帳號:guest(3.131.13.41)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:孫正儒
作者(英文):Jheng-Ru Sun
論文名稱:甲蟲結構色模擬與數值分析之研究
論文名稱(英文):Beetle structural color simulation and numerical analysis
指導教授:莊沁融
指導教授(英文):Chin-Jung Chuang
口試委員:邱慈暉
蔡志宏
口試委員(英文):Tsyr-Huei Chiou
Chih-Hung Tsai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610725004
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:51
關鍵詞:甲蟲多層反射器藍移現象光線追跡
關鍵詞(英文):beetlemultilayer structuresblue shiftray tracing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:20
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏收藏:0
本實驗藉由模擬多層膜反射為基礎,研究折射率、層厚、層數等參數對於反射光譜的影響,藉由台灣扇角金龜(Trigonophorus rothschildi)在入射角25到65度之間量測的反射光譜數據,嘗試獲得甲蟲的表面結構的折射率、單層層厚等參數,嘗試對此類甲蟲進行分類與建模。

1990年代,人們就觀察到甲蟲表面具有與色素不同的反射特性,這類顏色可以保存數萬年而不會有退色的現象發生,稱為結構色。甲蟲主要以多層膜結構為其產生顏色的機制,也有少部分甲蟲發展出能反射左旋偏振光或是寬帶光譜特性的結構色。且甲蟲具有入射光角度改變時光譜峰值波長變短的現象,稱為藍移現象。

除了一般的藍移現象外,也針對甲蟲表面具有水滴時造成的顏色變化現象可能之原因進行探討。首先採用Q-U光線追跡法與趨勢線光線追跡法,探討水滴之表面輪廓與接觸角對於入射光之影響。發現水滴接觸角並非造成藍移現象加劇的主因,其折射率對於入射光影響更明顯。

最後,我們也嘗試在模擬中加入隨機層厚參數,以模擬甲蟲表面不完美的結構特質,也對甲蟲之反射光譜進行比較。
In this experiment, the practical effects of parameters on the reflection spectra were investigated on the basis of multi-layer membrane reflection simulations. The reflection spectra of the Trigonophorus rothschildi measured by an angle of incidence between 25 and 65 degrees. Were attempt to obtain parameters such as refractive index and thickness of the surface structure of the beetles for classification and modeling.

In 1990s, it was observed that beetle scutellum have reflex properties different from pigment based ones. Those colors will not fade over time, which called structural colors. Most beetles have a multi-layered membrane structure as the mechanism for color production, and all of them have a phenomenon called blue-shift, where the peak wavelength of the spectrum becomes shorter when the incident angle of light changes.

In addition to the general phenomenon of blue shift, the possible reason of the color change is caused by water droplets on the scutellum of beetles were also investigated. The influence of the surface profile and contact angle of water droplets on the incident light was investigated by the Q-U ray tracing and the trend line ray tracing. It was found that the surface of the water drop was not the main cause of the exacerbation of the blue shift phenomenon, and the refractive index of the water droplet had a more pronounced effect on the incident light.

Finally, we also tried to factor in random layer thickness in the model. That model the imperfect structural properties of the beetle surface, also compare the reflection spectra of the beetles.
第一章 序論 1
第二章 文獻回顧 3
第三章 多層膜反射模擬 13
第四章 模擬與量測 27
第五章 討論與結論 47
[1] M. E. McNamara, "The taphonomy of colour in fossil insects and feathers," Palaeontology, vol. 56, no. 3, pp. 557-575, 2013.
[2] A. E. Seago, P. Brady, J. P. Vigneron, and T. D. Schultz, "Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera)," J R Soc Interface, vol. 6 Suppl 2, pp. S165-184, Apr 6 2009, doi: 10.1098/rsif.2008.0354.focus.
[3] C. L. Ting, T. H. Lin, C. C. Liao, and A. Y. Fuh, "Optical simulation of cholesteric liquid crystal displays using the finite-difference time-domain method," Opt Express, vol. 14, no. 12, pp. 5594-5606, Jun 12 2006, doi: 10.1364/oe.14.005594.
[4] M. C. Troparevsky, A. S. Sabau, A. R. Lupini, and Z. Zhang, "Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference," Opt. Express, vol. 18, no. 24, pp. 24715-24721, 2010.
[5] S. Valyukh, H. Arwin, J. Birch, and K. Järrendahl, "Bragg reflection from periodic helicoidal media with laterally graded refractive index," Optical Materials, vol. 72, pp. 334-340, 2017, doi: 10.1016/j.optmat.2017.06.018.
[6] H. Arwin, T. Berlind, B. Johs, and K. Jarrendahl, "Cuticle structure of the scarab beetle Cetonia aurata analyzed by regression analysis of Mueller-matrix ellipsometric data," Opt Express, vol. 21, no. 19, pp. 22645-22656, Sep 23 2013, doi: 10.1364/OE.21.022645.
[7] L. Fernandez Del Rio, H. Arwin, and K. Jarrendahl, "Polarizing properties and structure of the cuticle of scarab beetles from the Chrysina genus," Phys Rev E, vol. 94, no. 1-1, p. 012409, Jul 2016, doi: 10.1103/PhysRevE.94.012409.
[8] J. A. Noyes, P. Vukusic, and I. R. Hooper, "Experimental method for reliably establishing the refractive index of buprestid beetle exocuticle," (in English), Opt. Express, Article vol. 15, no. 7, pp. 4351-4358, Apr 2007, doi: 10.1364/oe.15.004351.
[9] 駱思齊, "摩爾弗蝶鱗片的結構性顏色技術開發," 碩士, 機械工程學系, 國立交通大學, 新竹市, 2012. [Online]. Available: https://hdl.handle.net/11296/xbu2b6
[10] B.-K. Hsiung, M. D. Shawkey, and T. A. Blackledge1, "Color production mechanisms in spiders," vol. 47, no. 2, pp. 465-180, 2019.
[11] J. T. Bagnara, P. J. Fernandez, and R. Fujii, "On the blue coloration of vertebrates," Pigment Cell Research, vol. 20, no. 1, pp. 14-26, 2007.
[12] S. L. Burg and A. J. Parnell, "Self-assembling structural colour in nature," Journal of Physics: Condensed Matter, vol. 30, no. 41, p. 413001, 2018.
[13] S. L. Burg et al., "Liquid–liquid phase separation morphologies in ultra-white beetle scales and a synthetic equivalent," Communications Chemistry, vol. 2, no. 1, 2019, doi: 10.1038/s42004-019-0202-8.
[14] A. R. Parker, D. R. Mckenzie, and M. C. Large, "Multilayer reflectors in animals using green and gold beetles as contrasting examples," Journal of experimental biology, vol. 201, no. 9, pp. 1307-1313, 1998.
[15] 羅聿平, "光子晶體的等效介電係數表面與奈米粒子散射之間的影響," 碩士, 影像與生醫光電研究所, 國立交通大學, 新竹市, 2017. [Online]. Available: https://hdl.handle.net/11296/64g5qv
[16] 宋明哲, "複合式單胞光子晶體光纖設計與分析," 碩士, 電子物理系所, 國立交通大學, 新竹市, 2007. [Online]. Available: https://hdl.handle.net/11296/5yteb4
[17] D. J. Brink, N. G. v. d. Berg, L. C. Prinsloo, and I. J. Hodgkinson, "Unusual coloration in scarabaeid beetles," Journal of Physics D: Applied Physics, vol. 40, no. 7, pp. 2189-2196, 2007, doi: 10.1088/0022-3727/40/7/050.
[18] 李正中, "薄膜光學與鍍膜技術第七版," pp. 7-43, 2012.
[19] S. J. Byrnes, "Multilayer optical calculations," arXiv preprint arXiv:1603.02720, 2016.
[20] L. T. McDonald, E. D. Finlayson, B. D. Wilts, and P. Vukusic, "Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: light scattering by a dual photonic structure," Interface focus, vol. 7, no. 4, p. 20160129, 2017.
[21] V. L. Welch and J. P. Vigneron, "Beyond butterflies—the diversity of biological photonic crystals," Optical and Quantum Electronics, vol. 39, no. 4-6, pp. 295-303, 2007, doi: 10.1007/s11082-007-9094-4.
[22] F. P. Barrows and M. H. Bartl, "Photonic structures in biology: a possible blueprint for nanotechnology," Nanomaterials and Nanotechnology, vol. 4, p. 1, 2014.
[23] A. R. Parker, "515 million years of structural colour," Journal of Optics A: Pure and Applied Optics, vol. 2, no. 6, p. R15, 2000.
[24] I. Kaminow, "Polarization in optical fibers," IEEE Journal of Quantum Electronics, vol. 17, no. 1, pp. 15-22, 1981.
[25] F. L. P. L. S. P. L. M. Pedrotti, Introduction to Optics. 2014.
[26] T. Starkey and P. Vukusic, "Light manipulation principles in biological photonic systems," Nanophotonics, vol. 2, no. 4, pp. 289-307, 2013.
[27] 耿繼業、何建娃, "幾何光學," pp. 9-14~9-18, 2010.
[28] E. DeHoog, J. Holmstedt, and T. Aye, "Field of view of limitations in see-through HMD using geometric waveguides," Appl Opt, vol. 55, no. 22, pp. 5924-5930, Aug 1 2016, doi: 10.1364/AO.55.005924.
[29] J. Sun, B. Bhushan, and J. Tong, "Structural coloration in nature," Rsc Advances, vol. 3, no. 35, pp. 14862-14889, 2013.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *