帳號:guest(18.190.217.212)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:藍嘉彥
作者(英文):JIA-YAN LAN
論文名稱:無創式多波長旋光血糖檢測方法與應用
論文名稱(英文):Non-invasive multi-wavelength optical blood glucose detection and application
指導教授:莊沁融
指導教授(英文):Ching-Jung Chuang
口試委員:蔡志宏
王宜達
口試委員(英文):Chih-Hung Tsai
Yi-Ta Wang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610725002
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:53
關鍵詞:無創式偏振多波長血糖旋光快速
關鍵詞(英文):non-invasivepolarizedmulti-wavelengthblood sugaroptical rotationfast
相關次數:
  • 推薦推薦:0
  • 點閱點閱:60
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:34
  • 收藏收藏:0
本研究使用偏振光經過手性結構會旋轉的原理,設計一套無創式血糖測量的方法,這套無創式測量方法可以達到快速且無創的血糖量測。研究透過手性結構的濃度與偏轉角度的線性關係,來尋找不同波長跟偏轉角度的色散關係,並且在文獻中發現旋光量除了與波長的平方成反比,還跟兩個係數有關,分別為旋光係數(A)、色散係數(λ0),多次重覆測量後本研究掌握兩者的數值,在重量百分比10%,光程1dm的情況下,我們測量到的旋光係數為1.8401×10^6而色散係數為172.4±1。

為了解決缺乏人體血糖濃度0%的標準樣品問題,我們設計多波長角度辨別的方法,透過使用660nm與407nm兩種波長相減,獲得相差角度,利用波長和旋光量的關係和旋光係數與濃度的線性變化,便可以得出精準的濃度值。同時為了證明系統的可靠性,實際測量10、5、3、2、1wt%的葡萄糖溶液,從實驗結果可以證明此套無創式血糖量測的誤差約為4%,而正常人在飯後血糖約(140mg/dL-200mg/dL),目前此方法的精準度約在12mg/dL,完全足以判斷血糖濃度的正常與否。

本研究發展出全新的無創式血糖量測方法,能夠快速且精準的測量人體血糖濃度,並且透過實驗證明,此系統的精確度足以勝任血糖正常與否的判斷,是非常具有潛力的無創式測量方法。
This research uses a principle that polarized light rotates through the chiral structure to design a non-invasive blood glucose measurement method. This method can achieve fast and non-invasive blood glucose measurement. We find the dispersion relationship between different wavelengths and deflection angles through the linear relationship between the concentration of the chiral structure and the deflection angle.

It is found in the literature that the amount of optical rotation is inversely proportional to the square of the wavelength, and is related to two coefficients, respectively coefficient (A), dispersion coefficient (λ0), through the results of repeated measurements, we get the values of both. In the case of 10% by weight and 1dm of optical path, the optical rotation coefficient we measured is 1.8401×10^6 and the dispersion coefficient is 172.4±1. At the same time, solve the problem of standard samples lacking 0% of human blood glucose concentration, we designed a multi-wavelength angle discrimination method to get the difference angle by using two wavelengths of 660nm and 407nm, and to use the relationship between wavelength and the amount of optical rotation and linear relationship between the optical rotation coefficient and concentration to gives a precise concentration value.

In order to prove the reliability of the system, the measurement of 10%, 5%, 3%, 2%, 1% glucose solution, from the experimental results can prove that the error of this non-invasive blood glucose measurement is about 4%. The normal person is blood sugar after meals is about (140mg/dL-200mg/dL), the accuracy of this method is about 12mg/dL, which is enough to judge the normality of blood glucose concentration.

This research has developed a new non-invasive blood glucose measurement method that can quickly and accurately measure blood glucose concentration, and through experiments, the accuracy of this system is sufficient to judge the normality of blood glucose, is a very potential non-invasive measurement method.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VIII
第一章 序論 1
1-1 前言 1
1-2 研究動機 4
第二章 基本理論 7
2-1 光的偏振 7
2-1-1 線偏振 7
2-1-2 圓偏振與橢圓偏振(部分圓偏振) 7
2-1-3 瓊斯向量與瓊斯矩陣 9
2-2 手性結構 10
2-2-1 手性結構-變旋 12
2-3 旋光理論 14
2-4 角度判別方式-極軸尋找器 Axis finder 16
2-5 光的色散 17
2-6 多波長角度判別理論 19
第三章 實驗方法與步驟 23
3-1 實驗理論與架構 23
3-2 數據討論 28
第四章 結果與討論 31
4-1 Matlab建模 31
4-2 旋光係數與濃度的關係模擬 35
4-3 實際測量與誤差 39
4-4 差異性分析 44
第五章 結論與未來展望 49
參考資料 51

[1] J. E. Shaw, R. A. Sicree, and P. Z. Zimmet, "Global estimates of the prevalence of diabetes for 2010 and 2030," Diabetes Research and Clinical Practice, vol. 87, no. 1, pp. 4-14, Jan 2010.
[2] 王秋香、石光中、何橈通、辛錫璋、李燕晉、林瑞祥、林宏達、邱宗鴻、郭清輝、莊峻鍠、莊立民、許惠恒、陳俊忠、張媚、傅茂祖、曾慶孝、裴馰、蔡世澤、蔡顯楊、潘文涵、鄭啟源、蕭淑貞、龍紀萱、戴東原、蘇秀悅, "糖尿病防治手冊 - 衛生福利部國民健康署," 2003.
[3] 周碧瑟、董道興、李佳琳、莊紹源、林敬恆、楊南屏, "台灣地區糖尿病流行病學," vol. 21, no. 2, pp. 83-96, 2002.
[4] 社團法人中華民國糖尿病學會, "2018 糖尿病臨床照護指引," 社團法人中華民國糖尿病學會, 2018.
[5] 劉志祥, "非侵入光學式血糖量測技術," 工業技術研究院 量測技術發展中心, 2013.
[6] A. I. Mansour, "Noninvasive Glucose Measurement for Diabetes Mellitus Patients," juniper publishers, 2017.
[7] F. L. Pedrotti, L. M.Pedrotti, and L. S.Pedrotti, "Introduction to optics Third Edition," Pearson Education pp. 356-360, 2014.
[8] A. Lakhtakia, "Selected Papers on Natural Optical Activity," Society of Photo Optical, 1990.
[9] L. G. Wade, "Organic Chemistry Fourth Edition," Pearson Education, 1998.
[10] C. O. da Silva, B. Mennucci, and T. Vreven, "Density functional study of the optical rotation of glucose in aqueous solution," Journal of Organic Chemistry, vol. 69, no. 23, pp. 8161-8164, Nov 2004.
[11] A. M. Silva, E. C. da Silva, and C. O. da Silva, "A theoretical study of glucose mutarotation in aqueous solution," Carbohydr Res, vol. 341, no. 8, pp. 1029-40, Jun 12 2006.
[12] M. Nixon and I. G. Hughes, "A visual understanding of optical rotation using corn syrup," European Journal of Physics, vol. 38, no. 4, 2017.
[13] J. R. Gavin, K. Alberti, M. B. Davidson, R. A. DeFronzo, A. Drash, S. G. Gabbe, S. Genuth, M. I. Harris, R. Kahn, H. Keen, W. C. Knowler, H. Lebovitz, N. K. Maclaren, J. P. Palmer, P. Raskin, R. A. Rizza, M. P. Stern, "Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus," Diabetes Care, vol. 20, no. 7, pp. 1183-1197, Jul 1997.
[14] 衛生福利部食品藥物管理署, "家用血糖監測系統技術基準," 衛生福利部食品藥物管理署, 2016.
[15] N. Jendrike, A. Baumstark, U. Kamecke, C. Haug, and G. Freckmann, "ISO 15197: 2013 Evaluation of a Blood Glucose Monitoring System's Measurement Accuracy," Journal of diabetes science and technology, vol. 11, no. 6, pp. 1275-1276, 2017.
[16] M. Honma, E. Uchida, H. Saito, T. Harada, S. Muto, and T. Nose, "Simple system for measuring optical rotation of glucose solution using liquid-crystal grating," Japanese Journal of Applied Physics, vol. 54, no. 12, 2015.
[17] C. J. Liu, T. Li, and T. Akkin, "Low-coherence interferometry for phase-sensitive measurement of optical rotation," Appl Opt, vol. 57, no. 20, pp. 5893-5898, Jul 10 2018.
[18] Y. Zhou, N. Zeng, Y. Ji, Y. Li, X. Dai, P. Li, L. Duan, H. Ma, Y. He, "Iris as a reflector for differential absorption low-coherence interferometry to measure glucose level in the anterior chamber," J Biomed Opt, vol. 16, no. 1, p. 015004, Jan-Feb 2011.
[19] A. J. Berger, T. W. Koo, I. Itzkan, G. Horowitz, and M. S. Feld, "Multicomponent blood analysis by near-infrared Raman spectroscopy," Applied Optics, vol. 38, no. 13, pp. 2916-2926, May 1999.
[20] J. Cao, H. Jia, X. Shen, and S. Jiang, "Research of optical rotation measurement system based on centroid algorithm," Rev Sci Instrum, vol. 87, no. 9, p. 093108, Sep 2016.
[21] C. Chou, C. Y. Han, W. C. Kuo, Y. C. Huang, C. M. Feng, and J. C. Shyu, "Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter," Applied Optics, Article vol. 37, no. 16, pp. 3553-3557, Jun 1998.
[22] A. M. K. Enejder, T. G. Scecina, J. Oh, M. Hunter, W. C. Shih, S. Sasic, G. L. Horowitz, M. S. Feld, "Raman spectroscopy for noninvasive glucose measurements," Journal of Biomedical Optics, vol. 10, no. 3, May-Jun 2005, Art. no. 031114.
[23] R. O. Esenaliev, K. V. Larin, I. V. Larina, and M. Motamedi, "Noninvasive monitoring of glucose concentration with optical coherence tomography," Optics Letters, vol. 26, no. 13, pp. 992-994, Jul 2001.
[24] D. C. Klonoff, "Noninvasive Blood Glucose Monitoring," vol. 20, no. 3, pp. 433-437, 1997.
[25] K. V. Larin, M. S. Eledrisi, M. Motamedi, and R. O. Esenaliev, "Noninvasive blood glucose monitoring with optical coherence tomography - A pilot study in human subjects," Diabetes Care, vol. 25, no. 12, pp. 2263-2267, Dec 2002.
[26] K. Maruo, M. Tsurugi, J. Chin, T. Ota, H. Arimoto, Y. Yamada, M. Tamura, M. Ishii, Y. Ozaki, "Noninvasive blood glucose assay using a newly developed near-infrared system," Ieee Journal of Selected Topics in Quantum Electronics, vol. 9, no. 2, pp. 322-330, Mar-Apr 2003.
[27] K. Maruo, M. Tsurugi, M. Tamura, and Y. Ozaki, "In vivo noninvasive measurement of blood glucose by near-infrared diffuse-reflectance spectroscopy," Applied Spectroscopy, vol. 57, no. 10, pp. 1236-1244, Oct 2003.
[28] K. H. Ott and B. Meyer, "Molecular dynamics simulations of maltose in water," Carbohydrate Research, vol. 281, no. 1, pp. 11-34, Feb 1996.
[29] N. Ozana, Y. Beiderman, A. Anand, B. Javidi, S. Polani, A. Schwarz, A. Shemer, J. Garcia, Z. Zalevsky, , "Noncontact speckle-based optical sensor for detection of glucose concentration using magneto-optic effect," J Biomed Opt, vol. 21, no. 6, p. 65001, Jun 1 2016.
[30] R. Pandey, S. K. Paidi, T. A. Valdez, C. Zhang, N. Spegazzini, R. R. Dasari, I. Barman, "Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy," Acc Chem Res, vol. 50, no. 2, pp. 264-272, Feb 21 2017.
[31] Q. H. Phan and Y. L. Lo, "Stokes-Mueller matrix polarimetry technique for circular dichroism/birefringence sensing with scattering effects," J Biomed Opt, vol. 22, no. 4, p. 47002, Apr 1 2017.
[32] T.M.Lowry, F.R.S., and P.C.Austin, "Optical Rotatory Dispersion."
[33] N. Tischler, M. Krenn, R. Fickler, X. Vidal, A. Zeilinger, and G. Molina-Terriza, "Quantum optical rotatory dispersion," Science Advances, 2016.
[34] S. Tokumitsu, M. E. D. L. X. Hasegawa, and X. Zhang, "Observations and theoretical evaluations of color changes of traveling light beams caused by optical rotation phenomena in sugared water and their applications for educational purposes," in ETOP 2017 Proceedings, Hangzhou, 2017, p. 1045219: Optical Society of America.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *