帳號:guest(18.117.137.136)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:郭芝廷
作者(英文):Chih-Ting Kuo
論文名稱:冷凍保存對共生藻(Symbiodiniaceae)超微結構之影響研究
論文名稱(英文):Effect of cryopreservation on ultrastructure from the marine dinoflagellate Symbiodiniaceae
指導教授:林家興
指導教授(英文):Chia-Hsin Lin
口試委員:沈朋志
韓僑權
蔡淑君
林家興
口試委員(英文):Perng-Chih Shen
Chiao-Chuan Han
Su-June Tsai
Chia-Hsin Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610763005
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:55
關鍵詞:共生藻珊瑚兩段式冷凍保存超微結構抗凍劑
關鍵詞(英文):Symbiodiniaceaecoraltwo-step freezingultrastructurecryoprotectant
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
共生藻因與珊瑚有著不可或缺的共生關係,因此共生藻成為出於珊瑚保育為目的的低溫冷凍保存研究焦點。共生藻的低溫冷凍保存在空間以及經濟上具有長期的效益,不僅減少培養的污染及遺傳漂變,更可協助育種及保種。本研究利用本實驗室先前已發展之冷凍保存條件以及專利設計之兩段式冷凍保存法進行五種共生藻冷凍保存後,以穿透式電子顯微鏡探討共生藻的超微結構變化。本研究結果顯示,共生藻經由冷凍保存後其超微結構不論是從白鞭珊瑚分離的Gerakladium或是培養的Symbiodinium、Breviolum、Cladocopium與Durusdinium的共生藻其葉綠體皆出現約30~70%的破壞,葉綠體作為光合作用唯一場所參與許多其他代謝途徑,因此葉綠體被破壞會影響相關能量、脂質、色素、植物激素和許多其他代謝產物的合成;另外,以乙二醇作為抗凍劑的Symbiodinium與Cladocopium以及甲醇混合蔗糖作為抗凍劑的Gerakladiu經由冷凍保存後觀察到約5~16%細胞壁受損,推論細胞壁的破壞可能由抗凍劑、細胞內外冰晶或是冷凍時細胞密度過大所導致。此外,除了Symbiodinium以外的四種共生藻在解凍後有4~7%不規則的小泡顯著增生。但脂質、澱粉、澱粉核大小、細胞大小在經由冷凍保存後並無顯著差異,推測胞器在解凍後並不會立即出現型態上之變化,因此冷凍傷害對這些胞器是否產生影響需要經由解凍後的長期培養或是分子層次的測定來觀察。在超微結構的觀察下,新鮮分離的共生藻細胞與脂質的大小皆大於培養的共生藻,可能與珊瑚共生的共生藻受到宿主所影響,因此內部的能量會高於培養的共生藻。本實驗結果顯示Symbiodinium以甲醇、乙二醇;Breviolum以甲醇;Cladocopium以甲醇;Durusdinium以丙二醇、乙二醇配合兩段式冷凍法有著較佳的結果。本研究對未來共生藻冷凍保存的發展有實質上的幫助。
There is an inseparable symbiosis relationship between symbiotic algae and coral, therefore, symbiotic algae have become the focus of cryopreservation research for coral conservation. The cryopreservation of symbiotic algae has long-term benefits in terms of space and economy as it not only just reduces the pollution of the culture being preserved, but also genetic drifts within the culture. Additionally, it can assist in breeding and develop cryobank. In this study, five species of symbiotic algae were preserved using the cryopreservation conditions of symbiotic algae previously developed and the two-step freezing method patented by our lab. Following by observation of ultrastructural changes of the symbiotic algae were investigated using a transmission electron microscope (TEM). The result showed that the ultrastructure of symbiotic algae whether it was the fresh isolated, Gerakladium, separated from Junceella fragilis, or the cultured, Symbiodinium, Breviolum, Cladocopium, and Durusdinium all had 30 to 70% destruction in the chloroplast after freezing. As the organelle responsible for photosynthesis and the chloroplast participates in many other metabolic pathways, the destruction of chloroplasts in Symbiodiniaceae will affect related energy, lipids, pigment, hormone, and the synthesis of other metabolites. In addition, using ethylene glycol as a cryoprotectant for Symbiodinium and Cladocopium, and using methanol mixed with sucrose as a cryoprotectant for Gerakladium, after cryopreservation, it was discovered that around 5 to 16% of the cell wall was damaged. It is inferred that the damage to the cell wall might be caused by the cryoprotectant, intracellular and extracellular ice crystals, or excessive cell density while freezing. In addition, the four symbiotic algae other than Symbiodinium have 4 to 7% of irregular vesicles significantly proliferating after thawing. However, there is no significant difference in the morphology and size of lipid, starch, pyrenoid, and cell after cryopreservation. It is speculated that the organelle will not change in shape immediately after thawing. Accordingly, whether freezing damage affect these organelles will require long-term culture. Under the observation of the ultrastructural, the sizes of both freshly isolated symbiotic algae cells and lipids are larger than the cultured ones. It is possible the higher internal energy provided by the host. The results of showed that using methanol and ethylene glycol for Symbiodinium; methanol for Breviolum; methanol for Cladocopium; propylene glycol and ethylene glycol for Durusdinium as cryoprotectants resulted in the most successful cryopreservation. The results from this study will support future development of Symbiodiniaceae cryopreservation.
摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 IX
第一章 前言 1
1.1 珊瑚危機 1
1.2 共生藻與珊瑚的關係 1
1.3 共生藻細胞週期 3
1.4低溫生物學冷凍保存 4
1.5共生藻冷凍保存 6
1.6共生藻超微結構之研究現況 8
1.7藻類冷凍保存超微結構研究 13
1.8研究目的 16
第二章 材料與方法 17
2.1珊瑚採集 17
2.2珊瑚共生藻分離 18
2.3共生藻鑑種 18
2.4人工海水配置 18
2.5共生藻培養 19
2.6兩段式冷凍保存共生藻 20
2.7穿透式電子顯微鏡Transmission electron microscope (TEM) 21
2.7.1固定 21
2.7.2脫水 22
2.7.3滲透 22
2.7.4切片 22
2.7.5染片 22
2.7.6上機 23
2.8數據統計 25
第三章 結果與討論 27
3.1前言 27
3.2結果 29
3.3討論 32
3.4結論 35
參考文獻 47
Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. (2008). Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences, 105(45), 17442-17446.
Aray-Andrade, M. M., Uyaguari-Diaz, M. I. & Bermúdez, J. R. (2018). Short-term deleterious effects of standard isolation and cultivation methods on new tropical freshwater microalgae strains. PeerJ, 6, e5143.
Baker, A. C. (2003). Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annual Review of Ecology, Evolution, and Systematics, 34(1), 661-689.
Beaty, M. H. & Parker, B. C. (1992). Cryopreservation of eukarotic algae. Virginia Journal of Science, 43(4), 405-410.
Bianchi, V., Macchiarelli, G., Borini, A., Lappi, M., Cecconi, S., Miglietta, S., Familiari, G. & Nottola, S. A. (2014). Fine morphological assessment of quality of human mature oocytes after slow freezing or vitrification with a closed device: a comparative analysis. Reproductive Biology and Endocrinology, 12(1), 1-13.
Bilska-Kos, A., Solecka, D., Dziewulska, A., Ochodzki, P., Jończyk, M., Bilski, H. & Sowiński, P. (2017). Low temperature caused modifications in the arrangement of cell wall pectins due to changes of osmotic potential of cells of maize leaves (Zea mays L.). Protoplasma, 254(2), 713-724.
Bui, T. V. L., Ross, I. L., Jakob, G. & Hankamer, B. (2013). Impact of procedural steps and cryopreservation agents in the cryopreservation of chlorophyte microalgae. PLoS one, 8(11), e78668.
Chen, H. K., Wang, L. H., Chen, W. N. U., Mayfield, A. B., Levy, O., Lin, C. S. & Chen, C. S. (2017). Coral lipid bodies as the relay center interconnecting diel-dependent lipidomic changes in different cellular compartments. Scientific Reports, 7(1), 3244.
Chong, G., Kuo, F. W., Tsai, S. & Lin, C. (2017). Validation of reference genes for cryopreservation studies with the gorgonian coral endosymbiont Symbiodinium. Scientific Reports, 7(1), 39396.
Chong, G., Tsai, S. & Lin, C. (2016). Cryopreservation and its molecular impacts on microorganisms. Journal of the Fisheries Society of Taiwan, 43(4), 263-272.
Chong, G., Tsai, S. & Lin, C. (2016). Factors responsible for successful cryopreservation of algae. Journal of the Fisheries Society of Taiwan, 43(3), 153-162.
Chong, G., Tsai, S., Wang, L. H., Huang, C. Y. & Lin, C. (2016). Cryopreservation of the gorgonian endosymbiont Symbiodinium. Scientific Reports, 6(1), 18816.
Cirino, L., Wen, Z. H., Hsieh, K., Huang, C. L., Leong, Q. L., Wang, L. H., Chen, C. H., Daly, J., Tsai, S. & Lin, C. (2019). First instance of settlement by cryopreserved coral larvae in symbiotic association with dinoflagellates. Scientific Reports, 9(1), 18851.
Colly, N. J. & Trench, R. K. (1983). Selectivity in phagocytosis and persistence of symbiotic algae by the scyphistoma stage of the jellyfish Cassiopeia xamachana. Proceedings of the Royal Society of London. Series B, Biological Sciences, 219(1214), 61-82.
Colley, N. J. & Trench, R. K. (1985). Cellular events in the reestablishment of a symbiosis between a marine dinoflagellate and a coelenterate. Cell and Tissue Research, 239(1), 93-103.
Coticchio, G., Borini, A., Distratis, V., Maione, M., Scaravelli, G., Bianchi, V., Macchiarelli, G. & Nottola, S. A. (2010). Qualitative and morphometric analysis of the ultrastructure of human oocytes cryopreserved by two alternative slow cooling protocols. Journal of assisted reproduction and genetics, 27(4), 131-140.
Cunning, R., Muller, E. B., Gates, R. D. & Nisbet, R. M. (2017). A dynamic bioenergetic model for coral- Symbiodinium symbioses and coral bleaching as an alternate stable state. Journal of Theoretical Biology, 431, 49-62.
Dalton, S. J., Carroll, A. G., Sampayo, E., Roff, G., Harrison, P. L., Entwistle, K., Huang, Z., Salih, A. & Diamond, S. L. (2020). Successive marine heatwaves cause disproportionate coral bleaching during a fast phase transition from El Nino to La Nina. Science of the Total Environment, 715, 136951.
Day, J. G., Fleck, R. A. & Benson, E. E. (2000). Cryopreservation-recalcitrance in microalgae: novel approaches to identify and avoid cryo-injury. Journal of Applied Phycology, 12(3-5), 369-377.
Di Genio, S., Wang, L. H., Meng, P. J., Tsai, S. & Lin, C. (2020). “Symbio-Cryobank”: Toward the development of a cryogenic archive for the coral reef dinoflagellate symbiont symbiodiniaceae. Biopreservation and Biobanking. Doi: 10.1089/bio.2020.0071.
Diaz-Pulido, G., McCook, L. J., Dove, S., Berkelmans, R., Roff, G., Kline, D. I., Weeks, S., Evans, R. D., Willamson, D. H. & Hoegh-Guldberg, O. (2009). Doom and boom on a resilient reef: climate change, algal overgrowth and coral recovery. PloS one, 4(4), e5239.
Downs, C. A., McDougall, K. E., Woodley, C. M., Fauth, J. E., Richmond, R. H., Kushmaro, A., Gibb, S.W., Loya, Y., Ostrander, G. K. & Kramarsky-Winter, E. (2013). Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PLoS one, 8(12), e77173.
Downs, C. A., Kramarsky-Winter, E., Segal, R., Fauth, J., Knutson, S., Bronstein, O., Ciner, F. R., Jeger, R., Lichtenfeld, Y., Woodley, C. M., Pennington, P., Cadenas, K., Kushmaro, A. & Loya, Y. (2016). Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the US Virgin Islands. Archives of environmental contamination and toxicology, 70(2), 265-288.
Duprey, N. N., Yasuhara, M. & Baker, D. M. (2016). Reefs of tomorrow: eutrophication reduces coral biodiversity in an urbanized seascape. Global Change Biology, 22(11), 3550-3565.
Farmer, M. A., Fitt, W. K. & Trench, R. K. (2001). Morphology of the symbiosis between Corculum cardissa (mollusca: bivalvia) and Symbiodinium corculorum (dinophyceae). The Biological Bulletin, 200(3), 336-343.
Fernandes, M. S., Calsing, L. C. G., Nascimento, R. C., Santana, H., Morais, P. B., de Capdeville, G. & Brasil, B. S. (2019). Customized cryopreservation protocols for chlorophytes based on cell morphology. Algal Research, 38, 101402.
Fitt, W. K. & Trench, R. K. (1983). Endocytosis of the symbiotic dinoflagellate Symbiodinium microadriaticum freudenthal by endodermal cells of the scyphistomae of Cassiopeia xamachana and resistance of the algae to host digestion. Journal of Cell Science, 64(1), 195-212.
Fleck, R. A. (1998). Mechanisms of cell damage and recovery in cryopreserved freshwater protists. PhD Thesis, University of Abertay Dundee.
Franklin, D. J., Cedrés, C. M. M. & Hoegh-Guldberg, O. (2006). Increased mortality and photoinhibition in the symbiotic dinoflagellates of the Indo–Pacific coral Stylophora pistillata (Esper) after summer bleaching. Marine Biology, 149(3), 633-642.
Ginsburger-Vogel, T., Arbault, S. & Pérez, R. (1992). Ultrastructural study of the effect of freezingthawing on the gametophyte of the brown alga Undaria pinnatifida. Aquaculture, 106(2), 171-181.
Hagedorn, M., Carter, V. L., Leong, J. C. & Kleinhans, F. W. (2010). Physiology and cryosensitivity of coral endosymbiotic algae (Symbiodinium). Cryobiology, 60(2), 147-158.
Hagedorn, M. & Carter, V. L. (2015). Seasonal preservation success of the marine dinoflagellate coral symbiont, Symbiodinium sp. PLoS one, 10(9), e0136358.
Heesch, S., Day, J. G., Yamagishi, T., Kawai, H., Müller, D. G. & Küpper, F. C. (2012). Cryopreservation of the model alga Ectocarpus (Phaeophyceae). CryoLetters, 33(5), 327-336.
Hill, L. J., Paradas, W. C., Willemes, M. J., Pereira, M. G., Salomon, P. S., Mariath, R., Moura, R. L., Atella, G. C., Farina, M., Amado-Filho, G. M. & Salgado, L. T. (2019). Acidification-induced cellular changes in Symbiodinium isolated from Mussismilia braziliensis. PLoS one, 14(8), e0220130.
Hubálek, Z. (2003). Protectants used in the cryopreservation of microorganisms. Cryobiology, 46(3), 205-229.
Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J. B. C., Kleypas, J., Lough, J. M., Marshall, P., Nyström, M., Palumbi, S. R., Pandolfi, J. M., Rosen, B. & Roughgarden, J. (2003). Climate change, human impacts, and the resilience of coral reefs. Science, 301(5635), 929-933.
Janská, A., Maršík, P., Zelenková, S. & Ovesná, J. (2010). Cold stress and acclimation - what is important for metabolic adjustment? Plant Biology, 12(3), 395-405.
Jiang, P. L., Pasaribu, B. & Chen, C. S. (2014). Nitrogen-deprivation elevates lipid levels in Symbiodinium spp. by lipid droplet accumulation: morphological and compositional analyses. PLoS one, 9(1), e87416.
Jimbo, M., Yanohara, T., Koike, K., Koike, K., Sakai, R., Muramoto, K. & Kamiya, H. (2000). The D-galactose-binding lectin of the octocoral Sinularia lochmodes: characterization and possible relationship to the symbiotic dinoflagellates. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 125(2), 227-236.
Karlsson, J. O. & Toner, M. (1996). Long-term storage of tissues by cryopreservation: critical issues. Biomaterials, 17(3), 243-256.
Kevin, M. J., Hall, W. T., McLaughlin, J. J. & Zahl, P. A. (1969). Symbiodinium microadriaticum freudenthal, a revised taxonomic description, ultrastructure. Journal of Phycology, 5(4), 341-350.
Kubicek, A., Breckling, B., Hoegh-Guldberg, O. & Reuter, H. (2019). Climate change drives trait-shifts in coral reef communities. Scientific Reports, 9(1), 3721.
LaJeunesse, T. C., Parkinson, J. E., Gabrielson, P. W., Jeong, H. J., Reimer, J. D., Voolstra, C. R. & Santos, S. R. (2018). Systematic revision of symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Current Biology, 28(16), 2570-2580.
Le Gall, H., Philippe, F., Domon, J. M., Gillet, F., Pelloux, J. & Rayon, C. (2015). Cell wall metabolism in response to abiotic stress. Plants, 4(1), 112-166.
Lin, C. & Tsai, S. (2012). The effect of chilling and cryoprotectants on hard coral (Echinopora spp.) oocytes during short-term low temperature preservation. Theriogenology, 77(6), 1257-1261.
Lin, C. & Tsai, S. (2020). Fifteen years of coral cryopreservation. Platax, 17, 53-75.
Lin, C., Thongpoo, P., Juri, C., Wang, L. H., Meng, P. J., Kuo, F. W. & Tsai, S. (2019). Cryopreservation of a thermotolerant lineage of the coral reef dinoflagellate Symbiodinium. Biopreservation and Biobanking, 17(6), 520-529.
Lin, C., Wang, L. H., Fan, T. Y. & Kuo, F. W. (2012). Lipid content and composition during the oocyte development of two gorgonian coral species in relation to low temperature preservation. PLoS one, 7(7), e38689.
Lin, C., Zhang, T., Kuo, F. W. & Tsai, S. (2011). Gorgonian coral (Junceella juncea and Junceella fragilis) oocyte chilling sensitivity in the context of adenosine triphosphate response (ATP). Cryoletters, 32(2), 141-148.
Liu, X., Zhou, Y., Xiao, J. & Bao, F. (2018). Effects of chilling on the structure, function and development of chloroplasts. Frontiers in Plant Science, 9, 1715.
Lohr, J., Munn, C. B. & Wilson, W. H. (2007). Characterization of a latent virus-like infection of symbiotic zooxanthellae. Applied and Environmental Microbiology, 73(9), 2976-2981.
Mahajan, S. & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444(2), 139-158.
Mayfield, A. B., Tsai, S. & Lin, C. (2019). The Coral Hospital. Biopreservation and Biobanking, 17(4), 355-369.
McAuley, P. J. (1985). The cell cycle of symbiotic Chlorella. I. The relationship between host feeding and algal cell growth and division. Journal of Cell Science, 77(1), 225-239.
McLellan, M. R. (1989). Cryopreservation of diatoms. Diatom research, 4(2), 301-318.
Morris, G. J. & Watson, P. F. (1984). Cold shock injury--a comprehensive bibliography. CryoLetter, 5(6), 352-372.
Motham, M., Peerapornpisal, Y., Tongsriri, S., Pumas, C., & Vacharapiyasophon, P. (2012). High subzero temperature preservation of spirulina platensis (Arthrospira fusiformis) and its ultrastucture. Chiang Mai Journal of Science, 39(4), 554-561.
Nash, T. (1962). The chemical constitution of compounds which protect erythrocytes against freezing damage. The Journal of general physiology, 46(1), 167-175.
Ninagawa, T., Eguchi, A., Kawamura, Y., Konishi, T. & Narumi, A. (2016). A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera. Cryobiology, 73(1), 20-29.
Nottola, S. A., Coticchio, G., De Santis, L., Macchiarelli, G., Maione, M., Bianchi, S., Laccarino, M., Flamigni, C. & Borini, A. (2008). Ultrastructure of human mature oocytes after slow cooling cryopreservation with ethylene glycol. Reproductive biomedicine online, 17(3), 368-377.
Oliveira-Almeida, I. R., Buzollo, H., da Silva Costa, R., Veríssimo-Silveira, R., Porto-Foresti, F. & Ninhaus-Silveira, A. (2015). Structural analysis of embryogenesis of Leiarius marmoratus (Siluriformes: Pimelodidae). Zygote, 23(5), 742.
Parrotta, L., Faleri, C., Guerriero, G. & Cai, G. (2019). Cold stress affects cell wall deposition and growth pattern in tobacco pollen tubes. Plant Science, 283, 329-342.
Pasaribu, B., Weng, L. C., Lin, I. P., Camargo, E., Tzen, J. T., Tsai, C. H., Ho, S. L., Lin, M. R., Wang, L. H., Chen, C. H. & Jiang, P. L. (2015). Morphological variability and distinct protein profiles of cultured and endosymbiotic Symbiodinium cells isolated from Exaiptasia pulchella. Scientific Reports, 5(1), 15353.
Pearce, R. S. (1999). Molecular analysis of acclimation to cold. Plant growth regulation, 29(1-2), 47-76.
Pegg, D. E. (2015). Principles of cryopreservation. In Cryopreservation and freeze drying protocols. Springer, 3-19.
Piasecki, B. P., Diller, K. R. & Brand, J. J. (2009). Cryopreservation of Chlamydomonas reinhardtii: a cause of low viability at high cell density. Cryobiology, 58(1), 103-109.
Pochon, X. & Gates, R. D. (2010). A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Molecular Phylogenetics and Evolution, 56(1), 492-497.
Prieto, M. T., Sanchez-Calabuig, M. J., Hildebrandt, T. B., Santiago-Moreno, J. & Saragusty, J. (2014). Sperm cryopreservation in wild animals. European journal of wildlife research, 60(6), 851-864.
Rajashekar, C. B., & Lafta, A. (1996). Cell-wall changes and cell tension in response to cold acclimation and exogenous abscisic acid in leaves and cell cultures. Plant Physiology, 111(2), 605-612.
Remias, D., Pichrtová, M., Pangratz, M., Lütz, C. & Holzinger, A. (2016). Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow. FEMS Microbiology Ecology, 92(4), 1-12.
Rhodes, L., Smith, J., Tervit, R., Roberts, R., Adamson, J., Adams, S. & Decker, M. (2006). Cryopreservation of economically valuable marine micro-algae in the classes Bacillariophyceae, Chlorophyceae, Cyanophyceae, Dinophyceae, Haptophyceae, Prasinophyceae, and Rhodophyceae. Cryobiology, 52(1), 152-156.
Rosset, S., Wiedenmann, J., Reed, A. J. & D’Angelo, C. (2017). Phosphate deficiency promotes coral bleaching and is reflected by the ultrastructure of symbiotic dinoflagellates. Marine Pollution Bulletin, 118(1-2), 180-187.
Sandin, S. A., Smith, J. E., DeMartini, E. E., Dinsdale, E. A., Donner, S. D., Friedlander, A. M., Konotchick, T., Malay, M., Maragos, J. E., Obura, D., Pantos, O., Paulay, G., Richie, M., Rohwer, F., Schroeder, R. E., Walsh, S., Jackson, J. B. C., Knowlton, N. & Sala, E. (2008). Baselines and degradation of coral reefs in the Northern Line Islands. PloS one, 3(2), e1548.
Santiago-Vázquez, L. Z., Newberger, N. C. & Kerr, R. G. (2007). Cryopreservation of the dinoflagellate symbiont of the octocoral Pseudopterogorgia elisabethae. Marine biology, 152(3), 549-556.
Santos, S. R., Taylor, D. J., Kinzie Iii, R. A., Hidaka, M., Sakai, K. & Coffroth, M. A. (2002). Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Molecular phylogenetics and evolution, 23(2), 97-111.
Schwarz, J. A. & Weis, V. M. (2003). Localization of a symbiosis-related protein, sym32, in the Anthopleura elegantissima–Symbiodinium muscatinei Association. The Biological Bulletin, 205(3), 339-350.
Seo, S. Y., Hwang, S. J. & Song, J. I. (2008). Sexual reproduction of Anthoplexaura dimorpha (Gorgonacea: Octocorallia) from Munseom, Jejudo islands, Korea. Animal Cells and Systems, 12(4), 231-240.
Silverstein, R. N., Cunning, R. & Baker, A. C. (2015). Change in algal symbiont communities after bleaching, not prior heat exposure, increases heat tolerance of reef corals. Global Change Biology, 21(1), 236-249.
Slavov, C., Schrameyer, V., Reus, M., Ralph, P. J., Hill, R., Büchel, C., Larkum, A. W. & Holzwarth, A. R. (2016). “Super-quenching” state protects Symbiodinium from thermal stress—implications for coral bleaching. Biochimica Et Biophysica Acta (BBA)-Bioenergetics, 1857(6), 840-847.
Soffer, N., Brandt, M. E., Correa, A. M., Smith, T. B. & Thurber, R. V. (2014). Potential role of viruses in white plague coral disease. The ISME journal, 8(2), 271-283.
Steiner, P., Obwegeser, S., Wanner, G., Buchner, O., Lütz-Meindl, U. & Holzinger, A. (2020). Cell wall reinforcements accompany chilling and freezing stress in the streptophyte green alga Klebsormidium crenulatum. Frontiers in plant science, 11, 873.
Taylor, R. & Fletcher, R. L. (1999). Cryopreservation of eukaryotic algae – a review of methodologies. Journal of Applied Phycology, 10(5), 481-501.
Tchernov, D., Gorbunov, M. Y., De Vargas, C., Yadav, S. N., Milligan, A. J., Häggblom, M. & Falkowski, P. G. (2004). Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proceedings of the National Academy of Sciences, 101(37), 13531-13535.
Tchernov, D., Kvitt, H., Haramaty, L., Bibby, T. S., Gorbunov, M. Y., Rosenfeld, H. & Falkowski, P. G. (2011). Apoptosis and the selective survival of host animals following thermal bleaching in zooxanthellate corals. Proceedings of the National Academy of Sciences, 108(24), 9905-9909.
Thongpoo, P., Tsai, S. & Lin, C. (2019). Assessing the impacts of cryopreservation on the mitochondria of a thermotolerant Symbiodinium lineage: Implications for reef coral conservation. Cryobiology, 89, 96-99.
Trumhová, K., Holzinger, A., Obwegeser, S., Neuner, G. & Pichrtová, M. (2019). The conjugating green alga Zygnema sp. (Zygnematophyceae) from the Arctic shows high frost tolerance in mature cells (pre-akinetes). Protoplasma, 256(6), 1681-1694.
Tsai, S. & Lin, C. (2012). Advantages and applications of cryopreservation in fisheries science. Brazilian archives of biology and technology, 55(3), 425-434.
Tsai, S., Spikings, E., Kuo, F. W., Lin, N. C. & Lin, C. (2010). Use of an adenosine triphosphate assay, and simultaneous staining with fluorescein diacetate and propidium iodide, to evaluate the effects of cryoprotectants on hard coral (Echinopora spp.) oocytes. Theriogenology, 73(5), 605-611.
Tsai, S., Chong, G., Meng, P. J., & Lin, C. (2017). Sugars as supplemental cryoprotectants for marine organisms. Reviews in Aquaculture, 10(3), 703-715.
Tsai, S., Jhuang, Y., Spikings, E., Sung, P. J. & Lin, C. (2014). Ultrastructural observations of the early and late stages of gorgonian coral (Junceella juncea) oocytes. Tissue and Cell, 46(4), 225-232.
Tsai, S., Yang, V. & Lin, C. (2016). Comparison of the cryo-tolerance of vitrified gorgonian oocytes. Scientific Reports, 6(1), 23290.
Tsai, S., Yen, W., Chavanich, S., Viyakarn, V. & Lin, C. (2015). Development of cryopreservation techniques for gorgonian (Junceella juncea) oocytes through vitrification. PloS one, 10(5), e0123409.
Villanueva, M. A., Barnay-Verdier, S., Priouzeau, F. & Furla, P. (2015). Chloroplast and oxygen evolution changes in Symbiodinium sp. as a response to latrunculin and butanedione monoxime treatments under various light conditions. Photosynthesis research, 124(3), 305-313.
Viyakarn, V., Chavanich, S., Chong, G., Tsai, S. & Lin, C. (2018). Cryopreservation of sperm from the coral Acropora humilis. Cryobiology, 80, 130-138.
Wang, B., Zhang, E., Gu, Y., Ning, S., Wang, Q. & Zhou, J. (2011). Cryopreservation of brown algae gametophytes of Undaria pinnatifida by encapsulation–vitrification. Aquaculture, 317(1-4), 89-93.
Wang, L. H., Liu, Y. H., Ju, Y. M., Hsiao, Y. Y., Fang, L. S. & Chen, C. S. (2008). Cell cycle propagation is driven by light–dark stimulation in a cultured symbiotic dinoflagellate isolated from corals. Coral Reefs, 27(4), 823.
Wang, L. H., Chen, H. K., Jhu, C. S., Cheng, J. O., Fang, L. S. & Chen, C. S. (2015). Different strategies of energy storage in cultured and freshly isolated Symbiodinium sp. Journal of phycology, 51(6), 1127-1136.
Wang, L. & Jonikas, M. C. (2020). The pyrenoid. Current Biology, 30(10), 456-458.
Yang, D. & Li, W. (2016). Methanol-promoted lipid remodelling during cooling sustains cryopreservation survival of Chlamydomonas reinhardtii. PloS one, 11(1), e0146255.
Zelazowska, M. (2014). Ultrastructure and histochemistry of the periplasm in oocytes of sturgeons during egg envelope formation. Folia Biologica, 62(4), 377-385.
呂佳琳 (2019)。冷凍保存對共生藻(Symbiodinium sp.)蛋白質表現之影響研究。國立東華大學碩士論文。1-78頁。
莊雅婷 (2012)。低溫保存對柳珊瑚(Junceella juncea) 卵母細胞超微結構之影響。國立東華大學碩士論文。1-84頁。
趙怡穎 (2017)。柳珊瑚內共生藻玻璃化與可程式冷凍保存。國立東華大學碩士論文。1-70頁。
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *