帳號:guest(3.145.104.192)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:任于婷
作者(英文):Yu-Ting Ren
論文名稱:美麗海葵(Exaiptasia pallida)接種同源及異源共生藻後之生長、共生藻密度及基因表現變化的研究
論文名稱(英文):Investigating the growth, symbiont density, and gene expression profiles of the homologous and heterologous dinoflagellate-inoculated Exaiptasia pallida.
指導教授:彭紹恩
指導教授(英文):Shao-En Peng
口試委員:林仲彥
王涵青
陳啟祥
彭紹恩
口試委員(英文):Chung-Yen Lin
Han-Ching Wang
Chii-Shiarng Chen
Shao-En Peng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610763004
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:139
關鍵詞:美麗海葵渦鞭毛藻胞內共生海葵生長共生藻密度基因表現共生建立
關鍵詞(英文):Exaiptasia pallidadinoflagellateendosymbiosisgrowth of anemonesymbiont densitygene expressionsymbiosis establishment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
珊瑚與渦鞭毛藻(共生藻)間的胞內共生現象是維繫珊瑚礁健康的基礎。為探究胞內共生現象建立的機轉及其背後的細胞與分子調控機轉,本研究以模式生物海葵(Exaiptasia pallida)分別接種5種同源或異源共生藻(包括clade A, B, C, D, E),並觀察共生藻進入海葵體內後,對於海葵生長的影響及共生藻密度與分佈的時序變化,同時分別萃取接種後0小時, 12小時, 48小時, 96小時, 7日, 14日的海葵總RNA,進行26種標的基因的qPCR反應(quantitative polymerase chain reaction),藉以驗證標的基因在海葵與同源或異源共生藻建立胞內共生過程中的表現差異,以瞭解該基因在建立胞內共生過程中所扮演的角色。結果顯示,無論是同源或異源共生藻均能進入海葵體內,但在本實驗中,僅有clade B(同源), C(異源)與D(異源)共生藻能在海葵體內存活與海葵建立共生關係,其中同源共生藻(clade B)在海葵體內的共生藻密度最高,其次依序為clade D及clade C。依據海葵底盤面積所計算的海葵生長數據顯示,在本實驗的14天期間,無論是接種同源、異源共生藻或未接種對照組的海葵大小均無顯著差異。依據NGS(next generation sequencing)分析的數據,建立共生初期(12小時, 48小時)表現大幅變化的基因數目大於後期,顯示共生藻進入海葵細胞內的初期會引起宿主基因表現的劇烈變動。本研究將這些表現量與未接種之對照組差異達10倍以上的基因進行功能分類,將其分為細胞複製周期(cell cycle)、細胞骨架(cytoskeleton)、細胞外基質(extracellular matrix)、代謝(metabolism)、緊迫反應(stress responses)與物質運送(transporter)等,並從中挑選出26種海葵標的基因,進行qPCR反應。結果顯示,在接種同源共生藻的海葵體內,各標的基因qPCR數據顯著變動的時期與NGS的數據非常相似,不僅相互驗證並呈現之前NGS數據的高準確性。此外亦發現海葵接種不同共生藻時,會有不同的基因表現變化,顯示海葵與不同的共生藻間存在特定的交互作用。整體而言,本研究驗證及篩選出參與胞內共生的相關基因,並提供分子證據以支持海葵與渦鞭毛藻建立共生的過程可分為適應期、共生藻細胞轉移期、細胞辨識時期、共生體快速複製時期及代謝調控時期等。
The endosymbiosis between corals and dinoflagellate (Symbiodinium spp.) is the basis for maintaining the health of coral reefs. In order to explore the cellular and molecular mechanisms behind the establishment mechanism of coral-dinoflagellate symbiosis, this study used 5 species of homologous or heterologous dinoflagellate (including clade A, B, C, D, E) to inoculate the model organism sea anemone (Exaiptasia pallida) and observe the influence of the dinoflagellate on the growth of the anemone after entering the anemone body, the change of density over time, and the distribution of the dinoflagellate. At the same time, we sample and extract the total RNA of the inoculated anemone at 0hr, 12hr, 48hr, 96hr, 7days, and 14 days after inoculation. The total RNA of sea anemone is used for the quantitative polymerase chain reaction (qPCR) of 26 target genes to verify the expression profile of the target gene in the process of establishing intracellular symbiosis between sea anemone and homologous or heterologous dinoflagellate, so as to understand the genes involved in the process of establishing anemone-dinoflagellate symbiosis. The results show that both homologous and heterologous dinoflagellate can enter the sea anemone, but in this experiment, only clade B (homologous), C (heterologous) and D (heterologous) dinoflagellate can establish a symbiotic relationship with anemones. Among them, the symbiot density of dinoflagellate clade B is the highest in the anemone, followed by dinoflagellate clade D and clade C. The growth of anemone as quantified by the area of the pedal disk showed that during the 14-day period of this experiment, there was no significant difference in the size of the sea anemones inoculated with homologous, heterologous dinoflagellate or uninoculated control group. According to the next generation sequencing (NGS) data, the number of genes with large changes in the initial stage of symbiosis (12hr, 48hr) was higher than in the later stage, indicating that the entry of dinoflagellate causes drastic changes in host gene expression profiles. In this study, these genes whose expression levels differed by more than 10 folds from that of the uninoculated control group were classified as the functional categories of cell cycle, cytoskeleton, extracelluar matrix, metabolism, stress responses, and molecular transporter, etc. Among them, 26 target genes were selected for qPCR reaction. The results showed that in the sea anemone inoculated with the homologous symbiotic algae, the period of significant changes in the qPCR data of each target gene was similar to the NGS data, which not only verifies each other but also attests to the high accuracy of the previous NGS data. In addition, it has also been found that when sea anemones are inoculated with different dinoflagellate, there will be different gene expression changes, indicating that there is a specific interaction between sea anemones and different dinoflagellate. In conclusion, this study verified and screened the relevant genes involved in anemone-dinoflagellate symbiosis and provided molecular evidence to support the hypothesis that the symbiosis establishment including adaptation, symbiont translocation, cellular recognition, rapid replication of symbiont and the metabolic modulation.
謝辭 I
摘要 III
Abstract V
圖頁碼 XI
表頁碼 XIII
附錄頁碼 XV
第一章、 前言 1
1.1 刺絲胞動物與共生藻之胞內共生現象 1
1.2 氣候變遷造成珊瑚白化及體內共生藻之改變 1
1.3 不同共生藻之特性及其與宿主之間的伴侶特異性 2
1.4 建立共生機轉的相關基因 3
1.5 實驗生物—美麗海葵(Exaiptasia pallida) 4
1.6 研究目的 5
第二章、 材料與方法 7
2.1 實驗策略與流程 7
2.2 實驗材料 7
2.2.1 海葵來源與培養 7
2.2.2 白化海葵製備 8
2.2.3 共生藻培養 8
2.3 共生藻品系鑑定 8
2.4.1 游離共生藻細胞取樣 8
2.4.2 游離共生藻之DNA萃取 9
2.4.3 游離共生藻之品系鑑定 9
2.3.3.1 聚合酶連鎖反應(Polymerase chain reaction, PCR) 9
2.3.3.2 限制性片段長度多態性分析(restriction fragment length polymorphism, RFLP) 9
2.3.3.3 凝膠電泳分析(agarose gel electrophoresis, AGE) 10
2.4 共生藻與海葵建立共生試驗之分析 10
2.4.1 接種試驗流程 10
2.4.2 以螢光解剖顯微鏡觀察記錄接種海葵體內之共生藻密度與分佈變化 11
2.4.3 美麗海葵體內共生藻密度之計算 11
2.4.4 海葵生長記錄 11
2.4.5 美麗海葵底盤面積計算 2
2.4.6 統計分析 12
2.5 海葵標的基因之表現量分析 12
2.5.1 標的基因之選擇及專一性引子組之設計 12
2.5.2 實驗樣本處理 13
2.5.3 總量RNA萃取及定量 13
2.5.4 反轉錄合成cDNA 13
2.5.5 即時定量PCR分析(quantitative Polymerase Chain Reaction ,qPCR ) 13
2.5.6 統計分析 14
第三章、 結果 15
3.1 培養環境參數 15
3.1.1 美麗海葵 15
3.1.2 共生藻 15
3.2 共生藻品系鑑定 .15
3.3 美麗海葵接種不同品系共生藻對海葵生長的影響 16
3.4 美麗海葵接種不同品系共生藻後之體內共生藻密度變化 16
3.4.1 美麗海葵接種不同共生藻後,體內共生藻密度之整合圖(圖10) 16
3.5 次世代定序分析美麗海葵接種同源共生藻品系B之基因表現結果 17
3.6 NGS基因及管家基因挑選及引子序列設計 19
3.7 接種實驗海葵取樣量與後續分生實驗使用量 19
3.8 控制組及不同共生藻品系之即時定量PCR基因表現結果 20
3.8.1 接種同源共生藻品系B之美麗海葵,即時定量PCR的基因表現與其基因次世代定序分析的基因表現FPKM圖譜比較。 20
3.8.2 控制組與不同共生藻品系接種之美麗海葵,在各接種時間即時定量PCR基因之表現(2-ΔΔCt)。 20
第四章、 討論 23
4.1 不同共生藻品系與美麗海葵建立共生之差異 23
4.1.1 美麗海葵接種不同共生藻品系後之生長狀況分析 24
4.1.2 美麗海葵接種不同共生藻品系後,體內共生藻密度之比較 24
4.2 美麗海葵接種同源共生藻品系B之次世代定序分析 25
4.3 美麗海葵與共生藻共生建立之主要時期 26
4.3.1 適應期—接種後12小時 26
4.3.2 共生藻細胞轉移期與細胞辨識時期—接種後48小時 27
4.3.3 共生體快速複製時期—接種後96小時 28
4.3.4 代謝調控時期—接種後第7日及14日 29
4.4 美麗海葵接種同源及異源共生藻品系間之標的基因表現比較 31
4.4. 126個標的基因選擇 31
4.4.2 在接種實驗期間,同源及異源共生藻接種美麗海葵之標的基因比較 31
第五章、 結論 37
參考文獻 39
林佑珊. (2013). 美麗海葵內部構造之組織學分析. 碩士論文,國立東華大學,花蓮縣.
洪啟軒. (2012). 共生藻與海葵建立胞內共生初期之組織分佈變化分析. 碩士論文,國立東華大學,花蓮縣.
郭書諺. (2013). 共生藻之游動力與其進入寄主海葵體內建立共生的關係. 碩士論文,國立東華大學,花蓮縣.
楊雅雯. (2001). 印度太平洋石珊瑚之共生藻的親緣分析與共生多型性. 碩士論文,國立中山大學.
鄭雅文. (2014). 不同品系共生藻與海葵建立共生機轉之研究-感染測試及超微結構分析. 碩士論文,國立東華大學,花蓮縣.
Baghdasarian, G., & Muscatine, L. (2000). Preferential expulsion of dividing algal cells as a mechanism for regulating algal-cnidarian symbiosis. The Biological Bulletin, 199(3), 278-286. doi:10.2307/1543184
Barbosa, A. I., Coutinho, A. J., Costa Lima, S. A., & Reis, S. (2019). Marine Polysaccharides in Pharmaceutical Applications: Fucoidan and Chitosan as Key Players in the Drug Delivery Match Field. Mar Drugs, 17(12). doi:10.3390/md17120654
Baumgarten, S., Cziesielski, M. J., Thomas, L., Michell, C. T., Esherick, L. Y., Pringle, J. R., & Voolstra, C. R. (2018). Evidence for miRNA-mediated modulation of the host transcriptome in cnidarian-dinoflagellate symbiosis. Mol Ecol, 27(2), 403-418. doi:10.1111/mec.14452
Baumgarten, S., Simakov, O., Esherick, L. Y., Liew, Y. J., Lehnert, E. M., Michell, C. T., & Voolstra, C. R. (2015). The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci U S A, 112(38), 11893-11898. doi:10.1073/pnas.1513318112
Berkelmans, R., & van Oppen, M. J. (2006). The role of zooxanthellae in the thermal tolerance of corals: a 'nugget of hope' for coral reefs in an era of climate change. Proc Biol Sci, 273(1599), 2305-2312. doi:10.1098/rspb.2006.3567
Biquand, E., Okubo, N., Aihara, Y., Rolland, V., Hayward, D. C., Hatta, M., & Takahashi, S. (2017). Acceptable symbiont cell size differs among cnidarian species and may limit symbiont diversity. ISME J, 11(7), 1702-1712. doi:10.1038/ismej.2017.17
Boulotte, N. M., Dalton, S. J., Carroll, A. G., Harrison, P. L., Putnam, H. M., Peplow, L. M., & van Oppen, M. J. (2016). Exploring the Symbiodinium rare biosphere provides evidence for symbiont switching in reef-building corals. ISME J, 10(11), 2693-2701. doi:10.1038/ismej.2016.54
Bucher, M., Wolfowicz, I., Voss, P. A., Hambleton, E. A., & Guse, A. (2016). Development and Symbiosis Establishment in the Cnidarian Endosymbiosis Model Aiptasia sp. Sci Rep, 6, 19867. doi:10.1038/srep19867
Burriesci, M. S., Raab, T. K., & Pringle, J. R. (2012). Evidence that glucose is the major transferred metabolite in dinoflagellate-cnidarian symbiosis. J Exp Biol, 215(Pt 19), 3467-3477. doi:10.1242/jeb.070946
Byler, K. A., Carmi-Veal, M., Fine, M., & Goulet, T. L. (2013). Multiple symbiont acquisition strategies as an adaptive mechanism in the coral Stylophora pistillata. PLoS One, 8(3), e59596. doi:10.1371/journal.pone.0059596
Carlisle, J. F., Murphy, G. K., & Roark, A. M. (2017). Body size and symbiotic status influence gonad development in Aiptasia pallida anemones. Symbiosis, 71(2), 121-127. doi:10.1007/s13199-016-0456-1
Chen, H. K., Wang, L. H., Chen, W. U., Mayfield, A. B., Levy, O., Lin, C. S., & Chen, C. S. (2017). Coral lipid bodies as the relay center interconnecting diel-dependent lipidomic changes in different cellular compartments. Sci Rep, 7(1), 3244. doi:10.1038/s41598-017-02722-z
Chen, W. N., Hsiao, Y. J., Mayfield, A. B., Young, R., Hsu, L. L., & Peng, S. E. (2016). Transmission of a heterologous clade C Symbiodinium in a model anemone infection system via asexual reproduction. PeerJ, 4, e2358. doi:10.7717/peerj.2358
Cui, G., Liew, Y. J., Li, Y., Kharbatia, N., Zahran, N. I., Emwas, A.-H., & Aranda, M. (2018). Meta-analysis reveals host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. BioRxiv, 269183. doi:10.1101/269183
Cui, G., Liew, Y. J., Li, Y., Kharbatia, N., Zahran, N. I., Emwas, A. H., & Aranda, M. (2019). Host-dependent nitrogen recycling as a mechanism of symbiont control in Aiptasia. PLoS Genet, 15(6), e1008189. doi:10.1371/journal.pgen.1008189
Cunning, R., Silverstein, R. N., & Baker, A. C. (2015). Investigating the causes and consequences of symbiont shuffling in a multi-partner reef coral symbiosis under environmental change. Proc Biol Sci, 282(1809), 20141725. doi:10.1098/rspb.2014.1725
Cziesielski, M. J., Liew, Y. J., Cui, G., Schmidt-Roach, S., Campana, S., Marondedze, C., & Aranda, M. (2018). Multi-omics analysis of thermal stress response in a zooxanthellate cnidarian reveals the importance of associating with thermotolerant symbionts. Proc Biol Sci, 285(1877). doi:10.1098/rspb.2017.2654
Dani, V., Priouzeau, F., Mertz, M., Mondin, M., Pagnotta, S., Lacas-Gervais, S., & Sabourault, C. (2017). Expression patterns of sterol transporters NPC1 and NPC2 in the cnidarian-dinoflagellate symbiosis. Cell Microbiol, 19(10). doi:10.1111/cmi.12753
Davy, S. K., Allemand, D., & Weis, V. M. (2012). Cell Biology of Cnidarian-Dinoflagellate Symbiosis. Microbiology and Molecular Biology Reviews, 76(2), 229-261. doi:10.1128/mmbr.05014-11
Detournay, O., & Weis, V. M. (2011). Role of the Sphingosine Rheostat in the Regulation of Cnidarian-Dinoflagellate Symbioses. The Biological Bulletin, 221(3), 261-269. doi:https://doi.org/10.1086/BBLv221n3p261
Dorota E. Starzak, R. G. Q., Matthew R. Nitschke & Simon K. Davy. (2014). The influence of symbiont type on photosynthetic carbon flux in a model cnidarian–dinoflagellate symbiosis. doi:10.1007/s00227-013-2372-8)
Dunn, S. R., Schnitzler, C. E., & Weis, V. M. (2007). Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc Biol Sci, 274(1629), 3079-3085. doi:10.1098/rspb.2007.0711
Dunn, S. R., & Weis, V. M. (2009). Apoptosis as a post-phagocytic winnowing mechanism in a coral-dinoflagellate mutualism. Environ Microbiol, 11(1), 268-276. doi:10.1111/j.1462-2920.2008.01774.x
Gabay, Y., Parkinson, J. E., Wilkinson, S. P., Weis, V. M., Davy, S. K. (2019). Inter-partner specificity limits the acquisition of thermotolerant symbionts in a model cnidarian-dinoflagellate symbiosis. ISME J, 13(10), 2489-2499. doi:10.1038/s41396-019-0429-5
Gegner, H. M., Ziegler, M., Radecker, N., Buitrago-Lopez, C., Aranda, M., & Voolstra, C. R. (2017). High salinity conveys thermotolerance in the coral model Aiptasia. Biol Open, 6(12), 1943-1948. doi:10.1242/bio.028878
Grajales, A., & Rodriguez, E. (2014). Morphological revision of the genus Aiptasia and the family Aiptasiidae (Cnidaria, Actiniaria, Metridioidea). Zootaxa, 3826(1), 55-100. doi:10.11646/zootaxa.3826.1.2
Hawkins, T. D., Hagemeyer, J. C., Hoadley, K. D., Marsh, A. G., & Warner, M. E. (2016). Partitioning of Respiration in an Animal-Algal Symbiosis: Implications for Different Aerobic Capacity between Symbiodinium spp. Front Physiol, 7, 128. doi:10.3389/fphys.2016.00128
Hoegh-Guldberg, Ove, J. C. O., & Dove, S. (2011). The Future of Coral Reefs. Science, 334(6062 ), 1494-1495. doi:10.1126/science.334.6062.1494-b
Hughes, T. P., Kerry, J. T., Alvarez-Noriega, M., Alvarez-Romero, J. G., Anderson, K. D., Baird, A. H., & Wilson, S. K. (2017). Global warming and recurrent mass bleaching of corals. Nature, 543(7645), 373-377. doi:10.1038/nature21707
Imbs, A. B., Yakovleva, I. M., Dautova, T. N., Bui, L. H., & Jones, P (2014). Diversity of fatty acid composition of symbiotic dinoflagellates in corals: evidence for the transfer of host PUFAs to the symbionts. Phytochemistry, 101, 76-82. doi:10.1016/j.phytochem.2014.02.012
Kinzie, R. A., 3rd, & Chee, G. S. (1979). The effect of different zooxanthellae on the growth of experimentally reinfected hosts. Biol Bull, 156(3), 315-327. doi:10.2307/1540920
Kitchen, S. A., Poole, A. Z., & Weis, V. (2017). Sphingolipid Metabolism of a Sea Anemone Is Altered by the Presence of Dinoflagellate Symbionts. Biological Bulletin, 233(3), 242–254. doi:https://doi.org/10.1086/695846
Kopp, C., Domart-Coulon, I., Escrig, S., Humbel, B. M., Hignette, M., & Meibom, A. (2015). Subcellular investigation of photosynthesis-driven carbon assimilation in the symbiotic reef coral Pocillopora damicornis. MBio, 6(1). doi:10.1128/mBio.02299-14
Lachs, L., & Oñate-Casado, J. (2020). Fisheries and Tourism: Social, Economic, and Ecological Trade-offs in Coral Reef Systems. In YOUMARES 9-The Oceans: Our Research, Our Future (pp. 243-260): Springer, Cham.
Lajeunesse, T. C., Parkinson, J. E., & Reimer, J. D. (2012). A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (Dinophyceae), two dinoflagellates symbiotic with cnidaria. J Phycol, 48(6), 1380-1391. doi:10.1111/j.1529-8817.2012.01217.x
Leal, M. C., Hoadley, K., Pettay, D. T., Grajales, A., Calado, R., & Warner, M. E. (2015). Symbiont type influences trophic plasticity of a model cnidarian-dinoflagellate symbiosis. J Exp Biol, 218(Pt 6), 858-863. doi:10.1242/jeb.115519
Lehnert, E. M., Mouchka, M. E., Burriesci, M. S., Gallo, N. D., Schwarz, J. A., & Pringle, J. R. (2014). Extensive differences in gene expression between symbiotic and aposymbiotic cnidarians. G3 (Bethesda), 4(2), 277-295. doi:10.1534/g3.113.009084
Leão, Z. M. A. N., Kikuchi, R. K. P., Ferreira, B. P., Neves, E. G., Sovierzoski, H. H., Oliveira, M. D. M., & Johnsson, R. (2016). Brazilian coral reefs in a period of global change: A synthesis. Brazilian Journal of Oceanography, 64(spe2), 97-116. doi:10.1590/S1679-875920160916064sp2
Li, Y., Liew, Y. J., Cui, G., Cziesielski, M. J., Zahran, N., Michell, C. T., & Aranda, M. (2018). DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia. Science advances, 4(8). doi:10.1126/sciadv.aat2142
Lin, K.-L., Jih-Terng Wang, and Lee-Shing Fang. (2000). Participation of glycoproteins on zooxanthellal cell walls in the establishment of a symbiotic relationship with the sea anemone, Aiptasia pulchella. Zoological Studies, 39.3, 172-178.
Loram, J. E., Trapido-Rosenthal, H. G., & Douglas, A. E. (2007). Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis. Mol Ecol, 16(22), 4849-4857. doi:10.1111/j.1365-294X.2007.03491.x
Mansfield, K. M., Carter, N. M., Nguyen, L., Cleves, P. A., Alshanbayeva, A., Williams, L. M., & Gilmore, T. D. (2017). Transcription factor NF-kappaB is modulated by symbiotic status in a sea anemone model of cnidarian bleaching. Sci Rep, 7(1), 16025. doi:10.1038/s41598-017-16168-w
Markell, D. A., & Wood-Charlson, E. M. (2010). Immunocytochemical evidence that symbiotic algae secrete potential recognition signal molecules in hospite. Marine Biology, 157(5), 1105-1111. doi:10.1007/s00227-010-1392-x
Matthews, J. L., Crowder, C. M., Oakley, C. A., Lutz, A., Roessner, U., Meyer, E., & Davy, S. K. (2017). Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proc Natl Acad Sci U S A, 114(50), 13194-13199. doi:10.1073/pnas.1710733114
Matthews, J. L., Oakley, C. A., Lutz, A., Hillyer, K. E., Roessner, U., Grossman, A. R., & Davy, S. K. (2018). Partner switching and metabolic flux in a model cnidarian-dinoflagellate symbiosis. Proc Biol Sci, 285(1892). doi:10.1098/rspb.2018.2336
Mazzillo Mays, M., & Kempf, S. C. (2014). Antigenic variation in mucilage secreted by members of the genus Symbiodinium (Dinophyceae). J Phycol, 50(5), 850-859. doi:10.1111/jpy.12215
Mohamed, A. R., Andrade, N., Moya, A., Chan, C. X., Negri, A. P., Bourne, D. G., & Miller, D. J. (2019). Transcriptomic insights into the establishment of coral-algal symbioses from the symbiont perspective. BioRxiv. doi:10.1101/652131
Mohamed, A. R., Cumbo, V., Harii, S., Shinzato, C., Chan, C. X., Ragan, M. A., & Miller, D. J. (2016). The transcriptomic response of the coral Acropora digitifera to a competent Symbiodinium strain: the symbiosome as an arrested early phagosome. Mol Ecol, 25(13), 3127-3141. doi:10.1111/mec.13659
necroappetens LaJeunesse, S., Lee, S. Y., & Knowlton, N. Data S1: Systematic Revision of the Family Symbiodiniaceae.
Neubauer, E. F., Poole, A. Z., Neubauer, P., Detournay, O., Tan, K., Davy, S. K., & Weis, V. M. (2017). A diverse host thrombospondin-type-1 repeat protein repertoire promotes symbiont colonization during establishment of cnidarian-dinoflagellate symbiosis. Elife, 6. doi:10.7554/eLife.24494
Ngugi, D. K., Ziegler, M., Duarte, C. M., & Voolstra, C. R. (2020). Genomic Blueprint of Glycine Betaine Metabolism in Coral Metaorganisms and Their Contribution to Reef Nitrogen Budgets. iScience, 23(5), 101120. doi:10.1016/j.isci.2020.101120
Nunez-Pons, L., Bertocci, I., & Baghdasarian, G. (2017). Symbiont dynamics during thermal acclimation using cnidarian-dinoflagellate model holobionts. Mar Environ Res, 130, 303-314. doi:10.1016/j.marenvres.2017.08.005
Oakley, C. A., Ameismeier, M. F., Peng, L., Weis, V. M., Grossman, A. R., & Davy, S. K. (2016). Symbiosis induces widespread changes in the proteome of the model cnidarian Aiptasia. Cell Microbiol, 18(7), 1009-1023. doi:10.1111/cmi.12564
Oppen, M. J. H. v., Mahiny, A. J., & Done, T. J. (2005). Geographic distribution of zooxanthella types in three coral species on the Great Barrier Reef sampled after the 2002 bleaching event. Coral Reefs, 24(3), 482-487. doi:10.1007/s00338-005-0487-1
Pardy, R. H. M. a. R. L. (1980). Quantitative demonstration of cell surface involvement in a plant-animal symbiosis: lectin inhibition of reassociation.pdf. Journal of Cell Science, 43(1), 239-251.
Parkinson, J. E., Tivey, T. R., Mandelare, P. E., Adpressa, D. A., Loesgen, S., & Weis, V. M. (2018). Subtle Differences in Symbiont Cell Surface Glycan Profiles Do Not Explain Species-Specific Colonization Rates in a Model Cnidarian-Algal Symbiosis. Front Microbiol, 9, 842. doi:10.3389/fmicb.2018.00842
Paul, D., Achouri, S., Yoon, Y. Z., Herre, J., Bryant, C. E., & Cicuta, P. (2013). Phagocytosis dynamics depends on target shape. Biophys J, 105(5), 1143-1150. doi:10.1016/j.bpj.2013.07.036
Paxton, C. W., Davy, S. K., & Weis, V. M. (2013). Stress and death of cnidarian host cells play a role in cnidarian bleaching. J Exp Biol, 216(Pt 15), 2813-2820. doi:10.1242/jeb.087858
Peng, S. E., Chen, C. S., Song, Y. F., Huang, H. T., Jiang, P. L., Chen, W. N., & Lee, Y. C. (2012). Assessment of metabolic modulation in free-living versus endosymbiotic Symbiodinium using synchrotron radiation-based infrared microspectroscopy. Biol Lett, 8(3), 434-437. doi:10.1098/rsbl.2011.0893
Peng, S. E., Moret, A., Chang, C., Mayfield, A. B., Ren, Y. T., Chen, W. U., & Chen, C. S. (2020). A shift away from mutualism under food-deprived conditions in an anemone-dinoflagellate association. PeerJ, 8, e9745. doi:10.7717/peerj.9745
Peng, S. E., Wang, Y. B., Wang, L. H., Chen, W. N., Lu, C. Y., Fang, L. S., & Chen, C. S. (2010). Proteomic analysis of symbiosome membranes in Cnidaria-dinoflagellate endosymbiosis. Proteomics, 10(5), 1002-1016. doi:10.1002/pmic.200900595
Pochon, X., & Gates, R. D. (2010). A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai'i. Mol Phylogenet Evol, 56(1), 492-497. doi:10.1016/j.ympev.2010.03.040
Pochon, X. L., T. C. Pawlowski, J. (2004). Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Marine Biology, 146(1), 17-27. doi:10.1007/s00227-004-1427-2
Poole, A. Z., Kitchen, S. A., & Weis, V. M. (2016). The Role of Complement in Cnidarian-Dinoflagellate Symbiosis and Immune Challenge in the Sea Anemone Aiptasia pallida. Front Microbiol, 7, 519. doi:10.3389/fmicb.2016.00519
Radecker, N., Raina, J. B., Pernice, M., Perna, G., Guagliardo, P., Kilburn, M. R., & Voolstra, C. R. (2018). Using Aiptasia as a Model to Study Metabolic Interactions in Cnidarian-Symbiodinium Symbioses. Front Physiol, 9, 214. doi:10.3389/fphys.2018.00214
Rowan, R. O. B., & Powers, D. A. (1991a). A Molecular Genetic Classification of Zooxanthellae and the Evolution of Animal-Algal Symbioses. Science, 251(4999), 1348-1351. doi:https://doi.org/10.1126/science.251.4999.1348
Rowan, R. O. B., & Powers, D. A. (1991b). Molecular genetic identification of symbiotic dinoflagellates(zooxanthellae). Marine ecology progress series. Oldendorf, 71(1), 65-73.
Rodriguez-Lanetty, M., Wood-Charlson, E. M., Hollingsworth, L. L., Krupp, D. A., & Weis, V. M. (2006). Temporal and spatial infection dynamics indicate recognition events in the early hours of a dinoflagellate/coral symbiosis. Marine Biology, 149(4), 713-719. doi:10.1007/s00227-006-0272-x
Rodriguez, A., Rodriguez, M., Cordoba, J. J., & Andrade, M. J. (2015). Design of primers and probes for quantitative real-time PCR methods. Methods Mol Biol, 1275, 31-56. doi:10.1007/978-1-4939-2365-6_3
Schnitzler, C. E., & Weis, V. M. (2010). Coral larvae exhibit few measurable transcriptional changes during the onset of coral-dinoflagellate endosymbiosis. Mar Genomics, 3(2), 107-116. doi:10.1016/j.margen.2010.08.002
Silverstein, R. N., Cunning, R., & Baker, A. C. (2015). Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Glob Chang Biol, 21(1), 236-249. doi:10.1111/gcb.12706
Sorek, M., Schnytzer, Y., Waldman Ben-Asher, H., Caspi, V. C., Chen, C. S., Miller, D. J., & Levy, O. (2018). Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium. Microbiome, 6(1), 83. doi:10.1186/s40168-018-0465-9
Stat, M., Bird, C. E., Pochon, X., Chasqui, L., Chauka, L. J., Concepcion, G. T., & Gates, R. D. (2011). Variation in Symbiodinium ITS2 sequence assemblages among coral colonies. PLoS One, 6(1), e15854. doi:10.1371/journal.pone.0015854
Sunagawa, S., Choi, J., Forman, H. J., & Medina, M. (2008). Hyperthermic stress-induced increase in the expression of glutamate-cysteine ligase and glutathione levels in the symbiotic sea anemone Aiptasia pallida. Comp Biochem Physiol B Biochem Mol Biol, 151(1), 133-138. doi:10.1016/j.cbpb.2008.06.007
Sunagawa, S., Wilson, E. C., Thaler, M., Smith, M. L., Caruso, C., Pringle, J. R., & Schwarz, J. A. (2009). Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics, 10, 258. doi:10.1186/1471-2164-10-258
Thornhill, D. J., Xiang, Y., Pettay, D. T., Zhong, M., & Santos, S. R. (2013). Population genetic data of a model symbiotic cnidarian system reveal remarkable symbiotic specificity and vectored introductions across ocean basins. Mol Ecol, 22(17), 4499-4515. doi:10.1111/mec.12416
Verde, E. A., & McCloskey, L. R. (2007). A comparative analysis of the photobiology of zooxanthellae and zoochlorellae symbiotic with the temperate clonal anemone Anthopleura elegantissima (Brandt). III. Seasonal effects of natural light and temperature on photosynthesis and respiration. Marine Biology, 152(4), 775-792. doi:10.1007/s00227-007-0737-6
Voolstra, C. R., Schwarz, J. A., Schnetzer, J., Sunagawa, S., Desalvo, M. K., Szmant, A. M., & Medina, M. (2009). The host transcriptome remains unaltered during the establishment of coral-algal symbioses. Mol Ecol, 18(9), 1823-1833. doi:10.1111/j.1365-294X.2009.04167.x
Weis, V. M., Davy, S. K., Hoegh-Guldberg, O., Rodriguez-Lanetty, M., Pringle, J. R. (2008). Cell biology in model systems as the key to understanding corals. Trends Ecol Evol, 23(7), 369-376. doi:10.1016/j.tree.2008.03.004
Weizman, E., & Levy, O. (2019). The role of chromatin dynamics under global warming response in the symbiotic coral model Aiptasia. Commun Biol, 2, 282. doi:10.1038/s42003-019-0543-y
Wolfowicz, I., Baumgarten, S., Voss, P. A., Hambleton, E. A., Voolstra, C. R., Hatta, M., & Guse, A. (2016). Aiptasia sp. larvae as a model to reveal mechanisms of symbiont selection in cnidarians. Sci Rep, 6, 32366. doi:10.1038/srep32366
Wood-Charlson, E. M., Hollingsworth, L. L., Krupp, D. A., & Weis, V. M. (2006). Lectin/glycan interactions play a role in recognition in a coral/dinoflagellate symbiosis. Cell Microbiol, 8(12), 1985-1993. doi:10.1111/j.1462-5822.2006.00765.x
Yuyama, I., Ishikawa, M., Nozawa, M., Yoshida, M. A., & Ikeo, K. (2018). Transcriptomic changes with increasing algal symbiont reveal the detailed process underlying establishment of coral-algal symbiosis. Sci Rep, 8(1), 16802. doi:10.1038/s41598-018-34575-5

(此全文20260204後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *