|
林佑珊. (2013). 美麗海葵內部構造之組織學分析. 碩士論文,國立東華大學,花蓮縣. 洪啟軒. (2012). 共生藻與海葵建立胞內共生初期之組織分佈變化分析. 碩士論文,國立東華大學,花蓮縣. 郭書諺. (2013). 共生藻之游動力與其進入寄主海葵體內建立共生的關係. 碩士論文,國立東華大學,花蓮縣. 楊雅雯. (2001). 印度太平洋石珊瑚之共生藻的親緣分析與共生多型性. 碩士論文,國立中山大學. 鄭雅文. (2014). 不同品系共生藻與海葵建立共生機轉之研究-感染測試及超微結構分析. 碩士論文,國立東華大學,花蓮縣. Baghdasarian, G., & Muscatine, L. (2000). Preferential expulsion of dividing algal cells as a mechanism for regulating algal-cnidarian symbiosis. The Biological Bulletin, 199(3), 278-286. doi:10.2307/1543184 Barbosa, A. I., Coutinho, A. J., Costa Lima, S. A., & Reis, S. (2019). Marine Polysaccharides in Pharmaceutical Applications: Fucoidan and Chitosan as Key Players in the Drug Delivery Match Field. Mar Drugs, 17(12). doi:10.3390/md17120654 Baumgarten, S., Cziesielski, M. J., Thomas, L., Michell, C. T., Esherick, L. Y., Pringle, J. R., & Voolstra, C. R. (2018). Evidence for miRNA-mediated modulation of the host transcriptome in cnidarian-dinoflagellate symbiosis. Mol Ecol, 27(2), 403-418. doi:10.1111/mec.14452 Baumgarten, S., Simakov, O., Esherick, L. Y., Liew, Y. J., Lehnert, E. M., Michell, C. T., & Voolstra, C. R. (2015). The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci U S A, 112(38), 11893-11898. doi:10.1073/pnas.1513318112 Berkelmans, R., & van Oppen, M. J. (2006). The role of zooxanthellae in the thermal tolerance of corals: a 'nugget of hope' for coral reefs in an era of climate change. Proc Biol Sci, 273(1599), 2305-2312. doi:10.1098/rspb.2006.3567 Biquand, E., Okubo, N., Aihara, Y., Rolland, V., Hayward, D. C., Hatta, M., & Takahashi, S. (2017). Acceptable symbiont cell size differs among cnidarian species and may limit symbiont diversity. ISME J, 11(7), 1702-1712. doi:10.1038/ismej.2017.17 Boulotte, N. M., Dalton, S. J., Carroll, A. G., Harrison, P. L., Putnam, H. M., Peplow, L. M., & van Oppen, M. J. (2016). Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J, 10(11), 2693-2701. doi:10.1038/ismej.2016.54 Bucher, M., Wolfowicz, I., Voss, P. A., Hambleton, E. A., & Guse, A. (2016). Development and Symbiosis Establishment in the Cnidarian Endosymbiosis Model Aiptasia sp. Sci Rep, 6, 19867. doi:10.1038/srep19867 Burriesci, M. S., Raab, T. K., & Pringle, J. R. (2012). Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis. J Exp Biol, 215(Pt 19), 3467-3477. doi:10.1242/jeb.070946 Byler, K. A., Carmi-Veal, M., Fine, M., & Goulet, T. L. (2013). Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PLoS One, 8(3), e59596. doi:10.1371/journal.pone.0059596 Carlisle, J. F., Murphy, G. K., & Roark, A. M. (2017). Body size and symbiotic status influence gonad development in Aiptasia pallida anemones. Symbiosis, 71(2), 121-127. doi:10.1007/s13199-016-0456-1 Chen, H. K., Wang, L. H., Chen, W. U., Mayfield, A. B., Levy, O., Lin, C. S., & Chen, C. S. (2017). Coral lipid bodies as the relay center interconnecting diel-dependent lipidomic changes in different cellular compartments. Sci Rep, 7(1), 3244. doi:10.1038/s41598-017-02722-z Chen, W. N., Hsiao, Y. J., Mayfield, A. B., Young, R., Hsu, L. L., & Peng, S. E. (2016). Transmission of a heterologous clade C Symbiodinium in a model anemone infection system via asexual reproduction. PeerJ, 4, e2358. doi:10.7717/peerj.2358 Cui, G., Liew, Y. J., Li, Y., Kharbatia, N., Zahran, N. I., Emwas, A.-H., & Aranda, M. (2018). Meta-analysis reveals host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. BioRxiv, 269183. doi:10.1101/269183 Cui, G., Liew, Y. J., Li, Y., Kharbatia, N., Zahran, N. I., Emwas, A. H., & Aranda, M. (2019). Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLoS Genet, 15(6), e1008189. doi:10.1371/journal.pgen.1008189 Cunning, R., Silverstein, R. N., & Baker, A. C. (2015). Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc Biol Sci, 282(1809), 20141725. doi:10.1098/rspb.2014.1725 Cziesielski, M. J., Liew, Y. J., Cui, G., Schmidt-Roach, S., Campana, S., Marondedze, C., & Aranda, M. (2018). Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc Biol Sci, 285(1877). doi:10.1098/rspb.2017.2654 Dani, V., Priouzeau, F., Mertz, M., Mondin, M., Pagnotta, S., Lacas-Gervais, S., & Sabourault, C. (2017). Expression patterns of sterol transporters NPC1 and NPC2 in the cnidarian-dinoflagellate symbiosis. Cell Microbiol, 19(10). doi:10.1111/cmi.12753 Davy, S. K., Allemand, D., & Weis, V. M. (2012). Cell Biology of Cnidarian-Dinoflagellate Symbiosis. Microbiology and Molecular Biology Reviews, 76(2), 229-261. doi:10.1128/mmbr.05014-11 Detournay, O., & Weis, V. M. (2011). Role of the Sphingosine Rheostat in the Regulation of Cnidarian-Dinoflagellate Symbioses. The Biological Bulletin, 221(3), 261-269. doi:https://doi.org/10.1086/BBLv221n3p261 Dorota E. Starzak, R. G. Q., Matthew R. Nitschke & Simon K. Davy. (2014). The influence of symbiont type on photosynthetic carbon flux in a model cnidarian–dinoflagellate symbiosis. doi:10.1007/s00227-013-2372-8) Dunn, S. R., Schnitzler, C. E., & Weis, V. M. (2007). Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc Biol Sci, 274(1629), 3079-3085. doi:10.1098/rspb.2007.0711 Dunn, S. R., & Weis, V. M. (2009). Apoptosis as a post-phagocytic winnowing mechanism in a coral-dinoflagellate mutualism. Environ Microbiol, 11(1), 268-276. doi:10.1111/j.1462-2920.2008.01774.x Gabay, Y., Parkinson, J. E., Wilkinson, S. P., Weis, V. M., Davy, S. K. (2019). Inter-partner specificity limits the acquisition of thermotolerant symbionts in a model cnidarian-dinoflagellate symbiosis. ISME J, 13(10), 2489-2499. doi:10.1038/s41396-019-0429-5 Gegner, H. M., Ziegler, M., Radecker, N., Buitrago-Lopez, C., Aranda, M., & Voolstra, C. R. (2017). High salinity conveys thermotolerance in the coral model Aiptasia. Biol Open, 6(12), 1943-1948. doi:10.1242/bio.028878 Grajales, A., & Rodriguez, E. (2014). Morphological revision of the genus Aiptasia and the family Aiptasiidae (Cnidaria, Actiniaria, Metridioidea). Zootaxa, 3826(1), 55-100. doi:10.11646/zootaxa.3826.1.2 Hawkins, T. D., Hagemeyer, J. C., Hoadley, K. D., Marsh, A. G., & Warner, M. E. (2016). Partitioning of Respiration in an Animal-Algal Symbiosis: Implications for Different Aerobic Capacity between Symbiodinium spp. Front Physiol, 7, 128. doi:10.3389/fphys.2016.00128 Hoegh-Guldberg, Ove, J. C. O., & Dove, S. (2011). The Future of Coral Reefs. Science, 334(6062 ), 1494-1495. doi:10.1126/science.334.6062.1494-b Hughes, T. P., Kerry, J. T., Alvarez-Noriega, M., Alvarez-Romero, J. G., Anderson, K. D., Baird, A. H., & Wilson, S. K. (2017). Global warming and recurrent mass bleaching of corals. Nature, 543(7645), 373-377. doi:10.1038/nature21707 Imbs, A. B., Yakovleva, I. M., Dautova, T. N., Bui, L. H., & Jones, P (2014). Diversity of fatty acid composition of symbiotic dinoflagellates in corals: evidence for the transfer of host PUFAs to the symbionts. Phytochemistry, 101, 76-82. doi:10.1016/j.phytochem.2014.02.012 Kinzie, R. A., 3rd, & Chee, G. S. (1979). The effect of different zooxanthellae on the growth of experimentally reinfected hosts. Biol Bull, 156(3), 315-327. doi:10.2307/1540920 Kitchen, S. A., Poole, A. Z., & Weis, V. (2017). Sphingolipid Metabolism of a Sea Anemone Is Altered by the Presence of Dinoflagellate Symbionts. Biological Bulletin, 233(3), 242–254. doi:https://doi.org/10.1086/695846 Kopp, C., Domart-Coulon, I., Escrig, S., Humbel, B. M., Hignette, M., & Meibom, A. (2015). Subcellular investigation of photosynthesis-driven carbon assimilation in the symbiotic reef coral Pocillopora damicornis. MBio, 6(1). doi:10.1128/mBio.02299-14 Lachs, L., & Oñate-Casado, J. (2020). Fisheries and Tourism: Social, Economic, and Ecological Trade-offs in Coral Reef Systems. In YOUMARES 9-The Oceans: Our Research, Our Future (pp. 243-260): Springer, Cham. Lajeunesse, T. C., Parkinson, J. E., & Reimer, J. D. (2012). A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (Dinophyceae), two dinoflagellates symbiotic with cnidaria. J Phycol, 48(6), 1380-1391. doi:10.1111/j.1529-8817.2012.01217.x Leal, M. C., Hoadley, K., Pettay, D. T., Grajales, A., Calado, R., & Warner, M. E. (2015). Symbiont type influences trophic plasticity of a model cnidarian-dinoflagellate symbiosis. J Exp Biol, 218(Pt 6), 858-863. doi:10.1242/jeb.115519 Lehnert, E. M., Mouchka, M. E., Burriesci, M. S., Gallo, N. D., Schwarz, J. A., & Pringle, J. R. (2014). Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians. G3 (Bethesda), 4(2), 277-295. doi:10.1534/g3.113.009084 Leão, Z. M. A. N., Kikuchi, R. K. P., Ferreira, B. P., Neves, E. G., Sovierzoski, H. H., Oliveira, M. D. M., & Johnsson, R. (2016). Brazilian coral reefs in a period of global change: A synthesis. Brazilian Journal of Oceanography, 64(spe2), 97-116. doi:10.1590/S1679-875920160916064sp2 Li, Y., Liew, Y. J., Cui, G., Cziesielski, M. J., Zahran, N., Michell, C. T., & Aranda, M. (2018). DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia. Science advances, 4(8). doi:10.1126/sciadv.aat2142 Lin, K.-L., Jih-Terng Wang, and Lee-Shing Fang. (2000). Participation of glycoproteins on zooxanthellal cell walls in the establishment of a symbiotic relationship with the sea anemone, Aiptasia pulchella. Zoological Studies, 39.3, 172-178. Loram, J. E., Trapido-Rosenthal, H. G., & Douglas, A. E. (2007). Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis. Mol Ecol, 16(22), 4849-4857. doi:10.1111/j.1365-294X.2007.03491.x Mansfield, K. M., Carter, N. M., Nguyen, L., Cleves, P. A., Alshanbayeva, A., Williams, L. M., & Gilmore, T. D. (2017). Transcription factor NF-kappaB is modulated by symbiotic status in a sea anemone model of cnidarian bleaching. Sci Rep, 7(1), 16025. doi:10.1038/s41598-017-16168-w Markell, D. A., & Wood-Charlson, E. M. (2010). Immunocytochemical evidence that symbiotic algae secrete potential recognition signal molecules in hospite. Marine Biology, 157(5), 1105-1111. doi:10.1007/s00227-010-1392-x Matthews, J. L., Crowder, C. M., Oakley, C. A., Lutz, A., Roessner, U., Meyer, E., & Davy, S. K. (2017). Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proc Natl Acad Sci U S A, 114(50), 13194-13199. doi:10.1073/pnas.1710733114 Matthews, J. L., Oakley, C. A., Lutz, A., Hillyer, K. E., Roessner, U., Grossman, A. R., & Davy, S. K. (2018). Partner switching and metabolic flux in a model cnidarian-dinoflagellate symbiosis. Proc Biol Sci, 285(1892). doi:10.1098/rspb.2018.2336 Mazzillo Mays, M., & Kempf, S. C. (2014). Antigenic variation in mucilage secreted by members of the genus Symbiodinium (Dinophyceae). J Phycol, 50(5), 850-859. doi:10.1111/jpy.12215 Mohamed, A. R., Andrade, N., Moya, A., Chan, C. X., Negri, A. P., Bourne, D. G., & Miller, D. J. (2019). Transcriptomic insights into the establishment of coral-algal symbioses from the symbiont perspective. BioRxiv. doi:10.1101/652131 Mohamed, A. R., Cumbo, V., Harii, S., Shinzato, C., Chan, C. X., Ragan, M. A., & Miller, D. J. (2016). The transcriptomic response of the coral Acropora digitifera to a competent Symbiodinium strain: the symbiosome as an arrested early phagosome. Mol Ecol, 25(13), 3127-3141. doi:10.1111/mec.13659 necroappetens LaJeunesse, S., Lee, S. Y., & Knowlton, N. Data S1: Systematic Revision of the Family Symbiodiniaceae. Neubauer, E. F., Poole, A. Z., Neubauer, P., Detournay, O., Tan, K., Davy, S. K., & Weis, V. M. (2017). A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis. Elife, 6. doi:10.7554/eLife.24494 Ngugi, D. K., Ziegler, M., Duarte, C. M., & Voolstra, C. R. (2020). Genomic Blueprint of Glycine Betaine Metabolism in Coral Metaorganisms and Their Contribution to Reef Nitrogen Budgets. iScience, 23(5), 101120. doi:10.1016/j.isci.2020.101120 Nunez-Pons, L., Bertocci, I., & Baghdasarian, G. (2017). Symbiont dynamics during thermal acclimation using cnidarian-dinoflagellate model holobionts. Mar Environ Res, 130, 303-314. doi:10.1016/j.marenvres.2017.08.005 Oakley, C. A., Ameismeier, M. F., Peng, L., Weis, V. M., Grossman, A. R., & Davy, S. K. (2016). Symbiosis induces widespread changes in the proteome of the model cnidarian Aiptasia. Cell Microbiol, 18(7), 1009-1023. doi:10.1111/cmi.12564 Oppen, M. J. H. v., Mahiny, A. J., & Done, T. J. (2005). Geographic distribution of zooxanthella types in three coral species on the Great Barrier Reef sampled after the 2002 bleaching event. Coral Reefs, 24(3), 482-487. doi:10.1007/s00338-005-0487-1 Pardy, R. H. M. a. R. L. (1980). Quantitative demonstration of cell surface involvement in a plant-animal symbiosis: lectin inhibition of reassociation.pdf. Journal of Cell Science, 43(1), 239-251. Parkinson, J. E., Tivey, T. R., Mandelare, P. E., Adpressa, D. A., Loesgen, S., & Weis, V. M. (2018). Subtle Differences in Symbiont Cell Surface Glycan Profiles Do Not Explain Species-Specific Colonization Rates in a Model Cnidarian-Algal Symbiosis. Front Microbiol, 9, 842. doi:10.3389/fmicb.2018.00842 Paul, D., Achouri, S., Yoon, Y. Z., Herre, J., Bryant, C. E., & Cicuta, P. (2013). Phagocytosis dynamics depends on target shape. Biophys J, 105(5), 1143-1150. doi:10.1016/j.bpj.2013.07.036 Paxton, C. W., Davy, S. K., & Weis, V. M. (2013). Stress and death of cnidarian host cells play a role in cnidarian bleaching. J Exp Biol, 216(Pt 15), 2813-2820. doi:10.1242/jeb.087858 Peng, S. E., Chen, C. S., Song, Y. F., Huang, H. T., Jiang, P. L., Chen, W. N., & Lee, Y. C. (2012). Assessment of metabolic modulation in free-living versus endosymbiotic Symbiodinium using synchrotron radiation-based infrared microspectroscopy. Biol Lett, 8(3), 434-437. doi:10.1098/rsbl.2011.0893 Peng, S. E., Moret, A., Chang, C., Mayfield, A. B., Ren, Y. T., Chen, W. U., & Chen, C. S. (2020). A shift away from mutualism under food-deprived conditions in an anemone-dinoflagellate association. PeerJ, 8, e9745. doi:10.7717/peerj.9745 Peng, S. E., Wang, Y. B., Wang, L. H., Chen, W. N., Lu, C. Y., Fang, L. S., & Chen, C. S. (2010). Proteomic analysis of symbiosome membranes in Cnidaria-dinoflagellate endosymbiosis. Proteomics, 10(5), 1002-1016. doi:10.1002/pmic.200900595 Pochon, X., & Gates, R. D. (2010). A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai'i. Mol Phylogenet Evol, 56(1), 492-497. doi:10.1016/j.ympev.2010.03.040 Pochon, X. L., T. C. Pawlowski, J. (2004). Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Marine Biology, 146(1), 17-27. doi:10.1007/s00227-004-1427-2 Poole, A. Z., Kitchen, S. A., & Weis, V. M. (2016). The Role of Complement in Cnidarian-Dinoflagellate Symbiosis and Immune Challenge in the Sea Anemone Aiptasia pallida. Front Microbiol, 7, 519. doi:10.3389/fmicb.2016.00519 Radecker, N., Raina, J. B., Pernice, M., Perna, G., Guagliardo, P., Kilburn, M. R., & Voolstra, C. R. (2018). Using Aiptasia as a Model to Study Metabolic Interactions in Cnidarian-Symbiodinium Symbioses. Front Physiol, 9, 214. doi:10.3389/fphys.2018.00214 Rowan, R. O. B., & Powers, D. A. (1991a). A Molecular Genetic Classification of Zooxanthellae and the Evolution of Animal-Algal Symbioses. Science, 251(4999), 1348-1351. doi:https://doi.org/10.1126/science.251.4999.1348 Rowan, R. O. B., & Powers, D. A. (1991b). Molecular genetic identification of symbiotic dinoflagellates(zooxanthellae). Marine ecology progress series. Oldendorf, 71(1), 65-73. Rodriguez-Lanetty, M., Wood-Charlson, E. M., Hollingsworth, L. L., Krupp, D. A., & Weis, V. M. (2006). Temporal and spatial infection dynamics indicate recognition events in the early hours of a dinoflagellate/coral symbiosis. Marine Biology, 149(4), 713-719. doi:10.1007/s00227-006-0272-x Rodriguez, A., Rodriguez, M., Cordoba, J. J., & Andrade, M. J. (2015). Design of primers and probes for quantitative real-time PCR methods. Methods Mol Biol, 1275, 31-56. doi:10.1007/978-1-4939-2365-6_3 Schnitzler, C. E., & Weis, V. M. (2010). Coral larvae exhibit few measurable transcriptional changes during the onset of coral-dinoflagellate endosymbiosis. Mar Genomics, 3(2), 107-116. doi:10.1016/j.margen.2010.08.002 Silverstein, R. N., Cunning, R., & Baker, A. C. (2015). Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob Chang Biol, 21(1), 236-249. doi:10.1111/gcb.12706 Sorek, M., Schnytzer, Y., Waldman Ben-Asher, H., Caspi, V. C., Chen, C. S., Miller, D. J., & Levy, O. (2018). Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium. Microbiome, 6(1), 83. doi:10.1186/s40168-018-0465-9 Stat, M., Bird, C. E., Pochon, X., Chasqui, L., Chauka, L. J., Concepcion, G. T., & Gates, R. D. (2011). Variation in Symbiodinium ITS2 sequence assemblages among coral colonies. PLoS One, 6(1), e15854. doi:10.1371/journal.pone.0015854 Sunagawa, S., Choi, J., Forman, H. J., & Medina, M. (2008). Hyperthermic stress-induced increase in the expression of glutamate-cysteine ligase and glutathione levels in the symbiotic sea anemone Aiptasia pallida. Comp Biochem Physiol B Biochem Mol Biol, 151(1), 133-138. doi:10.1016/j.cbpb.2008.06.007 Sunagawa, S., Wilson, E. C., Thaler, M., Smith, M. L., Caruso, C., Pringle, J. R., & Schwarz, J. A. (2009). Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics, 10, 258. doi:10.1186/1471-2164-10-258 Thornhill, D. J., Xiang, Y., Pettay, D. T., Zhong, M., & Santos, S. R. (2013). Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Mol Ecol, 22(17), 4499-4515. doi:10.1111/mec.12416 Verde, E. A., & McCloskey, L. R. (2007). A comparative analysis of the photobiology of zooxanthellae and zoochlorellae symbiotic with the temperate clonal anemone Anthopleura elegantissima (Brandt). III. Seasonal effects of natural light and temperature on photosynthesis and respiration. Marine Biology, 152(4), 775-792. doi:10.1007/s00227-007-0737-6 Voolstra, C. R., Schwarz, J. A., Schnetzer, J., Sunagawa, S., Desalvo, M. K., Szmant, A. M., & Medina, M. (2009). The host transcriptome remains unaltered during the establishment of coral-algal symbioses. Mol Ecol, 18(9), 1823-1833. doi:10.1111/j.1365-294X.2009.04167.x Weis, V. M., Davy, S. K., Hoegh-Guldberg, O., Rodriguez-Lanetty, M., Pringle, J. R. (2008). Cell biology in model systems as the key to understanding corals. Trends Ecol Evol, 23(7), 369-376. doi:10.1016/j.tree.2008.03.004 Weizman, E., & Levy, O. (2019). The role of chromatin dynamics under global warming response in the symbiotic coral model Aiptasia. Commun Biol, 2, 282. doi:10.1038/s42003-019-0543-y Wolfowicz, I., Baumgarten, S., Voss, P. A., Hambleton, E. A., Voolstra, C. R., Hatta, M., & Guse, A. (2016). Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci Rep, 6, 32366. doi:10.1038/srep32366 Wood-Charlson, E. M., Hollingsworth, L. L., Krupp, D. A., & Weis, V. M. (2006). Lectin/glycan interactions play a role in recognition in a coral/dinoflagellate symbiosis. Cell Microbiol, 8(12), 1985-1993. doi:10.1111/j.1462-5822.2006.00765.x Yuyama, I., Ishikawa, M., Nozawa, M., Yoshida, M. A., & Ikeo, K. (2018). Transcriptomic changes with increasing algal symbiont reveal the detailed process underlying establishment of coral-algal symbiosis. Sci Rep, 8(1), 16802. doi:10.1038/s41598-018-34575-5
|