帳號:guest(13.58.114.175)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:徐曼薰
作者(英文):Man-Hsun Hsu
論文名稱:以Arduino熱消散探針系統探討大農大富平地森林樹液流
論文名稱(英文):Study of the Danungdafu plantation sapflow by Arduino-based heat dissipation probe system
指導教授:張世杰
指導教授(英文):Shih-Chieh Chang
口試委員:夏禹九
褚侯森
口試委員(英文):Yue-Joe Hsia
Hou-sen Chu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:自然資源與環境學系
學號:610754010
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:63
關鍵詞:蒸散作用樹液流平地人造林熱消散法遲滯現象Arduino
關鍵詞(英文):transpirationsapflowlowland plantationheat dissipation methodhysteresisArduino
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏收藏:0
政府2002年起造林政策的推行,使許多廢棄的耕地與農田轉變為造林地。其中,位於花蓮縣光復鄉的大農大富平地森林,周圍有許多以務農為主的聚落,是一個與人類社會為鄰的森林。平地森林造林後,對原有以農業為主的區域水文收支有何影響,是一個在學術與實務上的重要問題。本研究於2020年6月1日至2020年12月17日,以大農大富平地森林3種常見的闊葉樹—樟樹、光臘樹及台灣櫸共15棵樣樹為對象,測量樣樹的樹液流,以初步探討樹木的蒸散作用及其控制因子。樹液流的研究是使用Granier所提出的熱消散法,以本研究自製的樹液流熱消散系統,包括探針感應器與Arduino資料紀錄器,進行六個月的連續量測。

研究結果顯示,樟樹、光臘樹與台灣櫸的樹液流速分別介於0-216、0-344和0-139 cm3 m-2 s-1,且樹液流速與樹種及胸高直徑不具相關性。樹液流速與環境因子的迴歸分析結果顯示,樹液流速與大氣溫度、淨輻射量、飽和水蒸氣壓差與風速呈正相關;樹液流速與相對溼度則呈負相關。進一步的冗餘分析(Redundancy Analysis)結果則顯示,樹液流速的主要環境控制因子依序為飽和水蒸氣壓差、淨輻射量和相對溼度。

本研究以Penman-Monteith 估算潛勢蒸發散量(Potential evapotranspiration,PET),並與實際量測的樹液流速進行比較。結果顯示樟樹與光臘樹的樹液流速隨著PET上升而線性上升,台灣櫸的樹液流速則在達到一個PET閥值後趨緩上升。此結果暗示著,樟樹及光臘樹較台灣櫸能承受更高的水分散失逆境。
樹液流速的晝夜變化具遲滯現象,亦即在相同的環境條件下,上午的樹液流速與下午的樹液流速具有差異。樹液流速與VPD及大氣溫度為順時鐘遲滯軌跡,即上午的樹液流速高於下午的樹液流速;樹液流速與淨輻射量為逆時鐘遲滯軌跡,即下午的樹液流速高於上午的樹液流速。而以能綜合代表環境蒸發需求的PET與樹液流速進行遲滯分析,結果則為逆時鐘遲滯軌跡,說明樹液流速的遲滯現象不僅受環境因子,也受非環境因子影響。藉由計算遲滯軌跡內的面積,量化每日遲滯現象的程度,結果顯示6月至12月的遲滯現象程度減緩,且樹木的每日最大樹液流速與遲滯現象程度皆具正相關,其中以光臘樹的相關係數最高。

本研究量測的樹液流速範圍,是介於先前文獻所量測的數值範圍內。然而,本研究的樹液流速計算公式,皆是使用Granier提出的經驗公式,尚未進行樹種間的樹液流速公式校正。近年許多研究指出,Granier公式並不適用於某些樹種,因此此部分為本研究的量測不確定性,若可以進一步的進行公式校正,是有助於本研究獲得更準確的樹液流速資料。依據本研究的PET分析結果,顯示3個樹種的樹液流速反應具有差異,然而本研究無法驗證,樹液流速與非環境因子之間的關係。若能再進一步的量測樹種間的氣孔導度、木質部的導水率、水勢及樹幹的儲存水能力,將有助於釐清此差異。
The implementation of the government's afforestation policy in 2002 has turned many abandoned farmlands into plantations. Among them, Da-Nong-Da-Fu Plain Forest in Hualien County, Guangfu Township, is surrounded by many agricultural settlements. To what extent the hydrological system of the agricultural landscape will be influenced by the afforestation, remains an important scientific and practical question. In this study, sapflow of three common broadleaved tree species, Cinnamomum camphor, Zelkova serrata and Fraxinus griffithii, were investigated from June 1st to December 17th, 2020 for understanding transpiration and its controlling mechanisms in the Da-Nong-Da-Fu Plain Forest. Self-made heat dissipation sapflow measurement systems were employed, which consist of probes based on Granier's original design, and an Arduino-based controlling and logging system.

The results showed that, the sapflow rate of Cinnamomum camphora, Zelkova serrata and Fraxinus griffithii were between 0-216、0-344 and 0-139 cm3 m-2 s-1, respectively. The sapflow rate was not correlated with tree species and tree's breast height diameter. Sapflow rate was positively correlated with air temperature, net radiation, vapour pressure deficit, and wind speed; and was negatively correlated with relative humidity. Results of redundancy analysis further showed that the main controlling factors for sapflow rate were vapour pressure deficit, net radiation, and relative humidity.

The sapflow rate was analyzed against the potential evapotranspiration (PET) calculated by Penman-Monteith equation. The results showed that the sapflow rate of Cinnamomum camphora and Zelkova serrata increased linearly with the increase of PET, while the sapflow rate of Fraxinus griffithii only slowly increased after reaching a PET threshold. This result suggests that, Cinnamomum camphora and Zelkova serrata might overcome higher water stress than Fraxinus griffithii.

Hysteresis in the diurnal variation of sapflow rate, indicating that under the same environmental conditions, the sapflow rate in the morning is different from that in the afternoon. The sapflow rate and the VPD, air temperature displayed clockwise hysteresis loops, that is, the sapflow rate in the morning was higher than that in the afternoon.On the contrary, the sap flow rate and the net radiation displayed anti-clockwise hysteresis loops, that is, the sapflow rate in the afternoon was higher than that in the morning. Hysteresis analysis of sapflow rate against PET showed anti-clockwise hysteresis loops. As PET approximately represents the abiotic driving forces of transpiration, the hysteresis between sapflow rate and PET indicates a significant biological control in transpiration. By calculating the area within hysteresis loops, the extent of daily hysteresis was quantified. The results showed that the degree of hysteresis was decreasing from June to December, and the daily maximum sapflow rate was positively correlated with the degree of hysteresis, in which Zelkova serrata owned the highest correlation coefficient.

The sapflow rates measured in this study were within the ranges in the literature. However, the calculation of sapflow rate from the two-needle temperature difference was from the Granier's formula, which has recently been proven for incorrect for several tree species.This represents a potential measurement uncertainty of this study. The calibration of Granier's formula would be necessary for the local tree species. According to the different reaction patterns of sapflow rate to PET, a further investigation on the biological control of transpiration would be important. The hydraulic characteristics of tree species like the stomatal conductance, xylem hydraulic conductivity, water potential, and water storage capacity of tree trunks, could be focused on in the further research.
1. 前言 1
1.1 蒸散作用的重要性 2
1.2 蒸散作用的影響因子 4
1.3 蒸散作用的量測—樹液流速法 7
1.4 研究動機與目的 9

2.材料與方法 11
2.1 樹液流熱消散系統 11
2.1.1 探針感應器的製作 12
2.1.2 資料紀錄器(datalogger)的製作 16
2.1.3 樹液流熱消散系統的架設流程 20
2.1.4 樹液流熱消散系統的故障問題 22
2.1.5 樹液流熱消散系統的量測成果—樹液流速之計算 22
2.2 研究樣區 25
2.2.1 樣區介紹 25
2.2.2 氣象及環境因子 27
2.3 樣樹的基本資料 28
2.4 樹液流速的資料分析 30
2.4.1 樹液流速的數據處理 30
2.4.2 資料分析 32

3. 結果 33
3.1 15棵樣樹的樹液流速資料 33
3.2 15棵樣樹的樹液流速與樹種、胸高直徑的關係 35
3.3 樹液流速與環境因子的關係 38
3.4 樹液流速與潛勢蒸發散量的關係 44
3.5 樹液流速與環境因子的遲滯現象 46

4. 討論 53
4.1 熱消散法的限制與誤差 53
4.2 15樣樹的樹液流速與樹種、胸高直徑的關係 54
4.3 樹液流速的遲滯現象 57

5. 結論 61

6. 參考文獻 63
Aleixo, I., D. Norris, L. Hemerik, A. Barbosa, E. Prata, F. Costa, and L. Poorter. 2019. Amazonian rainforest tree mortality driven by climate and functional traits. Nat Clim Change 9(5):384-388.

Beer, C., M. Reichstein, E. Tomelleri, P. Ciais, M. Jung, N.
Carvalhais, C. Rodenbeck, M. A. Arain, D. Baldocchi, G. B. Bonan, A. Bondeau, A. Cescatti, G. Lasslop, A. Lindroth, M. Lomas, S. Luyssaert, H. Margolis, K. W. Oleson, O. Roupsard, E. Veenendaal, N. Viovy, C. Williams, F. I. Woodward, and D. Papale. 2010. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329(5993):834-838. doi:10.1126/science.1184984

Bréda, N., and A. Granier. 1996. Intra-and interannual variations of transpiration, leaf area index and radial growth of a sessile oak stand In: Annales des sciences forestières. p 521-536.

Bretfeld, M., B. E. Ewers, and J. S. Hall. 2018. Plant water use responses along secondary forest succession during the 2015–2016 El Niño drought in Panama. New Phytol 219(3):885-899.

Brum, M., J. Gutiérrez López, H. Asbjornsen, J. Licata, T. Pypker, G. Sanchez, and R. S. Oiveira. 2018. ENSO effects on the transpiration of eastern Amazon trees. Philosophical Transactions of the Royal Society B: Biological Sciences 373(1760):20180085.

Bush, S. E., K. R. Hultine, J. S. Sperry, and J. R. Ehleringer. 2010. Calibration of thermal dissipation sap flow probes for ring-and diffuse-porous trees. Tree physiology 30(12):1545-1554.

Caldwell, P. V., C. R. Jackson, C. F. Miniat, S. E. Younger, J. A. Vining, J. J. McDonnell, and D. P. Aubrey. 2018. Woody bioenergy crop selection can have large effects on water yield: A southeastern United States case study. Biomass Bioenerg 117:180-189. doi: 10.1016/j.biombioe.2018.07.021

Cassardo, C., S. Park, Ki, O. Sungmin, and M. Galli. 2018. Projected changes in soil temperature and surface energy budget components over the alps and northern Italy. Water-Sui 10(7):954-972. doi: ARTN 95410.3390/w10070954

Clearwater, M. J., F. C. Meinzer, J. L. Andrade, G. Goldstein, and N. M. Holbrook. 1999. Potential errors in measurement of nonuniform sap flow using heat dissipation probes. Tree physiology 19(10):681-687.

Davis, T. W., C. M. Kuo, X. Liang, and P. S. Yu. 2012. Sap flow sensors: construction, quality control and comparison. Sensors (Basel) 12(1):954-971. doi: 10.3390/s120100954

Drake, J. E., M. G. Tjoelker, A. Vårhammar, B. E. Medlyn, P. B. Reich, A. Leigh, S. Pfautsch, C. J. Blackman, R. López, and M. J. Aspinwall. 2018. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Global Change Biol 24(6):2390-2402.

Durack, P. J., S. E. Wijffels, and R. J. Matear. 2012. Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science 336(6080):455-458.

Fisher, J. B., D. D. Baldocchi, L. Misson, T. E. Dawson, and A. H. Goldstein. 2007. What the towers don't see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiology 27(4):597-610.

Forster, M. A. 2014. How significant is nocturnal sap flow? Tree physiology 34(7):757-765.

Frazer, G. W., C. D. Canham, and K. P. Lertzman. 1999. Gap Light Analyzer (GLA) , Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs,users manual and program documentation.

Goldstein, G., J. Andrade, F. Meinzer, N. Holbrook, J. Cavelier, P. Jackson, and A. Celis. 1998. Stem water storage and diurnal patterns of water use in tropical forest canopy trees. Plant, Cell & Environment 21(4):397-406.

Granier, A. 1985. A new method of sap flow measurement in tree stems. Annales des Sciences Forestieres 42:193-200.

Granier, A. 1987. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree physiology 3(4):309-320.

Habel Kai, Grasman Raoul, Gramacy Robert B. , Mozharovskyi Pavlo, and David C. Sterratt. 2019. Geometry: mesh generation and surface tessellation.

Hetherington, A. M., and F. I. Woodward. 2003. The role of stomata in sensing and driving environmental change. Nature 424(6951):901-908. doi: 10.1038/nature01843

Hopkins, W. G. 1999. Introduction to plant physiology. John Wiley and Sons.

Huber, B. 1932. Beobachtung und Messung pflanzlicher Saftstrome. 引用自 Ber. deutsch. Bot. Ges. 50:89-109.

Jari Oksanen, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, Peter R. Minchin, R. B.O'Hara, Gavin L. Simpson, Peter Solymos, M. Henry H. Stevens, Eduard Szoecs, and Helene Wagner. 2020. Vegan: community ecology package.

Jung, E.-Y., D. Otieno, B. Lee, J. H. Lim, S. Kang, M. Schmidt, and
J. Tenhunen. 2011. Up-scaling to stand transpiration of an Asian temperate mixed-deciduous forest from single tree sapflow measurements. Plant Ecology 212(3):383-395.

Laplace, S., H. Komatsu, H. Tseng, and T. Kume. 2017. Difference between the transpiration rates of Moso bamboo (Phyllostachys pubescens) and Japanese cedar (Cryptomeria japonica) forests in a subtropical climate in Taiwan. Ecol Res 32(6):835-843. doi: 10.1007/s11284-017-1512-x

Lovisolo, C., and A. Schubert. 1998. Effects of water stress on vessel size and xylem hydraulic conductivity in Vitis vinifera L. Journal of Experimental Botany 49(321):693-700.

Lowrance, C. 2014. Open source hardware and software in agriculture, University of Georgia.

McJannet, D., P. Fitch, M. Disher, and J. Wallace. 2007. Measurements of transpiration in four tropical rainforest types of north Queensland, Australia. Hydrological Processes: An International Journal 21(26):3549-3564.

Meinzer, F., G. Goldstein, and J. Andrade. 2001. Regulation of water flux through tropical forest canopy trees: do universal rules apply? Tree Physiology 21(1):19-26.

Meinzer, F. C., S. A. James, G. Goldstein, and D. Woodruff. 2003. Whole‐tree water transport scales with sapwood capacitance in tropical forest canopy trees. Plant, Cell & Environment 26(7):1147-1155.

Monteith, J. 1981. Evaporation and surface temperature. Quarterly Journal of the Royal Meteorological Society 107(451):1-27.

O'BRIEN, J. J., S. F. Oberbauer, and D. B. Clark. 2004. Whole tree xylem sap flow responses to multiple environmental variables in a wet tropical forest. Plant, Cell & Environment 27(5):551-567.

O'Grady, A., D. Eamus, and L. Hutley. 1999. Transpiration increases during the dry season: patterns of tree water use in eucalypt open-forests of northern Australia. Tree physiology 19(9):591-597.

O'sullivan, O. S., M. A. Heskel, P. B. Reich, M. G. Tjoelker, L. K. Weerasinghe, A. Penillard, L. Zhu, J. J. Egerton, K. J. Bloomfield, and D. Creek. 2017. Thermal limits of leaf metabolism across biomes. Global Change Biol 23(1):209-223.

Olmedo, G. F. 2016. Water : tools and functions to estimate actual evapotranspiration using land surface energy balance models in R. The R Journal 8(2):pp.352–369.

Paudel, I., T. Kanety, and S. Cohen. 2013. Inactive xylem can explain differences in calibration factors for thermal dissipation probe sap flow measurements. Tree Physiology 33(9):986-1001.

Penman, H. L. 1948. Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 193(1032):120-145.

Philip, J. R. 1966. Plant water relations: some physical aspects. Annual Review of Plant Physiology 17(1):245-268.

Phillips, N., M. Ryan, B. Bond, N. McDowell, T. Hinckley, and J. Čermák. 2003. Reliance on stored water increases with tree size in three species in the Pacific Northwest. Tree Physiology 23(4):237-245.

R Core Team. 2021. R: a language and environment for statistical computing., Statistical Computing,Vienna, Austria.

Rowland, L., A. C. L. da Costa, D. R. Galbraith, R. Oliveira, O. J. Binks, A. Oliveira, A. Pullen, C. Doughty, D. Metcalfe, and S. Vasconcelos. 2015. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528(7580):119-122.

Saugier, B., A. Granier, J. Y. Pontailler, E. Dufrene, and D. D. Baldocchi. 1997. Transpiration of a boreal pine forest measured by branch bag, sap flow and micrometeorological methods. Tree Physiology 17(8_9):511-519.

Schlesinger, W. H., and S. Jasechko. 2014. Transpiration in the global water cycle. Agr Forest Meteorol 189:115-117.

Steppe, K., H. Cochard, A. Lacointe, and T. Améglio. 2012. Could rapid diameter changes be facilitated by a variable hydraulic conductance? Plant, Cell & Environment 35(1):150-157.

Sun, H., D. P. Aubrey, and R. O. Teskey. 2012. A simple calibration improved the accuracy of the thermal dissipation technique for sap flow measurements in juvenile trees of six species. Trees 26(2):631-640.

Tai, H.-S. 2015. Cross-scale and cross-level dynamics: governance and capacity for resilience in a social-ecological system in Taiwan. Sustainability 7(2):2045-2065.

Thornton, P. E., B. E. Law, H. L. Gholz, K. L. Clark, E. Falge, D. S. Ellsworth, A. H. Goldstein, R. K. Monson, D. Hollinger, M. Falk, J. Chen, and J. P. Sparks. 2002. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agr Forest Meteorol 113(1-4):185-222. doi: 10.1016/s0168-1923(02)00108-9

Tseng, H., C.-W. Chiu, S. Laplace, and T. Kume. 2017. Can we assume insignificant temporal changes in spatial variations of sap flux for year-round individual tree transpiration estimates? A case study on Cryptomeria japonica in central Taiwan. Trees 31(4):1239-1251.

Unsworth, M. H., N. Phillips, T. Link, B. J. Bond, M. Falk, M. E. Harmon, T. M. Hinckley, and D. Marks. 2004. Components and controls of water flux in an old-growth Douglas-fir–western hemlock ecosystem. Ecosystems 7(5):468-481.

Wiedemann, A., S. Marañón-Jiménez, C. Rebmann, M. Herbst, and M. Cuntz. 2016. An empirical study of the wound effect on sap flux density measured with thermal dissipation probes. Tree physiology 36(12):1471-1484.

Xu, S. Q., and Z. B. Yu. 2020. Environmental control on transpiration: a case study of a desert ecosystem in northwest china. Water-Sui 12(4)doi: ARTN 121110.3390/w12041211

Zeppel, M. J., B. R. Murray, C. Barton, and D. Eamus. 2004. Seasonal responses of xylem sap velocity to VPD and solar radiation during drought in a stand of native trees in temperate Australia. Functional Plant Biology 31(5):461-470.

Zhang, Q., S. Manzoni, G. Katul, A. Porporato, and D. Yang. 2014. The hysteretic evapotranspiration—Vapor pressure deficit relation. Journal of Geophysical Research: Biogeosciences 119(2):125-140.

吳聲沅. 2008. 利用樹液探針研究環境參數對植物蒸散之影響, 國立中央大學.

李漢宗. 2012. 蓮華池蒸發散季節特性探討與樹液探針之應用, 國立中央大學.

邱志明, 鍾智昕, and 彭炳勳. 2017. 花蓮地區平地造林重要樹種生長與枯死. 林業研究專訊 24(3):48-51.

邱志明, 鍾智昕, 彭炳勳, and 唐盛林. 2018. 花蓮屏東雲林平地造林重要樹種生長 林業研究專欄 No. 25. p 52-57.

洪志凱. 2004. 樹液探針之發展與應用, 國立台灣科技大學.

徐唯恩. 2014. 臺灣屏東地區欖仁, 印度紫檀人工林樹液流特性之研究, 國立臺灣大學.

張志遠. 2008. 台灣南仁山亞熱帶雨林三種樹種的樹液流通量與風速及其他環境因子之關係, 國立臺灣大學.

郭振民. 2009. 整合衛星遙測與無線化樹汁流觀測推估區域蒸發散.

陳俐如. 2005. 鴛鴦湖地區台灣扁柏樹液流動之探討, 國立東華大學.

陳美里. 2013. 臺灣溪頭柳杉人工林之樹液流特性, 國立臺灣大學.

曾健凱. 2011. 樹液流觀測系統之建構與應用, 國立成功大學.

曾涵. 2011. 利用樹液流法測量溪頭柳杉人工林之蒸散狀況及變異, 國立臺灣大學.

葉育材, 曾義雄, and 林金和. 1992. 簡明植物生物學, 環球書社.

劉曉燕, 李吉躍, 翟洪波, and 朱國彬. 2003. 從樹木水利結構特徵探討植物耐旱
性. 北京林業大學學報 25(3):48-54.

蔡孜奕. 2013. 臺灣中部塔塔加地區臺灣雲杉老熟林樹液流特性, 國立臺灣大學.

蔡育宸. 2015. 台灣中部五種平地造林樹種乾溼季水分生理之研究, 國立中興大學.

羅勻謙. 2004. 鴛鴦湖地區台灣扁柏森林生態系蒸散作用之研究, 國立東華大學.

羅明慧. 2016. 溪頭柳杉林的蒸發散特性之研究. 臺灣大學生物資源暨農學院實驗林研究報告 30(4):303-312.

蘇曼萍. 2017. 台灣中部柳杉林之長期林分蒸散量推估: 熱消散樹液流法的校正及其於野外資料的應用, 國立臺灣大學.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *