帳號:guest(3.147.51.64)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:黃宴稜
作者(英文):Yan-Leng Huang
論文名稱:尖枝鹿角珊瑚的生理表現受異營餵食強化較光照強度強
論文名稱(英文):Physiological performance of Pocillopora acuta is enhanced more by heterotrophic feeding than light intensity
指導教授:樊同雲
指導教授(英文):Tung-Yung Fan
口試委員:劉莉蓮
劉弼仁
口試委員(英文):Li-Lian Liu
Pi-Jen Liu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610763008
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:43
關鍵詞:尖枝鹿角珊瑚異營餵食光照強度生長率顏色最大光亮子產量異地水產養殖
關鍵詞(英文):Pocillopora acutaHeterotrophic feedingLight intensityGrowth rateMaximal photochemical yieldColorEx situ aquaculture
相關次數:
  • 推薦推薦:0
  • 點閱點閱:9
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
珊瑚能夠同時經由自營和異營作用中獲得營養,但此二作用對珊瑚生理表現的個別和共同影響瞭解得有限。本研究在完全人工環境下,將尖枝鹿角珊瑚(Pocillopora acuta)養殖在人工海水的再循環式水產養殖系統中,進行三種光照強度(高光、中光和低光分別為250、157和105 μmol photons m-2s-1),和有無餵食豐年蝦(42.7 ind/ml,每週三次,每次4小時)的處理。珊瑚養殖140天,養殖缸水質良好且分枝的存活率為100%,結果顯示光照強度與有無餵食顯著影響分枝的浮力重量、線性生長與顏色分數,且無交互作用。特定生長速率在高光有餵與中光有餵組相似,而高光有餵組顯著大於其餘組別,是其1.1-2.5倍。有餵組的顏色分數顯著高於無餵組。最大光亮子產量僅受有無餵食顯著影響,且僅在高光無餵組顯著下降。因此,主動與密集的餵食比光照強度更能強化尖枝鹿角珊瑚的生理表現,這些結果可應用於優化尖枝鹿角珊瑚在異地水產養殖的效益。
Corals can obtain nutrition through both autotrophic and heterotrophic effects, but the research as a two-factor has limited understanding. In this study, Pocillopora acuta was cultured in a recirculating aquaculture system using artificial seawater in a completely artificial environment, and perform three light intensities (high light, medium light and low light were 250 , 157, 105 μmol photons m-2s-1, respectively) , with or without feeding Artimia nauplii (42.7 ind/ml, 3 times a week, 4 hours each time). Within 140 days of cultivation, the water quality of the cultivation tank was good and the survival rate of the branches was 100%. The results show that light intensity and feeding significantly affect the buoyancy weight, linear growth and color score of the branches, and there is no interaction. The specific growth rate was similar in the high- and medium-light with feeding groups, and the high-lighting feeding group was significantly larger than the rest of the groups, which was 1.1-2.5 times. The color score of the feeding group was significantly higher than that of the non-feeding group. The maximal photochemical yield was only significantly affected by feeding, and only decreased significantly in the high-lighting non-feeding group. Therefore, active and intensive feeding can enhance the physiological performance of Pocillopora acuta more than light intensity. These results can be applied to optimize the benefits of Pocillopora acuta in ex-situ aquaculture.
摘要 i
Abstract iii
表目錄 vii
圖目錄 ix
壹、前言 1
1.1 珊瑚的價值 1
1.2 異地珊瑚水產養殖系統 1
1.3 珊瑚的生理表現 2
1.4 尖枝鹿角珊瑚與養殖相關研究 3
1.5 研究目的 3
貳、材料與方法 5
2.1 實驗物種及採樣地點 5
2.2 分枝製作 5
2.3 再循環式水產養殖系統設置與維護 5
2.4 光照強度處理 6
2.5 異營餵食處理 6
2.6 分枝重量測量 7
2.7 分枝線性生長 7
2.8 分枝最大量子產量 8
2.9 分枝顏色變化 8
2.10 統計分析 8
參、結果 11
3.1 養殖環境參數 11
3.2 存活與生長 11
3.3 線性生長 12
3.4 最大光亮子產量 13
3.5 顏色變化 13
肆、討論 15
4.1 珊瑚養殖系統的優缺點 15
4.2 異營餵食對於生理表現的影響 15
4.2-1 生長 15
4.2-2 餌料與餵食 17
4.3 光與餵食對分枝的最大光亮子產量和顏色變化 18
伍、結論 19
陸、未來值得研究的問題 21
柒、參考文獻 23




張台奇 (2019) 。培養系統、光強度和流速對藍綠肉質軟珊瑚生理表現的影響。東華大學海洋生物多樣性及演化學系碩士論文。臺灣。
葉宗旻 (2019) 。以藍光和異營餵食優化兩種軸孔珊瑚的生長與色彩。東華大學海洋生物多樣性及演化學系碩士論文。臺灣。
戴昌鳳、秦啟翔,鄭安怡 (2013)。東沙珊瑚生態圖鑑。海洋國家公園管理處。臺灣。
Aihara, Y., Maruyama, S., Baird, A. H., Iguchi, A., TakahashI, S., & Minagawa, J. (2019). Green fluorescence from cnidarian hosts attracts symbiotic algae. Proceedings of the National Academy of Sciences of the United States of America, 116, 2118-2123.
Borell, E. M., & Bischof, K. (2008). Feeding sustains photosynthetic quantum yield of a scleractinian coral during thermal stress. Oecologia, 157(4), 593-601.
Bramanti, L., Iannelli, M., Fan, T. Y., & Edmunds, P. J. (2015). Using demographic models to project the effects of climate change on scleractinian corals: Pocillopora damicornis as a case study. Coral Reefs, 34(2), 505-515.
Burmester, E. M., Breef-Pilz, A., Lawrence, N. F., Kaufman, L., Finnerty, J. R., & Rotjan, R. D. (2018). The impact of autotrophic versus heterotrophic nutritional pathways on colony health and wound recovery in corals. EcologyEvolution, 8(22), 10805-10816.
Bellworthy, J., Spangenberg, J. E., & Fine, M. (2019). Feeding increases the number of offspring but decreases parental investment of Red Sea coral Stylophora pistillata. Ecology Evolution, 9(21), 12245-12258. doi:10.1002/ece3.5712
Borell, E. M., Yuliantri, A. R., Bischof, K., & Richter, C. (2008). The effect of heterotrophy on photosynthesis and tissue composition of two scleractinian corals under elevated temperature. Journal of Experimental Marine Biology and Ecology, 364(2), 116-123.
Craggs, J., Guest, J. R., Davis, M., Simmons, J., Dashti, E., & Sweet, M. (2017). Inducing broadcast coral spawning ex situ: Closed system mesocosm design and husbandry protocol. Ecology Evolution, 7(24), 11066-11078.
Conlan, J. A., Bay, L. K., Severati, A., Humphrey, C., & Francis, D. S. (2018). Comparing the capacity of five different dietary treatments to optimise growth and nutritional composition in two scleractinian corals. PLoS One, 13(11), e0207956.
D’Angelo, C., Smith, E. G., Oswald, F., Burt, J., Tchernov, D., & Wiedenmann, J. (2012). Locally accelerated growth is part of the innate immune response and repair mechanisms in reef-building corals as detected by green fluorescent protein (GFP)-like pigments. Coral Reefs, 31(4), 1045-1056.
Diniz, G. S., Barbarino, E., Oiano Neto, J., Pacheco, S., & Lourenço, S. O. (2014). Proximate composition of marine invertebrates from tropical coastal waters, with emphasis on the relationship between nitrogen and protein contents. Latin American Journal of Aquatic Research, 42(2), 332-352.
Forsman, Z. H., Kimokeo, B. K., Bird, C. E., Hunter, C. L., & Toonen, R. J. (2011). Coral farming: effects of light, water motion and artificial foods. Journal of the Marine Biological Association of the United Kingdom, 92(4), 721-729.
Houlbrèque, F., Tambutté, E., & Ferrier-Pagès, C. (2003). Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata. Journal of Experimental Marine Biology and Ecology, 296(2), 145-166.
Heidelberg, K. B., Sebens, K. P., & Purcell, J. E. (2004). Composition and sources of near reef zooplankton on a Jamaican forereef along with implications for coral feeding. Coral Reefs, 23(2).
Houlbreque, F., & Ferrier-Pages, C. (2009). Heterotrophy in tropical scleractinian corals. Biological Reviews, 84, 1–17.
Huntington, B. E., & Miller, M. W. (2014). Location-Specific Metrics for Rapidly Estimating the Abundance and Condition of the Threatened Coral Acropora cervicornis. Restoration Ecology, 22(3), 299-303.
Hoogenboom, M., Rottier, C., Sikorski, S., & Ferrier-Pages, C. (2015). Among-species variation in the energy budgets of reef-building corals: scaling from coral polyps to communities. Journal of Experimental Biology, 218(Pt 24), 3866-3877.
Imbs, A. B., Latyshev, N. A., Dautova, T. N., & Latypov, Y. Y. (2010). Distribution of lipids and fatty acids in corals by their taxonomic position and presence of zooxanthellae.Marine Ecology Progress series, 409, 65-75 .
Khalesi, M. K., Beeftink, H. H., & Wijffels, R. H. (2007). Flow-dependent growth in the zooxanthellate soft coral Sinularia flexibilis. Journal of Experimental Marine Biology and Ecology, 351(1-2), 106-113.
Knowlton, N., Brainard, R. E., Fisher, R., Moews, M., Plaisance, L. & Caley, M. J. (2010). Coral reef biodiversity. Life in the World’s Oceans – Diversity, Distribution, and Abundance(McIntyre,A.D.),65–78. Chichester:Wiley-Blackwell.
Kuanui, P., Chavanich, S., Viyakarn, V., Omori, M., Fujita, T., & Lin, C. (2020). Effect of light intensity on survival and photosynthetic efficiency of cultured corals of different ages. Estuarine, Coastal and Shelf Science, 235.
Kuanui, P., Chavanich, S., Viyakarn, V., Park, H. S., & Omori, M. (2016). Feeding behaviors of three tropical scleractinian corals in captivity. Tropical Zoology, 29(1), 1-9.
Leal, M. C., Calado, R., Sheridan, C., Alimonti, A., & Osinga, R. (2013). Coral aquaculture to support drug discovery. Trends Biotechnol, 31(10), 555-561.
Leal, M. C., Ferrier-Pagès, C., Petersen, D., & Osinga, R. (2014). Coral aquaculture: applying scientific knowledge to ex sit uproduction. Reviews in Aquaculture, 8(2), 136-153.
Levy, O., Karako-Lampert, S., Waldman Ben-Asher, H., Zoccola, D., Pages, G., & Ferrier-Pages, C. (2016). Molecular assessment of the effect of light and heterotrophy in the scleractinian coral Stylophora pistillata. Proceedings of the Royal Society , 283(1829).
Li, Y., Zheng, X., Yang, X., Ou, D., Lin, R., & Liu, X. (2017). Effects of live rock on removal of dissolved inorganic nitrogen in coral aquaria. Acta Oceanologica Sinica, 36(12), 87-94.
Lim, C.-S., Bachok, Z., & Hii, Y.-S. (2017). Effects of supplementary polyunsaturated fatty acids on the health of the scleractinian coral Galaxea fascicularis (Linnaeus, 1767). Journal of Experimental Marine Biology and Ecology, 491, 1-8.
Lizcano-Sandoval, L. D., Londoño-Cruz, E., & Zapata, F. A. (2018). Growth and survival of Pocillopora damicornis (Scleractinia: Pocilloporidae) coral fragments and their potential for coral reef restoration in the Tropical Eastern Pacific. Marine Biology Research, 14(8), 887-897.
Lyndby, N. H., Holm, J. B., Wangpraseurt, D., Ferrier-Pagès, C., & Kühl, M. (2019). Bio-optical properties and radiative energy budgets in fed and unfed scleractinian corals (Pocillopora sp.) during thermal bleaching. Marine Ecology Progress Series, 629, 1-17.
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence–a practical guide. Journal of Experimental Batony, 51, 659-668.
Mayfield, A. B., Fan, T. Y., & Chen, C. S. (2013). Physiological acclimation to elevated temperature in a reef-building coral from an upwelling environment. Coral Reefs, 32(4), 909-921.
Osinga, R., Schutter, M., Griffioen, B., Wijffels, R. H., Verreth, J. A., Shafir, S., Lavorano, S. (2011). The biology and economics of coral growth. Marine Biotechnology, 13(4), 658-671.
Osinga, R., Schutter, M., Wijgerde, T., Rinkevich, B., Shafir, S., Shpigel, M., . . . Laterveer, M. (2012). The CORALZOO project: a synopsis of four years of public aquarium science. Journal of the Marine Biological Association of the United Kingdom, 92(4), 753-768.
Palardy, J. E., Grottoli, A. G., & Matthews, K. A. (2006). Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the Eastern Pacific. Journal of Experimental Marine Biology and Ecology, 331(1), 99-107.
Petersen, D., Wietheger, A., & Laterveer, M. (2008). Influence of different food sources on the initial development of sexual recruits of reefbuilding corals in aquaculture. Aquaculture, 277(3-4), 174-178.
Rhyne, A. L., Tlusty, M. F., & Kaufman, L. (2012). Long-term trends of coral imports into the United States indicate future opportunities for ecosystem and societal benefits. Conservation Letters, 5(6), 478-485.
Rocha, J., Peixe, L., Gomes, N. C., & Calado, R. (2011). Cnidarians as a source of new marine bioactive compounds--an overview of the last decade and future steps for bioprospecting. Mar Drugs, 9(10), 1860-1886.
Rhyne AL, Tlusty MF, Kaufman L. 2012. Long-term trends of coral imports into the United States indicate future opportunities for ecosystem and societal benefits. Conserv Lett. 2012; 5: 478–485..
Rocha, R. J. M., Pimentel, T., Serôdio, J., Rosa, R., & Calado, R. (2013). Comparative performance of light emitting plasma (LEP) and light emitting diode (LED) in ex situ aquaculture of scleractinian corals. Aquaculture, 402-403, 38-45.
Rocha, R. J. M., Bontas, B., Cartaxana, P., Leal, M. C., Ferreira, J. M., Rosa, R., Calado, R. (2015). Development of a standardized modular system for experimental coral culture. Journal of the World Aquaculture Society, 46(3), 235-251.
Rocker, M. M., Francis, D. S., Fabricius, K. E., Willis, B. L., & Bay, L. K. (2017). Variation in the health and biochemical condition of the coral Acropora tenuis along two water quality gradients on the Great Barrier Reef, Australia. Marine Pollution Bulletin, 119(2), 106-119.
Siebeck, U. E., Marshall, N. J., Klüter, A., & Hoegh-Guldberg, O. (2006). Monitoring coral bleaching using a colour reference card. Coral Reefs, 25(3), 453-460.
Shaish, L., Abelson, A., & Rinkevich, B. (2007). How plastic can phenotypic plasticity be? The branching coral Stylophora pistillata as a model system. PLoS One, 2(7), e644.
Souter, P. (2009). Hidden genetic diversity in a key model species of coral. Marine Biology, 157(4), 875-885.
Schutter, M., Crocker, J., Paijmans, A., Janse, M., Osinga, R., Verreth, A. J., & Wijffels, R. H. (2010). The effect of different flow regimes on the growth and metabolic rates of the scleractinian coral Galaxea fascicularis. Coral Reefs, 29(3), 737-748.
Schutter, M., van der Ven, R. M., Janse, M., Verreth, J. A. J., Wijffels, R. H., & Osinga, R. (2011). Light intensity, photoperiod duration, daily light flux and coral growth of Galaxea fascicularis in an aquarium setting: a matter of photons? Journal of the Marine Biological Association of the United Kingdom, 92(4), 703-712.
Schmidt-Roach, S., Lundgren, P., Miller, K. J., Gerlach, G., Noreen, A. M. E., & Andreakis, N. (2012). Assessing hidden species diversity in the coral Pocillopora damicornis from Eastern Australia. Coral Reefs, 32(1), 161-172.
Schmidt-Roach, S., Miller, K. J., Lundgren, P., & Andreakis, N. (2014). With eyes wide open: a revision of species within and closely related to the Pocillopora damicornis species complex (Scleractinia; Pocilloporidae) using morphology and genetics. Zoological Journal of the Linnean Society, 170(1), 1-33.
Schrameyer, V., Krämer, W., Hill, R., Jeans, J., Larkum, A. W. D., Bischof, K., . . . Ralph, P. J. (2016). Under high light stress two Indo-Pacific coral species display differential photodamage and photorepair dynamics. Marine Biology, 163(8).
Schubert, P., & Wilke, T. (2018). Coral Microcosms: Challenges and Opportunities for Global Change Biology. In Corals in a Changing World.
Theodorsson-Norheim, E. (1986). Kruskal-Wallis test: BASIC computer program to perform nonparametric one-way analysis of variance and multiple comparisons on ranks of several independent samples. Computer methods and programs in biomedicine, 23(1), 57-62.
Toh, T. C., Peh, J. W. K., & Chou, L. M. (2013). Heterotrophy in recruits of the scleractinian coral Pocillopora damicornis. Marine and Freshwater Behaviour and Physiology, 46(5), 313-320. doi:10.1080/10236244.2013.832890
Toh, T. C., Ng, C. S., Peh, J. W., Toh, K. B., & Chou, L. M. (2014). Augmenting the post-transplantation growth and survivorship of juvenile scleractinian corals via nutritional enhancement. PLoS One, 9(6), e98529.
Towle, E. K., Enochs, I. C., & Langdon, C. (2015). Threatened Caribbean coral is able to mitigate the adverse effects of ocean acidification on calcification by increasing feeding rate. PLoS One, 10(4), e0123394.
Tagliafico, A., Rangel, S., Kelaher, B., & Christidis, L. (2018). Optimizing heterotrophic feeding rates of three commercially important scleractinian corals. Aquaculture, 483, 96-101.
Wabnitz C, Taylor M, Green E, Razak T (2003). From Ocean to Aquarium. Cambridge, UK: UNEP-WCMC. 64 p.
Wijgerde, T., Silva, C. I., Scherders, V., van Bleijswijk, J., & Osinga, R. (2014). Coral calcification under daily oxygen saturation and pH dynamics reveals the important role of oxygen. Biology Open, 3(6), 489-493.
Zheng, X., Li, Y., Chen, S., & Lin, R. (2018). Effects of calcium ion concentration on calcification rates of six stony corals: A mesocosm study. Aquaculture, 497, 246-252.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *