帳號:guest(3.147.84.123)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:白晏銘
作者(英文):Yan-Ming Bai
論文名稱:硫化銀奈米線之合成與應用於電化學偵測及拉曼表面增益
論文名稱(英文):Fabrication of Silver Sulfide Nanowires for Electrochemical Detection and SERS Applications
指導教授:徐裕奎
指導教授(英文):Yu-Kuei Hsu
口試委員:蔡志宏
陳盈竹
口試委員(英文):Chih-Hung Tsai
Ying-Chu Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610725008
出版年(民國):108
畢業學年度:107
語文別:中文
論文頁數:53
關鍵詞:硫化銀奈米線表面拉曼散射尿酸亞甲藍電化學分析法
關鍵詞(英文):Ag2S NWsSERSUric acidMethylene blueSensor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:35
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
本研究使用簡易的合成技術製備出銀奈米線膠體溶液,再透過化學轉換法將塗佈於FTO的銀奈米線硫化成硫化銀奈米線,最後將此結構應用在尿酸與亞甲藍的偵測應用上。在尿酸偵測應用上,實驗中藉以電化學量測模式分析,通過循環伏安法證實硫化銀奈米線確實可檢測尿酸,再分別進行偵測極限濃度0.1 μM、濃度偵測範圍0.2-1666.5 μM、量測響應靈敏度0.04287 μAμM-1cm-2。實驗結果證明硫化銀奈米線在偵測尿酸具有一定發展潛力。
在偵測亞甲藍方面,實驗中利用了拉曼量測技術進行檢測,利用硫化銀奈米線的高表面積且與亞甲藍且有良好的吸附特性,藉由表面增強拉曼光譜進行實驗,量測亞甲藍偵測極限濃度為0.1 μM,增強因子為2.76x104,實驗結果證明硫化銀奈米線/FTO也具有一定的偵測能力。
In this study, a facile and simple method was utilized to synthesize silver nanowires (Ag NWs), and then a hydrothermal method was used to chemically convert Ag NWs to Ag2S NWs. The as-grown sample was applied to sensing the uric acid and methylene blue. As regards the electrochemical detection of uric acid, Ag2S NWs can achieve the sensitivity of 0.04287 μAμM-1cm-2 under the concentration ranging from 0.2 to 1666.5 μM with a detection limit as low as 0.1 μM. In terms of the methylene blue detection, the analytic route was based on surface-enhanced Raman spectroscopy (SERS). According to our results, the detection of limited of 0.1 μM was obtained with the enhancement factor 2.76x104.
第一章 序論 1
1.1 前言 1
1.1.1 葡萄糖簡介 2
1.1.2 尿酸簡介 2
1.1.3 亞甲藍簡介 3
1.1.4 拉曼光譜 4
1.1.5 電化學分析 5
第二章 實驗原理 6
2.1 化學分析法(electrochemical analysis) 6
2.1.1 循環伏安法(cyclic voltammetry(CV)) 6
2.1.2 安培法(Amperometric i-t curve(I-T)) 6
2.2 葡萄糖生物感測器 6
2.3 尿酸生物感測器 7
2.3.1 還原分析 (Reducing Methods) 7
2.3.2 酵素分析 (Enzymatic Methods) 7
2.4 表面增強拉曼散射(Surface Enhanced Raman Scattering) 8
2.4.1 電磁理論 9
2.4.2 化學理論 9
材料介紹 10
2.4.3 銀奈米線 10
2.4.4 硫化銀奈米線 10
2.4.5 葡萄糖 11
2.4.6 尿酸 11
2.4.7 亞甲基藍 11
第三章 實驗步驟與方法 12
3.1 奈米線合成 12
3.1.1 銀奈米線合成 12
3.2 硫化銀奈米線合成 13
3.2.1 葡萄糖及尿酸偵測 14
3.2.2 SERS量測 14
3.3 實驗儀器介紹及研究原理 15
3.3.1 掃描式電子顯微鏡(Field Emission Scanning Electron microscope (SEM)) 15
3.3.2 X射線光電子能譜儀(X-ray Photoelectron Spectrometer(XPS)) 16
3.3.3 X-射線繞射儀(X-ray scattering techniques (XRD)) 17
3.3.4 拉曼光譜(Raman spectrum) 18
3.3.5 電化學分析儀 19
第四章 結果與討論 20
4.1 硫化銀奈米線之備製及應用於電化學偵測 20
4.1.1 前言-硫化銀奈米線 20
4.1.2 FE-SEM 之形貌分析 21
4.1.3 XRD之結構分析 25
4.1.4 Raman 27
4.1.5 XPS鍵結分析 28
4.1.6 CV curve 偵測葡萄糖之分析 29
4.1.7 I-t curve偵測葡萄糖之分析 31
4.1.8 參考文獻對比 32
4.1.9 CV curve 偵測尿酸之分析 33
4.1.10 掃描速率 34
4.1.11 I-t curve偵測尿酸之分析 35
4.1.12 抗干擾能力測試 37
4.1.13 穩定性測試 38
4.1.14 參考文獻對比 39
4.1.15 結論 40
4.2 硫化銀奈米線應用於表面拉曼增益 41
4.2.1 前言-硫化銀奈米線/FTO基板SERS應用 41
4.2.2 各濃度SERS 42
4.2.3 Raman對比 43
4.2.4 SERS強度增益 44
4.2.5 增強因子 45
4.2.6 參考文獻對比 46
4.2.7 結論 46
第五章 結論與未來展望 47
引用 48

1. 維基百科(銀)
2. 衛生福利部國民健康署(血糖參考標準)
3. 衛生福利部國民健康署(痛風與高尿酸)
4. A+醫學百科-亞甲藍
5. 華人百科-亞甲基藍
6. Mallappa Mahanthappa; Nagaraju Kottam; Shivaraj Yellappa. Enhanced photocatalytic degradation of methylene blue dye using CuSCdS nanocomposite under visible light irradiation. Applied Surface Science,2019. 475(828-838)
7. Yuanming Tan; Zhongqiao Sun; Hao Meng; Yide Han; Junbiao Wu; Junli Xu; Yan Xu; XiaZhang. A new MOFs/polymer hybrid membrane: MIL-68(Al)/PVDF, fabrication and application in high-efficient removal of p-nitrophenol and methylene blue. Separation and Purification Technology,2019. 215(217-226)
8. 維基百科(拉曼散射)
9. Bourbonnais R; Donal Leech; Michael G.Paice. Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochimica et Biophysica Acta (BBA) – General Subjects,1998. 1379(381-390)
10. J.H Chen; W.Z Li; D.Z Wang; S.X Yang; J.G Wen; Z.F Ren. Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon 2002. 40.8(1193-1197)
11. O.A. Farghaly; R. S. Abdel Hameed; Abd-Alhakeem H; Abu-Nawwas. Analytical Application Using Modern Electrochemical Techniques. International Journal of Electrochemical Science,2014. 9(3287-3318)
12. Duan, L; He, Q; Yan, XH; Cui, Y; Wang, KW; Li, JB. Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique. Biochemical and biophysical research communications, 2007. 354.2(357-362)
13. Sehar Shakira; J. Saravananc; Nastaran Rizan; K. Jusice Babu; Md. Abdul Aziz; Phang Siew Moi; Vengadesh Periasamy; G. Gnana kumar. Fabrication of capillary force induced DNA template Ag nanopatterns for sensitive and selective enzyme-free glucose sensors. Sensors and Actuors B-Chenical, 2018. 256(820-827)
14. Song‐Yuan Ding; Xue‐Min Zhang; Bin Ren; Zhong‐Qun Tian. Surface‐Enhanced Raman Spectroscopy (SERS): General Introduction. Encyclopedia of Analytical Chemistry, 2014
15. 維基百科(表面增強拉曼光譜)
16. Sara Fateixa; Helena I. S. Nogueira; Tito Trindade. Hybrid nanostructures for SERS: materials development and chemical detection. Physical Chemistry Chemical Physics,2015. 17.33(21046-21071)
17. Marco Lazzarino; Denys Naumenko. Fabrication and characterisation of SERS substrates through photo-deposition of Gold Nanoparticles. 2015.
18. Mohd Rafie Johan; Nurul Azri Khalisah Aznan; Soo Teng Yee; Ing Hong Ho; Soo Wern Ooi; Noorsaiyyidah Darman Singho; Fatihah Aplop. Synthesis and Growth Mechanism of Silver Nanowires through Different Mediated Agents (CuCl2 and NaCl) Polyol Process. Indexed in Science Citation Index Expanded,2014 (54)
19. Jin R, Charles Cao Y, Hao E, Metraux GS, Schatz GC, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature,2003 425(487–490)
20. Sun X, Dong S, Wang E (2005) High-yield synthesis of large single-crystalline gold nanoplates through a polyamine process. Langmuir,2005 21(4710–4712)
21. Bakshi MS, Possmayer F, Petersen NO (2008) Aqueous-phase room-temperature synthesis of gold nanoribbons: soft template effect of a gemini surfactant. J Phys Chem C,2008.112(8259–8265)
22. Lu J, Yang L, Xie A, Shen Y (2009) DNA-templated photo-induced silver nanowires: fabrication and use in detection of relative humidity. Biophys Chem,2009.145(91–97)
23. Zhongchun Li; Aijun Gu; Mingyun Guan; Quanfa Zhou; Tongming Shang. Large-scale synthesis of silver nanowires and platinum nanotubes,2010.288(1185-1191)
24. Qingyi Lu; Feng Gao; Dongyuan Zhao. A template-free method for hollow Ag2S semiconductor with a novel quasi-network microstructure. Chemical Physics Letters,2002.360(355-358)
25. Yuzeng Sun; Baibin Zhou; Peng Gao; Hongchen Mu; Limei Chu. Single-crystalline Ag2S hollow nanoparticles and their ordered arrays. Journal of Alloys and Compounds,2010.490(L48-51)
26. Yuzeng Sun; Baibin Zhou. Single-crystalline Ag2S hollow nanohexagons and their assembly into ordered arrays. 2010,64(1347-1349)
27. Mengdong Wu; Xinxin Pan; Xuefeng Qian; Jie Yin; Zikang Zhu. Solution-phase synthesis of Ag2S hollow and concave nanocubes. Inorganic Chemistry Communications. 2004,7(359-362)
28. 維基百科(葡萄糖)
29. 維基百科(尿酸)
30. 維基百科(亞甲藍)
31. Ying-Chu Chen; Jui-Hung Hsu; Yan-Gu Lin; Yu-Kuei Hsu. Silver nanowires on coffee filter as dual-sensing functionality for efficient and low-cost SERS substrate and electrochemical detection. Sensors and Actuators B: Chemical,2017.245(189-195)
32. W.B.Cai; B.Ren; X.Q.Li; C.X.She; F.M.Liu; X.W.Cai and Z.Q.Tian. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment. Surface Science,406.(9-22)
33. Gao, ZQ; Lin, YP; He, Y:; Tang, DP, Enzyme-free amperometric glucose sensor using a glassy carbon electrode modified with poly(vinyl butyral) incorporating a hybrid nanostructure composed of molybdenum disulfide and copper sulfide. Microchimica Acta, 2017. 184(807-814).
34. Yang Y; Zi J; Li W. Enzyme-free sensing of hydrogen peroxide and glucose at a CuS nanoflowers modified glassy carbon electrode. Electrochim Acta, 2014. 115(126-130).
35. Luan, F; Zhang, S; Chen, DD; Wei, FM; Zhuang, XM. Ni3S2/ionic liquid-functionalized graphene as an enhanced material for the nonenzymatic detection of glucose. Microchemical Journal, 2018. 143(450-456)
36. Dayakar, T; Rao, KV; Park, J; Sadasivuni, KK; Rao, KR; Rambabu, NJ. Non-enzymatic biosensing of glucose based on silver nanoparticles synthesized from Ocimum tenuiflorum leaf extract and silver nitrate. Materials Chemistry And Physics Journal, 2017. 216(502-507)
37. Sehar Shakira; J. Saravananc; Nastaran Rizan; K. Jusice Babu; Md. Abdul Aziz; Phang Siew Moi; Vengadesh Periasamy; G. Gnana kumar. Fabrication of capillary force induced DNA template Ag nanopatterns for sensitive and selective enzyme-free glucose sensors. Sensors and Actuors B-Chenical, 2018. 256(820-827)
38. Huanhuan Huo; Yongqing Zhao; Cailing Xu. 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and nonenzymatic glucose detection. Journal of materials Chemistry A, 2014. 2(15111-15117)
39. Han Yang; Jie Zhao; Meijia Qiu; Peng Sun; Dongxue Han; Li Niu; Guofeng Cui. Hierarchical bi-continuous Pt decorated nanoporous Au-Sn alloy on carbon fiber paper for ascorbic acid, dopamine and uric acid simultaneous sensing. Biosensors & Bioelectronics. 2019, 124(191-198).
40. Wang, XY; Zhu, GB; Cao, WD; Liu, ZJ; Pan, CG; Hu, WJ; Zhao, WY; Sun, JF. A novel ratiometric fluorescent probe for the detection of uric acid in human blood based on H2O2-mediated fluorescence quenching of gold/silver nanoclusters. Talanta. 2019, 191(16-53).
41. Rongjling, C; Sueying, W; Genhua, Z; Chen, W. S Simultaneous determination of dopamine, ascorbic acid, and uric acid using helical carbon nanotubes modified electrode. Sensors and Actuators B: Chemical. 2012, 161(1139-1143)
42. Li, Y; Lin, HC; Peng, H; Qi, RJ; Luo, CH. A glassy carbon electrode modified with MoS2 nanosheets and poly(3,4-ethylenedioxythiophene) for simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid. Microchimica Acta. 2016, 183(2517-2523)
43. Sha, R; Vishnu, N; Badhulika, S. MoS2 based ultra-low-cost, flexible, non-enzymatic and non-invasive electrochemical sensor for highly selective detection of Uric acid in human urine samples. Sensors and Actuators B-Chemical. 2019, 279(53-60).
44. Mingji Li; Wenlong Guo; Hongji Li; Wei Dai; Baohe Yang. Electrochemical biosensor based on one-dimensional MgO nanostructures for the simultaneous determination of ascorbic acid, dopamine, and uric acid. Sensors and Actuators B-Chemical. 2014, 204(629-636)
45. Dr. Bocheng Qiu; Dr. Mingyang Xing; Qiuying Yi; Prof. Dr. Jinlong Zhang. Chiral Carbonaceous Nanotubes Modified with Titania Nanocrystals: Plasmon‐Free and Recyclable SERS Sensitivity. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION,2015. 54(10643-10647)

46. XueyanWang; JuanLi; XinnaGao; YuhuaShen; AnjianXie. Ordered CdSe-sensitized TiO2 inverse opal film as multifunctional surface-enhanced Raman scattering substrate. Applied Surface Science,2019.463(357-362).
47. Bing Liu; Kan Wang; Bingbing Gao; Jie Lu; Haiming Li and Xiangwei Zhao. TiO2‑Coated Silica Photonic Crystal Capillaries for Plasmon-Free SERS Analysis. ACS Applied nano materials,2019.2(3177-3186)
48. Di Wu; Jianli Chen; Yaner Ruan; Kai Sun; Kehua Zhang; Wenjie Xie; Fazhi Xie; Xiaoli Zhao; and Xiufang Wang. A novel sensitive and stable surface enhanced Raman scattering substrate based on a MoS2 quantum dot/reduced graphene oxide hybrid system. Journal of materials chemistry C,2018.6(12547-12554)
49. Li Liu; Fan Pan; Chang Liu; Liangliang Huang; Wei Li and Xiaohua Lu. TiO2 Nanofoam−Nanotube Array for Surface-Enhanced Raman Scattering. 2018,1(6563-6566)
50. Vipul Sharma; Venkata Krishnan. Fabrication of highly sensitive biomimetic SERS substrates for detection of herbicides in trace concentration. Sensors and Actuators B: Chemical,2018.262(710-719).
51. Jinyan Xiong; Chao Han; Weijie Li; Qiao Sun; Jun Chen; Shulei Chou; Zhen Li and Shixue Dou. Ambient synthesis of a multifunctional 1D/2D hierarchical Ag–Ag2S nanowire/nanosheet heterostructure with diverse applications. CrystEngComm,2016.18(930-937)
(此全文限內部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *