帳號:guest(18.119.164.100)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:祁杰倫
作者(英文):Chieh-Lun Chi
論文名稱:藉由光電輔助輻射冷卻增強熱電效應之研究
論文名稱(英文):Research of thermal-electric energy enhanced via photonic-assisted radiative cooling
指導教授:林楚軒
王智明
指導教授(英文):Chu-Hsuan Lin
Chih-Ming Wang
口試委員:林楚軒
王智明
吳品頡
口試委員(英文):Chu-Hsuan Lin
Chih-Ming Wang
Pin-Chieh Wu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610725011
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:48
關鍵詞:熱電發電晶片二氧化矽/聚甲基丙烯酸甲酯熱輻射冷卻米氏散射波印廷向量
關鍵詞(英文):TEGSiO2/PMMARadiative coolingMie scatteringPoynting vector
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:19
  • 收藏收藏:0
近年來溫室效應日益嚴重,所以開始有人去思索如何利用綠能來幫助現今的用電,但因為綠能畢竟不可能完全去取代近年來所使用核能和燃煤的基載發電機,所以有些人開始嘗試去製作一些關於再生能源的發電包括水力、風力、生質能、地熱和太陽能,而本文嘗試使用太陽能結合熱電發電去製作被動輻射冷卻的材料,讓其材料能幫助熱電發電機能夠有更好的效果。而被動冷卻即是它不需要靠額外所給予的電力,而是藉由本身對於熱輻射波段的特性來冷卻物體,且因為大氣窗口是穿透率非常高的一個波段,所以便利用大氣窗口來實行輻射冷卻,來把多餘的熱以輻射的方式發散到外太空,藉此達到降溫的方法。
本論文中利用FDTD模擬去模擬米氏散射對於微球的散射情形,因側向散射的強度可影響光子傳遞的方向進而造成吸收的差異,並藉此找出所需工作波段適合之顆粒大小,可以發現在6 μm的球它的有效散射波長和散射角度都是比較符合大氣窗口所需要的8 μm~14 μm的波段,之後再利用Poynting向量觀察不同顆粒大小對於不同波長的能量流向,經過觀察發現能量流向與材料的折射率、吸收率和穿透率存在關係,當吸收高時能流經過材料會偏折,而穿透率高時,能流會穿透並基Cu基板的反射產生出能流回流的狀態,以顆粒大小比較能流方向可以看到把顆粒加大使吸收率增強時,較小顆粒會因為尺寸對於波長較小所以偏折較不明顯,當把顆粒加大就可觀察到能流偏折的狀態,以此就可以看出顆粒大小與吸收強度和能流方向的關係了。
接著便可利用熱電發電晶片,並結合了不同百分濃度的SiO2/PMMA,觀察其輻射冷卻的差異,TEG是從賽貝克原理利用本身裡面的兩塊金屬之間自由電子密度不同和節點溫度的不同進而產生電流,而本論文就是利用這種晶片,在其冷面外加上一個旋塗了SiO2/PMMA的銅片,利用其達到熱輻射冷卻的效果,再以紅外線儀觀測溫場的差異,最後利用三用電表在穩態下量測其發電量並比較其輸出電流的變化及可得到之發電功率。
In recent years, the greenhouse effect has become increasingly serious. Therefore, people began to think about the usage of electricity based on green energy. However, green energy can't completely replace the nuclear power and coal-fired which is cased base-load generators. People started to try to make some renewable energy generation including hydro, wind, biomass, geothermal and solar energy. In this paper, we attempt to use solar energy combined with thermoelectric power generation and passive radiative cooling device. The cooling device can help the thermoelectric generator to have efficient power generation. Passive cooling means that it does not need to rely on the extra power given, but rather cooling the object by its own characteristics for the thermal radiation band matching with the atmospheric window which is a transparent spectral range. Radiative cooling is performed to dissipate heat that excess into the outer space by radiation, thereby achieving a cooling effect.
In this paper, we used FDTD simulation to simulate the scattering fields of micro-particles. Because the intensity of side scattering can affect the absorption difference caused by the direction of photon transmission, and use this to find the suitable particle size for the working band. It can be found that the micro-particle with a diameter of 6 μm present large scattering angles at = 8 μm~14 μm, i.e., matching with the atmospheric window. Then the Poynting vector is used to observe the energy flux of different particle sizes for different wavelengths. It is observed that the direction of the Poynting vector has a relation among the refractive index, absorption rate and transmittance of the material. When the absorption is high, the energy flux will be deflected through the material, and when the transmittance is high, the energy flux will transmittance the material and reflected by the Cu substrate to generate a state of energy reflux. Comparing the flux direction with the particle size, it can be seen that the increase of the particles can enhance the absorption rate. The scattering field of smaller particles is forward-scattering-dominated. On the contrary, as the particle size is close to the wavelength, a large scattering angle can be observed. Therefore, we can see the relation between particle size, absorption intensity, and energy flux direction. Then we used the thermoelectric power generation (TEG) module and combine a series of different mass fraction of SiO2/PMMA to observe the difference of radiative cooling. TEG using the difference between the free electron density and the junction temperature of the two metals in the Seebeck principle to generate current. In this paper, we used this module and a copper which spin-coated with SiO2/PMMA on the cold side to achieve the effect of heat radiative cooling. And then the infrared field is used to observe the difference of the temperature field. Finally, used the three-meter meter in steady state to measure the power generation and compare the changing of its output current and the power of TEG.
摘要 I
Abstract II
目錄 IV
圖目錄 VI
第一章 緒論 1
1.1前言 1
1.2文獻回顧 1
第二章 輻射冷卻原理 5
2-1 輻射冷卻原理及熱電效應 5
2-2 Seebeck effect 6
第三章 SiO2/PMMA 低成本輻射冷卻樣品製備以及其光譜特性量測 9
3-1 無機混有機高分子及複合材料特性 9
3-2旋塗製備 10
3-3 SiO2/PMMA百分濃度SEM圖 11
3-4 SiO2/PMMA FTIR光譜 16
第四章 輻射冷卻增強TEG 19
4-1輻射冷卻增強TEG功率量測架構 19
4-1-1輻射致冷晶片之溫場量測 20
4-1-2因輻射致冷而產生的溫差 22
4-2 不同混合比SiO2/PMMA輻射冷卻增強TEG功率 22
4-2-1輻射致冷產生之電流 25
4-3實驗結論 26
第五章 SiO2散射介紹 29
5-1 米氏散射 29
5-2 SiO2顆粒米氏散射增強吸收機製 30
5-3 SiO2坡印廷向量電磁能傳遞 40
5-4實驗結論 44
參考文獻 47
[1] Kim, C. S., Lee, G. S., Choi, H., Kim, Y. J., Yang, H. M., Lim, S. H., ... & Cho, B. J. (2018). Structural design of a flexible thermoelectric power generator for wearable applications. Applied Energy, 214, 131-138.
[2] Bao, H., Yan, C., Wang, B., Fang, X., Zhao, C. Y., & Ruan, X. (2017). Double-layer nanoparticle-based coatings for efficient terrestrial radiative cooling. Solar Energy Materials and Solar Cells, 168, 78-84.
[3] Zhai, Y., Ma, Y., David, S. N., Zhao, D., Lou, R., Tan, G., ... & Yin, X. (2017). Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science, 355(6329), 1062-1066.
[4] Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E., & Fan, S. (2014). Passive radiative cooling below ambient air temperature under direct sunlight. Nature, 515(7528), 540.
[5] Ahmad, S., Abdullah, M. E. S., Yaakub, M. F., Jidin, A. Z., Johari, S. H., & Zahari, M. (2017). Analysis of portable temperature-controlled device by using peltier effect. Proceedings of Mechanical Engineering Research Day 2017, 2017, 176-177.
[6] https://www.mathworks.com/matlabcentral/fileexchange/70245-sem-image-porosity-and-pore-size?fbclid=IwAR3hhN-nWvKF-9UN2rXYMe-tj3p2Tq65L6pwZaGQGLtkLDGZ2uLCgKo4ORw
[7] http://modtran.spectral.com/modtran_home#help
[8] Wu, S. R., Lai, K. L., & Wang, C. M. (2018). Passive temperature control based on a phase change metasurface. Scientific reports, 8(1), 7684.
[9] Hossain, M. M., & Gu, M. (2016). Radiative cooling: Principles, progress, and potentials. Advanced Science, 3(7), 1500360.
[10] https://refractiveindex.info/?shelf=main&book=SiO2&page=Kischkat
[11] https://www.mathworks.com/matlabcentral/answers/143838-how-to-plot-poynting-vector-by-using-values-of-matrices
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *