photoelectrochemical Property Of Zinc Oxide Nanorods Prepared By Hydrothermal Synthesis. Surface Review and Letters, 25(Supp01), 1840001.

78.Sun, X., Li, Q., Jiang, J., & Mao, Y. (2014). Morphology-tunable synthesis of ZnO nanoforest and its photoelectrochemical performance. Nanoscale, 6(15), 8769-8780.

79.Dong, F., Xiong, T., Sun, Y., Zhao, Z., Zhou, Y., Feng, X., & Wu, Z. (2014). A semimetal bismuth element as a direct plasmonic photocatalyst. Chemical Communications, 50(72), 10386-10389.

80.Jiao, Z., Zhang, Y., Ouyang, S., Yu, H., Lu, G., Ye, J., & Bi, Y. (2014). BiAg alloy nanospheres: a new photocatalyst for H2 evolution from water splitting. ACS applied materials & interfaces, 6(22), 19488-19493.

81.Chiu, Y. H., Chang, K. D., & Hsu, Y. J. (2018). Plasmon-mediated charge dynamics and photoactivity enhancement for Au-decorated ZnO nanocrystals. Journal of Materials Chemistry A, 6(10), 4286-4296.

82.Sardar, S., & Pal, S. K. (2016). Ultrafast photoinduced carrier dynamics at ZnO nanohybrid interfaces for light-harvesting applications. Nanotechnology Reviews, 5(1), 113-134.

83.Chen, Y. C., Pu, Y. C., & Hsu, Y. J. (2012). Interfacial charge carrier dynamics of the three-component In2O3–TiO2–Pt heterojunction system. The Journal of Physical Chemistry C, 116(4), 2967-2975.

84.Wei, M., Li, C. F., Deng, X. R., & Deng, H. (2012). Surface work function of transparent conductive ZnO films. Energy Procedia, 16, 76-80.

85.Wulan, B. R., Yi, S. S., Li, S. J., Duan, Y. X., Yan, J. M., Zhang, X. B., & Jiang, Q. (2018). Non-noble-metal bismuth nanoparticle-decorated bismuth vanadate nanoarray photoanode for efficient water splitting. Materials Chemistry Frontiers, 2(10), 1799-1804.

86.Zhang, X., Hou, X., Zhang, Q., Cai, Y., Liu, Y., & Qiao, J. (2018). Polyethylene glycol induced reconstructing Bi nanoparticle size for stabilized CO 2 electroreduction to formate. Journal of catalysis, 365, 63-70.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *