帳號:guest(18.223.43.122)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳逸琴
作者(英文):Yi-Chin Chen
論文名稱:過渡金屬氧化物於光伏元件的應用
論文名稱(英文):Application of transition metal oxides in photovoltaic device
指導教授:林楚軒
指導教授(英文):Chu-Hsuan Lin
口試委員:王智明
吳品頡
口試委員(英文):Chuh-Ming Wang
Pin-Chieh Wu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610725003
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:82
關鍵詞:氧化釩氧化鉬智慧玻璃太陽能電池光偵測器
關鍵詞(英文):Vanadium oxideMolybdenum oxideSmart glassSolar cellsPhotodetectors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏收藏:0
本研究主軸以過渡金屬氧化物優化太陽能電池為目的,使用的材料有二氧化釩(VO2)、五氧化二釩(V2O5)及三氧化鉬(MoO3),第一種VO2薄膜目標是應用在太陽能組列上的玻璃層,透過其特性製成智慧玻璃,在達到一定溫度時,使紅外光高穿透相變為低穿透,進而達到組列降溫的目的。而本研究中在矽基板上沉積VO2薄膜,利用濺鍍溫度250℃,熱退火溫度450℃,並且利用共濺鍍20W的Mg成功降低相變溫度至51℃。而運用同樣參數在玻璃上,確實得到高溫時紅外線穿透率降低。而在VO2薄膜的製程中,可以透過改變通氧量製成V2O5,因此本研究將V2O5及MoO3當作電洞傳輸層應用在N型矽上,製成太陽能電池與光偵測器,目前在太陽能電池上表現不佳,推測是ITO/金屬與矽之間的接觸電阻過高,導致低效率。而在光偵測器上,則成功比較沉積不同的金屬電極,得到適當的金屬能提升光響應,並且分析不同金屬對於元件中載子的影響。且在HIT結構中應用MoOX的部分,除了上述ITO/電極問題外,在ini結構上也因為少了背部的電子選擇層,使a-Si:H (i)與金屬呈現整流特性,因此在電極部份有待未來再優化。除此之外,HIT結構的光偵測器能透過增厚a-Si:H(i)層增加其對350~600nm之間波段的吸收,也成功增加了響應度。
This thesis optimizes the solar cells with transition metal oxides:VO2、 V2O5 and MoO3. The first intent is to introduce VO2 film into a smart glass for solar cell module. When the VO2 film reaches its transition temperature, the high transmittance of infrared light would become low transmittance, and achieving the purpose of cooling. In this study, the VO2 film was deposited on the silicon substrate with a sputtering temperature of 250℃, thermal annealing temperature of 450℃. The incorporation of 20 W co-sputtering of Mg successfully reduced the transition temperature to 51℃. With the same parameters on the glass, it also has lower infrared transmittance at high temperatures. If the oxygen content could be changed in the process of VO2 film process, V2O5 can be made. In this study, MoO3 and V2O5 as the hole transport layer have been applied to the N-type silicon as solar cells and the photodetectors. Up to now, no satisfied MoO3 and V2O5 solar cells has been demonstrated. Fortunately, different metal electrodes have been applied on MoO3/Si photodetectors, and comprehensive investigation has been done to pursue a suitable metal to enhance the photoresponse and analyze the effect of different metals on the carrier transportation. In addition, the absorption of HIT-structured photodetectors can be increased by thickening the a-Si:H(i) layer, and it successfully increases the responsivity.
摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 研究動機 4
1.3 論文架構 6
第二章 過渡金屬氧化物特性介紹 7
2.1 各種釩氧化物之可存在相 7
2.2 二氧化釩(VO2)介紹 9
2.2.1 結構特性 9
2.2.2 光學特性 10
2.2.3 遲滯迴圈與相變溫度 10
2.3 五氧化二釩(V2O5)與三氧化鉬(MoO3)介紹 12
2.3.1 V2O5結構與拉曼光譜介紹 12
2.3.2 MoO3結構介紹 13
2.3.3 過渡金屬氧化物應用於電洞選擇層原理介紹 14
第三章 過渡金屬氧化物薄膜製備 17
3.1 濺鍍沉積不同氧化釩薄膜 17
3.1.1 儀器與實驗製程介紹 17
3.1.2 薄膜濺鍍結果(Ⅰ) 22
3.1.3 薄膜濺鍍結果(Ⅱ) 32
3.2 二氧化釩薄膜光學特性應用 35
第四章 過渡金屬氧化物薄膜應用量測 37
4.1 五氧化二釩與三氧化鉬應用於太陽能電池 37
4.1.1 太陽能電池原理介紹 37
4.1.2 儀器及實驗結構介紹 39
4.1.3 結果與討論-太陽能電池 42
4.2 五氧化二釩與三氧化鉬應用於光偵測器 45
4.2.1 光偵測器與載子穿隧機制原理介紹 45
4.2.2 實驗結構介紹 50
4.2.3 結果與討論-光偵測器 50
第五章 HIT光伏元件 61
5.1 三氧化鉬應用於HIT電池 62
5.2 HIT偵測器介紹 64
5.2.1 實驗結構介紹 65
5.3 HIT偵測器量測與分析 66
第六章 結論與未來方向 71
6.1 結論 71
6.2 未來方向 73
參考文獻 75

[1-1]. 815全台大停電新聞。https://www.ettoday.net/news/20170815/989711.htm
[1-2]. 維基百科:815全台大停電。
https://zh.wikipedia.org/wiki/815%E5%85%A8%E8%87%BA%E5%A4%A7%E5%81%9C%E9%9B%BB
[1-3]. 綠能科技產業推動中心。http://www.geipc.tw/PromotePlan.aspx#pp2
[1-4]. 台大新聞E論壇
https://castnet.nctu.edu.tw/goldencast10/article/12099?issueID=674
[1-5]. 維基百科:半導體。
https://zh.wikipedia.org/wiki/%E5%8D%8A%E5%AF%BC%E4%BD%93
[1-6]. RENISHAW公司。
https://www.renishaw.com/en/what-links-metrology-with-solar-energy--42881
[1-7]. 新聞。https://kknews.cc/zh-tw/finance/qjamrjb.html
[1-8]. SOLUZZIONE SOLARE公司。
https://www.solarwind-sensor.com/knowledge/meaning-accuracy-precision-solar-energy-measurements/
[1-9]. Cui, Y., Yao, H., Zhang, J., Zhang, T., Wang, Y., Hong, L., ... & Wei, Z. (2019). Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nature communications, 10(1), 2515.
[1-10]. Basu, R., & Dhara, S. (2018). Spectroscopic study of native defects in the semiconductor to metal phase transition in V2O5 nanostructure. Journal of Applied Physics, 123(16), 161550.
[1-11]. Gerling, L. G., Mahato, S., Morales-Vilches, A., Masmitja, G., Ortega, P., Voz, C., ... & Puigdollers, J. (2016). Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells. Solar Energy Materials and Solar Cells, 145, 109-115.
[1-12]. 維基百科:Shockley–Queisser limit極限。
https://zh.wikipedia.org/wiki/%E8%82%96%E5%85%8B%E5%88%A9-%E5%A5%8E%E4%BC%8A%E7%91%9F%E6%9E%81%E9%99%90
[1-13]. Lin, C. H., Tsai, T. H., Wang, C. M., & Yeh, W. T. (2013). Photodetectors with an HIT structure on p-type crystalline Si wafers. Applied Surface Science, 275, 269-272.
[1-14]. 台玻集團。http://www.taiwanglass.com/product_list.php?sid=197
[1-15]. Zhou, S., Li, Y., Zhu, H., Sun, R., Zhang, Y., Huang, Y., ... & Fang, B. (2012). Microstructures and thermochromic characteristics of low-cost vanadium–tungsten co-sputtered thin films. Surface and Coatings Technology, 206(11-12), 2922-2926.
[1-16]. Meyer, J., Hamwi, S., Kröger, M., Kowalsky, W., Riedl, T., & Kahn, A. (2012). Transition metal oxides for organic electronics: energetics, device physics and applications. Advanced Materials, 24(40), 5408-5427.
[1-17]. Gerling, L., Mahato, S., Voz, C., Alcubilla, R., & Puigdollers, J. (2015). Characterization of transition metal oxide/silicon heterojunctions for solar cell applications. Applied sciences, 5(4), 695-705.
[1-18]. Melskens, J., van de Loo, B. W., Macco, B., Black, L. E., Smit, S., & Kessels, W. M. M. (2018). Passivating contacts for crystalline silicon solar cells: From concepts and materials to prospects. IEEE Journal of Photovoltaics, 8(2), 373-388.
[1-19]. Peter Seif, J., Descoeudres, A., Filipič, M., Smole, F., Topič, M., Charles Holman, Z., ... & Ballif, C. (2014). Amorphous silicon oxide window layers for high-efficiency silicon heterojunction solar cells. Journal of Applied Physics, 115(2), 024502.
[1-20]. Zhang, B., Zhang, Y., Cong, R., Li, Y., Yu, W., & Fu, G. (2017). Superior silicon surface passivation in HIT solar cells by optimizing a-SiOx: H thin films: A compact intrinsic passivation layer. Solar Energy, 155, 670-678.
[2-1]. Bhopal, M. F., won Lee, D., Rehman, M. A., Seo, Y., & Lee, S. H. (2018). Vanadium pentoxide (V2O5) as an antireflection coating for graphene/silicon solar cell. Materials Science in Semiconductor Processing, 86, 146-150.
[2-2]. Liu, K., Lee, S., Yang, S., Delaire, O., & Wu, J. (2018). Recent progresses on physics and applications of vanadium dioxide. Materials Today, 21(8), 875-896.
[2-3]. Zhang, C., Yang, Q., Koughia, C., Ye, F., Sanayei, M., Wen, S. J., & Kasap, S. (2016). Characterization of vanadium oxide thin films with different stoichiometry using Raman spectroscopy. Thin Solid Films, 620, 64-69.
[2-4]. 二氧化釩,從絕緣態到金屬態。
http://www.mat-test.com/Post/Details/PT150420000005LhOkQ
[2-5]. Gagaoudakis, E., Kortidis, I., Michail, G., Tsagaraki, K., Binas, V., Kiriakidis, G., & Aperathitis, E. (2016). Study of low temperature rf-sputtered Mg-doped vanadium dioxide thermochromic films deposited on low-emissivity substrates. Thin Solid Films, 601, 99-105.
[2-6]. Mlyuka, N. R., Niklasson, G. A., & Granqvist, C. G. (2009). Mg doping of thermochromic VO 2 films enhances the optical transmittance and decreases the metal-insulator transition temperature. Applied physics letters, 95(17), 171909.
[2-7]. Miller, M. J., & Wang, J. (2015). Influence of grain size on transition temperature of thermochromic VO2. Journal of Applied Physics, 117(3), 034307.
[2-8]. Kato, K., Lee, J., Fujita, A., Shirai, T., & Kinemuchi, Y. (2018). Influence of strain on latent heat of VO2 ceramics. Journal of Alloys and Compounds, 751, 241-246.
[2-9]. Panagopoulou, M., Gagaoudakis, E., Boukos, N., Aperathitis, E., Kiriakidis, G., Tsoukalas, D., & Raptis, Y. S. (2016). Thermochromic performance of Mg-doped VO2 thin films on functional substrates for glazing applications. Solar Energy Materials and Solar Cells, 157, 1004-1010.
[2-10]. Li, Y., Liu, J., Wang, D., Pan, G., & Dang, Y. (2018). Effects of the annealing process on the structure and valence state of vanadium oxide thin films. Materials Research Bulletin, 100, 220-225.
[2-11]. Mlyuka, N. R., Niklasson, G. A., & Granqvist, C. G. (2009). Thermochromic VO2‐based multilayer films with enhanced luminous transmittance and solar modulation. physica status solidi (a), 206(9), 2155-2160.
[2-12]. Basu, R., & Dhara, S. (2018). Spectroscopic study of native defects in the semiconductor to metal phase transition in V2O5 nanostructure. Journal of Applied Physics, 123(16), 161550.
[2-13]. Eyert, V., & Höck, K. H. (1998). Electronic structure of V 2 O 5: role of octahedral deformations. Physical Review B, 57(20), 12727.
[2-14]. Huang, P. R., He, Y., Cao, C., & Lu, Z. H. (2014). Impact of lattice distortion and electron doping on α-MoO 3 electronic structure. Scientific reports, 4, 7131.
[2-15]. Il Park, S., Jae Baik, S., Im, J. S., Fang, L., Jeon, J. W., & Su Lim, K. (2011). Towards a high efficiency amorphous silicon solar cell using molybdenum oxide as a window layer instead of conventional p-type amorphous silicon carbide. Applied Physics Letters, 99(6), 063504.
[2-16]. Almora, O., Gerling, L. G., Voz, C., Alcubilla, R., Puigdollers, J., & Garcia-Belmonte, G. (2017). Superior performance of V2O5 as hole selective contact over other transition metal oxides in silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 168, 221-226.
[2-17]. Gerling, L. G., Voz, C., Alcubilla, R., & Puigdollers, J. (2017). Origin of passivation in hole-selective transition metal oxides for crystalline silicon heterojunction solar cells. Journal of Materials Research, 32(2), 260-268.
[3-1]. 知識+何謂射頻濺鍍。
https://tw.answers.yahoo.com/question/index?qid=20050512000011KK00397
[3-2]. 維基百科:Atomic force microscope。
https://simple.wikipedia.org/wiki/Atomic_force_microscope
[3-3]. 利泓科技有限公司:拉曼光譜儀分析原理
https://www.rightek.com.tw/product_detail.php?id=186
[3-4]. 維基百科:拉曼光譜學。
https://zh.wikipedia.org/wiki/%E6%8B%89%E6%9B%BC%E5%85%89%E8%AD%9C%E5%AD%B8
[3-5]. Okimura, K., Hanis Azhan, N., Hajiri, T., Kimura, S. I., Zaghrioui, M., & Sakai, J. (2014). Temperature-dependent Raman and ultraviolet photoelectron spectroscopy studies on phase transition behavior of VO2 films with M1 and M2 phases. Journal of Applied Physics, 115(15), 153501.
[3-6]. Cui, Y., Yang, K., Wang, B., Feng, J., Liu, B., Yang, G., & Gao, Y. (2018). First-principles study of phase-transition temperature and optical properties of alkaline earth metal (Be, Mg, Ca, Sr or Ba)-doped VO2. Ceramics International, 44(17), 20814-20820.
[3-7]. Panagopoulou, M., Gagaoudakis, E., Boukos, N., Aperathitis, E., Kiriakidis, G., Tsoukalas, D., & Raptis, Y. S. (2016). Thermochromic performance of Mg-doped VO2 thin films on functional substrates for glazing applications. Solar Energy Materials and Solar Cells, 157, 1004-1010.
[3-8]. Ottaviano, L., Pennisi, A., Simone, F., & Salvi, A. M. (2004). RF sputtered electrochromic V2O5 films. Optical Materials, 27(2), 307-313.
[3-9]. de Castro, M. S., Ferreira, C. L., & de Avillez, R. R. (2013). Vanadium oxide thin films produced by magnetron sputtering from a V2O5 target at room temperature. Infrared Physics & Technology, 60, 103-107.
[3-10]. 杨鑫鑫, 魏晓旭, 王军转, 施毅, & 郑有炓. (2013). 高温氢退火还原 V2O5 制备二氧化钒薄膜及其性能的研究. 物理学报, 62(22), 227201-227201.
[4-1]. 國家能源科技人才培育計畫:太陽能分類。
https://sites.google.com/site/ensatptd/tai-yang-guang-dian-fa-dian
[4-2]. 太陽能電池原理。
http://eportfolio.lib.ksu.edu.tw/user/T/H/T098000033-20110511112715.pdf
[4-3]. PV EDUCATION.ORG:Fill Factor。
https://www.pveducation.org/pvcdrom/solar-cell-operation/fill-factor
[4-4]. “The origin of errors in the current-voltage characteristic of solar cells introduced during transient measurements” http://othes.univie.ac.at/49205/1/50396.pdf
[4-5]. 物理氣象沉積(PVD)介紹。楊雲凱/國家奈米元件實驗室/蝕刻薄膜組。
http://www.ndl.narl.org.tw/docs/publication/22_4/pdf/E5.pdf
[4-6]. Meyer, J., Hamwi, S., Kröger, M., Kowalsky, W., Riedl, T., & Kahn, A. (2012). Transition metal oxides for organic electronics: energetics, device physics and applications. Advanced Materials, 24(40), 5408-5427.
[4-7]. Huang, P. R., He, Y., Cao, C., & Lu, Z. H. (2014). Impact of lattice distortion and electron doping on α-MoO 3 electronic structure. Scientific reports, 4, 7131.
[4-8]. García-Hernansanz, R., Garcia-Hemme, E., Montero, D., Olea, J., del Prado, A., Martil, I., ... & Alcubilla, R. (2018). Transport mechanisms in silicon heterojunction solar cells with molybdenum oxide as a hole transport layer. Solar Energy Materials and Solar Cells, 185, 61-65.
[4-9]. Schulze, T. F., Korte, L., Conrad, E., Schmidt, M., & Rech, B. (2010). Electrical transport mechanisms in a-Si: H/c-Si heterojunction solar cells. Journal of Applied Physics, 107(2), 023711.
[5-1]. Hussain, S. Q., Mallem, K., Kim, Y. J., Le, A. H. T., Khokhar, M. Q., Kim, S., ... & Lee, Y. (2019). Ambient annealing influence on surface passivation and stoichiometric analysis of molybdenum oxide layer for carrier selective contact solar cells. Materials Science in Semiconductor Processing, 91, 267-274.
[5-2]. Wan, Y., Samundsett, C., Yan, D., Allen, T., Peng, J., Cui, J., ... & Cuevas, A. (2016). A magnesium/amorphous silicon passivating contact for n-type crystalline silicon solar cells. Applied Physics Letters, 109(11), 113901.
[5-3]. Zhang, Z., Liao, M., Tong, H., Wang, D., Quan, C., Gao, P., ... & Gong, X. (2018). Tunnel Oxide–Magnesium as Electron‐Selective Passivated Contact for n‐type Silicon Solar Cell. Solar RRL, 2(12), 1800241.
[5-4]. Wei, C. Y., & Lin, C. H. (2011). Applications of the heterojunction with intrinsic thin layer solar-cell structure on photodetectors. Japanese Journal of Applied Physics, 50(9S1), 09MA04.
[5-5]. Dwivedi, N., Kumar, S., Bisht, A., Patel, K., & Sudhakar, S. (2013). Simulation approach for optimization of device structure and thickness of HIT solar cells to achieve∼ 27% efficiency. Solar energy, 88, 31-41.
[5-6]. Hernandez-Como, N., & Morales-Acevedo, A. (2010). Simulation of hetero-junction silicon solar cells with AMPS-1D. Solar Energy Materials and Solar Cells, 94(1), 62-67.
[6-1]. Brassard, D., Fourmaux, S., Jean-Jacques, M., Kieffer, J. C., & El Khakani, M. A. (2005). Grain size effect on the semiconductor-metal phase transition characteristics of magnetron-sputtered VO 2 thin films. Applied Physics Letters, 87(5), 051910.
[6-2]. Raj, P. D., Gupta, S., & Sridharan, M. (2015). Nanostructured V2O5 thin films deposited at low sputtering power. Materials Science in Semiconductor Processing, 39, 426-432.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *