帳號:guest(3.129.25.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳鴻
作者(英文):Hong Chen
論文名稱:多環芳香烴於汙染水域中對塑膠微粒之吸附
論文名稱(英文):Adsorption of polycyclic aromatic hydrocarbons to microplastics in contaminated water
指導教授:柯風溪
指導教授(英文):Fung-Chi Ko
口試委員:謝季吟
周佩欣
陳德豪
柯風溪
口試委員(英文):Chi-Ying Hsieh
Pei-Hsin Chou
Te-Hou Chen
Fung-Chi Ko
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610763009
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:69
關鍵詞:多環芳香烴塑膠微粒PCAKowK值
關鍵詞(英文):PAHsmicroplasticsPCAKowK value
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
塑膠製品被廣泛運用於人類生活當中,造成每年有大量塑膠垃圾流入海洋,經過陽光照射、水流等外力衝擊後,會碎裂為粒徑5 mm以下之塑膠微粒,長時間存在於海洋與沿岸環境。其疏水性的表面會與親脂性的多環芳香烴吸附、結合,影響多環芳香烴在食物鏈中的傳遞。本研究將4種常見的塑膠:PP、PE、PS、PET,及2種可自然分解的塑膠:PLA、PBAT,粒徑0.1~0.3 mm之顆粒,分別置於屏東海生館之人工溼地較低濃度多環芳香烴之水體中以及實驗室配置較高濃度多環芳香烴之水體中進行暴露實驗,於一天、一周、一個月、兩個月及三個月時以GC-MS分析塑膠微粒及周圍水體內所含的多環芳香烴濃度。分析結果發現,在暴露實驗前塑膠微粒本身即含有相當濃度的多環芳香烴。置於低濃度環境的塑膠微粒之多環芳香烴濃度則與暴露實驗開始前無明顯差異,而暴露於高濃度環境中的塑膠微粒,於第一個採樣時間點多環芳香烴濃度明顯高於暴露實驗前塑膠微粒所含有之多環芳香烴濃度,且隨暴露時間而增加,至一個月後增加趨勢呈現減緩,顯示接近吸附平衡。PCA結果顯示,於低濃度環境時,多環芳香烴於PP、PS上於各採樣時間的組成無明顯差異,PE、PLA、PBAT、PET中僅在logKow >5的多環芳香烴比例則會隨時間增加;於高濃度環境暴露實驗,吸附於PP、PE、PS及PBTA塑膠微粒中多環芳香烴與水中多環芳香烴的分布比例十分相近,可能受環境之濃度影響較大,PLA及PET則維持與暴露前之分布情形,其分配特性則可能與塑膠本身的性質較為相關。
Plastic products are widely used in human life, causing a large amount of plastic waste to flow into the ocean every year. After being exposed to sunlight, water or other external forces, it will break into microplastics with a particle size of less than 5 mm, which will exist in the ocean and coastal environment for a long time. Its hydrophobic surface will combine with lipophilic PAHs, affecting the transmission of PAHs in the food chain. In this study, 4 kinds of common plastics: PP, PE, PS, PET, and 2 kinds of naturally decomposable plastics: PLA, PBAT, with a particle size of 0.1 ~ 0.3 mm were placed in the artificial wetland of NMMBA. Exposure experiments were conducted in water with lower PAHs concentrations and in water with higher PAH concentrations in the laboratory, and GC-MS was used to analyze the concentration of PAHs in microplastics and water. The results show that the microplastics contained a certain concentration of PAHs before the exposure experiment. Microplastics placed in a high concentration environment, the concentration of PAHs after one day of exposure is higher than the concentration of PAHs contained before exposure experiment, and there is no obvious difference in low concentration environment. Regardless of the high and low concentration environment, PAHs tend to adsorb to microplastics. In high concentration environment, PP, PE, PS, PBAT regardless of logKow, logKmp increase trends are similar, and the change of logKmp of PLA and PET is similar to that of low concentration environment. PCA results show that in low concentration environments, the difference in the composition of PAHs on PP and PS are small, and the proportion of PAHs with logKow higher than 5 in PE, PS, and PBAT will increase with time. When placed in high concentration environment, the distribution ratio of PAHs in PP, PE, PS, PBAT will be close to the distribution ratio of PAHs in water. PLA and PET are still the same as the low concentration environment, the distribution characteristics may be more related to their chemical properties.
第壹章、前言 1
第貳章、文獻回顧 3
2-1持久性有機汙染物 3
2-2多環芳香烴 3
2-3塑膠微粒 6
2-4塑膠微粒與持久性有機汙染物 7
2-5辛醇-水分配係數 8
第參章、材料方法 9
3-1樣品暴露實驗 9
3-1-1野外低濃度環境 9
3-1-2 實驗室高濃度環境 9
3-2 樣品處理 10
3-2-1塑膠微粒樣品處理 10
3-2-2水樣處理 10
3-2-2-1低濃度水樣 10
3-2-2-2高濃度水樣 10
3-3儀器分析 14
3-4定量分析 14
3-5化合物 15
3-6品保與品管 15
3-6-1方法回收率 15
3-6-2實驗空白分析 15
3-6-3方法偵測極限 15
3-6-4標準查核樣品分析 15
3-7試藥與器材前處理 16
3-7-1試藥、溶劑與塑膠微粒來源 16
3-7-2 實驗前處理 17
3-8資料分析 18
第肆章、結果與討論 19
4-1 水體中之多環芳香烴濃度與時間變化 19
4-1-1 低濃度環境 19
4-1-2 高濃度環境 20
4-1-3 與其他文獻中水體的多環芳香烴濃度比較 21
4-2 塑膠微粒中之多環芳香烴濃度與時間變化 22
4-2-1 暴露實驗前之塑膠微粒 22
4-2-2 低濃度環境 24
4-2-3 高濃度環境 25
4-3 多環芳香烴累積與辛醇-水分布係數(Kow)之關係 26
4-3-1低濃度環境 26
4-3-2高濃度環境 28
4-4 多環芳香烴累積於塑膠微粒上之分配模式 30
4-4-1低濃度環境 30
4-4-2高濃度環境 32
4-5 多環芳香烴與塑膠微粒之分配動力學 34
4-5-1 k值與吸附速率 34
4-5-2 平均吸附速率 36
4-5-3 塑膠種類與吸附速率 37
第伍章、結論 39
參考文獻 41
附錄 47
Adeniji, A. O., Okoh, O. O., & Okoh, A. I. (2019). Levels of Polycyclic Aromatic Hydrocarbons in the Water and Sediment of Buffalo River Estuary, South Africa and Their Health Risk Assessment. Archives of Environmental Contamination and Toxicology, 76, 657-669.
Alawi, M. A., Tarawneh, I. N., & Ghanem, Z. (2018). Removal efficiency of PAH’s from five wastewater treatment plants in Jordan. Toxin Reviews, 37(2), 128-137.
Andrady, A. L. (2011). Microplastics in the marine environment. Marine Pollution Bulletin, 62(8), 1596-1605.
Bakir, A., J.Rowland, S., & C.Thompson, R. (2014). Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuarine, Coastal and Shelf Science, 140, 14-21.
Cai, M., Yan Liu, K. C., Huang, D., & Yang, S. (2016). Quantitative analysis of anthropogenic influences on coastal water – A new perspective. Ecological Indicators, 67, 673-683.
Cao, S., N, G., Li, R., Ge, L., Gao, H., Jin, S., . . . Zhang, Z. (2018). Fate and deposition of polycyclic aromatic hydrocarbons in the Bransfield Strait, Antarctica. Marine Pollution Bulletin, 137, 533-541.
Cauwenberghe, L. V., & Janssen, C. R. (2014). Microplastics in Bivalves Cultured for Human Consumption Environmental Pollution, 193, 65-70.
Chen, Q., Yin, D., Jia, Y., Schiwy, S., Legradi, J., Yang, S., & Hollert, H. (2017). Enhanced Uptake of BPA in the Presence of Nanoplastics Can Lead to Neurotoxic Effects in Adult Zebrafish Science of the Total Environment, 609, 1312-1321.
Chizhova, T., Koudryashova, Y., Tishchenko, P., & Lobanov, V. B. (2018). Polycyclic Aromatic Hydrocarbons: Springer Nature Singapore.
Claessensa, M., Meester, S. D., Landuyt, L. V., Clerck, K. D., & Janssen, C. R. (2011). Occurrence and distribution of microplastics in marine sediments alongthe Belgian coast. Marine Pollution Bulletin, 62, 2199-2204.
Cole, M., Lindeque, P., Halsband, C., & Galloway, T. S. (2011). Microplastics as Contaminants in the Marine Environment: A Review Marine Pollution Bulletin, 62(12), 2588-2597.
Corsolini, S., Covaci, A., Ademollo, N., Focardi, S., & Schepens, P. (2006). Occurrence of organochlorine pesticides (OCPs) andtheir enantiomeric signatures, and concentrations ofpolybrominated diphenyl ethers (PBDEs) in theAde ́lie penguin food web, Antarctica. Environmental Pollution, 140, 371-382.
Crawford, C. B., & Quinn, B. (2017). Microplastic Pollutants (1 ed.). UK: Elsevier Science
ECHA. (2017). Guidance on Information Requirements and Chemical Safety Assessment. ECHA Guidance, Version 3.0.
Edokpayi, J. N., Odiyo, J. O., Popoola, O. E., & Msagati, T. A. M. (2016). Determination and Distribution of PolycyclicAromatic Hydrocarbons in Rivers, Sediments andWastewater Effluents in Vhembe District,South Africa. International Journal of Environmental Research and Public Health, 13, 387.
EFSA. (2016). Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA Journal, 14, 4501.
Espinosa, C., CuestaMaría, A., & Esteban, Á. (2017). Effects of dietary polyvinylchloride microparticles on general health, immune status and expression of several genes related to stress in gilthead seabream (Sparus aurata L.). Fish & Shellfish Immunology, 68, 251-259.
Falahudin, D., Munawir, K., Arifin, Z., & Wagey, G. A. (2012). Distribution and sources of polycyclic aromatic hydrocarbon (PAHs) in coastal waters of the Timor Sea. Coastal marine science, 35, 112-121.
Franeker, J. A. v., Blaize, C., Danielsen, J., Fairclough, K., Gollan, J., Guse, N., . . . Turner, D. M. (2011). Monitoring Plastic Ingestion by the Northern Fulmar Fulmarus Glacialis in the North Sea Environ Pollut., 159, 2609-2615.
Gocke, E. (2001). Photochemical Mutagenesis: Examples and Toxicological Relevance. Journal of Environmental Pathology, Toxicology and Oncology, 20(4).
Guo, X., Wang, X., Zhou, X., Kong, X., Shu Tao, & Xing, B. (2019). Sorption of Four Hydrophobic Organic Compounds by Three Chemically Distinct Polymers: Role of Chemical and Physical Composition. environmental science and technology, 46, 7252-7259.
Hüffer, T., & Hofmann, T. (2016). Sorption of non-polar organic compounds by micro-sized plastic particles in aqueous solution. Environmental Pollution, 214.
Hayakawa, K., Makino, F., Yasuma, M., Yoshida, S., Chondo, Y., Toriba, A., . . . Koudryashova, Y. (2016). Polycyclic Aromatic Hydrocarbons in Surface Water of the Southeastern Japan Sea Chemical and Pharmaceutical Bulletin, 64, 625-631.
Jabeen, K., LeiSu, J. L., Yang, D., ChunfuTong, Mu, J., & Shi, H. (2017). Microplastics and mesoplastics in fish from coastal and fresh waters of China. Environmental Pollution, 221, 141-149.
Jabeen, K., Su, L., Li, J., Yang, D., Tong, C., Mu, J., & Shi, H. (2016). Microplastics and mesoplastics infish from coastal and fresh waters of China. Environmental Pollution, 2016, 1-9.
Jones, K. C., & Voogt, P. d. (1999). Persistent organic pollutants (POPs): state of the science. Environmental Pollution, 100, 209-221.
K.C.Jones. (1988). Determination of polychlorinated biphenyls in human foodstuffs and tissues: Suggestions for a selective congener analytical approach. Science of the Total Environment, 68, 141-159.
Karami, A., Romano, N., Galloway, T., & Hamzah, H. (2016). Virgin microplastics cause toxicity and modulate the impacts ofphenanthrene on biomarker responses in African catfish (Clariasgariepinus). Environmental Research, 151, 58-70.
Karyab, H., Yunesian, M., Nasseri, S., Mahvi, A. H., Ahmadkhaniha, R., Rastkari, N., & Nabizadeh, R. (2013). Polycyclic Aromatic Hydrocarbons in drinking water of Tehran, Iran. Environmental Health Sciences & Engineering, 11.
Ko, F. C., Baker, J. E., & Tew, K. S. (2012). Kinetics of polychlorinated biphenyl partitioning to marine Chrysophyte Isochrysis galbana. Science of the Total Environment, 416, 410-417.
Koelmans, A. A., Besseling, E., Wegner, A., & Foekema, E. M. (2013). Plastic as a Carrier of POPs to Aquatic Organisms: A Model Analysis. environmental science and technology, 47, 7812-7820.
Li, J., Yang, D., Li, L., Jabeen, K., & Shi, H. (2015). Microplastics in commercial bivalves from China. Environmental Pollution, 207, 190-195.
Li, R., Tand, H., Zhang, L., Wang, S., Wang, Y., & Yua, K. (2018). The implications of water extractable organic matter (WEOM) on the sorption of typical parent, alkyl and N/O/S-containing polycyclic aromatic hydrocarbons (PAHs) by microplastics. Ecotoxicology and Environmental Safety, 156, 176-182.
Liebezeit, G., & Dubaish, F. (2012). Microplastics in Beaches of the East Frisian Islands Spiekeroog and Kachelotplate. Bulletin of Environmental Contamination and Toxicology, 89, 213-217.
Lithner, D., Larsson, Å., & Dave, G. (2011). Environmental and health hazard ranking and assessment of plastic polymers basedon chemical composition. Science of the Total Environment, 409, 3309-3324.
Liu, Y., Shen, J., Chen, Z., Ren, N., & Li, Y. (2013). Distribution of polycyclic aromatic hydrocarbons in surfacewater and sediment near a drinking water reservoirin Northeastern China. Environmental Science and Pollution Research, 20, 2535-2545.
Maagd, P. G. J. d., Hulscher, D. T. E. M. t., Heuvel, H. v. d., Opperhuizen, A., & Sijm, D. T. H. M. (1998). Physicochemical properties of polycyclic aromatic hydrocarbons: Aqueous solubilities, n ‐octanol/water partition coefficients, and Henry's law constants Environmental Toxicology and Chemistry, 17, 251-257.
Mojiri, A., Zhou, J. L., Ohashi, A., Ozaki, N., & Kindaichi, T. (2019). Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Science of the Total Environment, 696, 2-16.
MZobkov, & EEsiukova. (2017). Microplastics in Baltic bottom sediments: Quantification procedures and first results. Marine Pollution Bulletin, 114(2), 724-732.
Neff, J. M. (1979). Polycyclic aromatic hydrocarbons in the aquatic environment: sources, fates, and biological effects.
Obbard, R., Sadri, S., Wong, Y.-Q., & Khitun, A. (2014). Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth's Future, 2(6).
Olayinka, O. O., Adewusi, A. A., Olarenwaju, O. O., & Aladesida, A. A. (2020). Concentration of Polycyclic Aromatic Hydrocarbons and Estimated Human Health Risk of Water Samples Around Atlas Cove, Lagos, Nigeria Journal of Health and Pollution, 10(26).
Pedà, C., Caccamo, L., Fossi, M. C., Gai, F., Andaloro, F., Genovese, L., . . . Maricchiolo, G. (2016). Intestinal alterations in European sea bassDicentrarchus labrax(Linnaeus, 1758) exposed to microplastics: Preliminary results. Environmental Pollution, 212, 251-256.
Peng, G., Zhu, B., Yang, D., Su, L., Shi, H., & Li, D. (2017). Microplastics in sediments of the Changjiang Estuary, China. Environmental Pollution, 225, 283-290.
Peters, C., & Bratton, S. P. (2016). Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA. Environmental Pollution, 210, 380-387.
PlasticsEurope. (2019). Plastics - the Facts 2019.
Rainieria, S., Conlledo, N., Larsen, B. K., Granby, K., & Barranco, A. (2018). Combined effects of microplastics and chemical contaminants on the organ toxicity. Environmental Research, 162, 135-143.
Renzi, M., Guerranti, C., & Blašković, A. (2018). Microplastic contents from maricultured and natural mussels. Marine Pollution Bulletin, 131, 248–251.
Rochman, C. M., Hoh, E., Hentschel, B. T., & Kaye, S. (2013). Long-Term Field Measurement of Sorption of Organic Contaminants to Five Types of Plastic Pellets: Implications for Plastic Marine Debris. Environmental Science & Technology, 47, 1646–1654.
Rochman, C. M., Hoh, E., Kurobe, T., & Teh, S. J. (2013). Ingested plastic transfers hazardous chemicals to fish and induces hepatic stress. Scientific Reports, 3, 3263.
S.Fendall, L., & A.Sewell, M. (2009). Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine Pollution Bulletin, 58(8), 1225-1228.
Sá, L. C. d., Oliveira, M., Ribeiro, F., Rocha, T. L., & Futter, M. N. (2018). Studies of the effects of microplastics on aquatic organisms: What do we know and where should we focus our efforts in the future? Science of the Total Environment, 645, 1029-1039.
Stefanelli, P., Muccio, A. D., Ferrara, F., Barbini, D. A., Generali, T., Pelosi, P., . . . Ausili, A. (2004). Estimation of intake of organochlorine pesticidesand chlorobiphenyls through edible fishes from theItalian Adriatic Sea during 1997. Food Control, 15, 27-38.
Tang, G., Liu, M., Zhou, Q., He, H., Chen, K., Zhang, H., . . . Cai, M. (2018). Microplastics and polycyclic aromatic hydrocarbons (PAHs) in Xiamen coastal areas: Implications for anthropogenic impacts. Science of the Total Environment, 634, 811-820.
Tosin, M., Weber, M., Siotto, M., & Lott, C. (2012). Laboratory Test Methods to Determine the Degradation of Plastics in Marine Environmental Conditions. Frontiers in Microbiology, 3(225).
Van-Cauwenberghe, L., & Janssen, C. R. (2013). Microplastics in Bivalves Cultured for Human Consumption Environmental Pollution, 182, 495-499.
Van-Cauwenberghe, L., Vanreusel, A., Mees, J., & R.Janssen, C. (2013). Microplastic pollution in deep-sea sediments. Environmental Pollution, 182, 495-499.
Velzeboer, I., Kwadijk, C., & Koelmans, A. (2014). Strong Sorption of PCBs to Nanoplastics, Microplastics, Carbon Nanotubes, and Fullerenes. Environmental Science & Technology, 48(9), 4869–4876.
Wania, F., & Mackay, D. (1996). Tracking the Distribution of Persistent Organic Pollutants environmental science and technology, 30, 390-396.
Weinstein, J. E., Crocker, B. K., & Gray, A. D. (2016). From macroplastic to microplastic: Degradation of high‐density polyethylene, polypropylene, and polystyrene in a salt marsh habitat. Environmental Toxicology and Chemistry, 35(7), 1632-1640.
Witt, G. (1995). Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Marine Pollution Bulletin, 31, 237-248.
Wrighta, S. L., Thompson, R. C., & Galloway, T. S. (2013). ReviewThe physical impacts of microplastics on marine organisms: A review. Environmental Pollution, 178, 483-492.
Xu, P., Peng, G., Su, L., Gao, Y., & Lei Gao, D. L. (2018). Microplastic risk assessment in surface waters: A case study in the Changjiang Estuary, China. Marine Pollution Bulletin, 133, 647-654.
Yu, H. (2002). Environmental Carcinogenic Polycyclic Aromatic Hydrocarbons: Photochemistry and Phototoxicity. Journal of Environmental Science and Health, 20, 149-183.
Zhang, J., Liu, G., Wang, R., & Huang, H. (2017). Polycyclic aromatic hydrocarbons in the water-SPM-sediment systemfrom the middle reaches of Huai River, China: Distribution,partitioning, origin tracing and ecological risk assessment. Environmental Pollution, 230, 61-71.
Zhang, S., Zhang, Q., Darisaw, S., Ehie, O., & Wang, G. (2007). Simultaneous quantification of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and pharmaceuticals and personal care products (PPCPs) in Mississippi river water, in New Orleans, Louisiana, USA. Chemosphere, 66(6), 1057-1069.
Zimmerman, J. R., Ghosh, U., Millward, R. N., Bridges, T. S., & Luthy, R. G. (2004). Addition of Carbon Sorbents to Reduce PCB and PAH Bioavailability in Marine Sediments: Physicochemical Tests Environmental Science & Technology, 38, 5458-5464.
Zobkov, M. B., & Esiukova, E. E. (2017). Evaluation of the Munich Plastic Sediment Separator efficiency in extraction of microplastics from natural marine bottom sediments. Limnology and Oceanography: Methods, 15, 967-978.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *