帳號:guest(3.138.119.136)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:黃聖文
作者(英文):Sheng-Wen Huang
論文名稱:結合理查森梯度外插法之加速神經風格轉換系統
論文名稱(英文):Fast Neural Style Transfer system with Richardson gradient extrapolation
指導教授:吳建銘
指導教授(英文):Jiann-Ming Wu
口試委員:郭大衛
盧東華
口試委員(英文):David Kuo
Dong-Hwa Lu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:應用數學系
學號:610811107
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:25
關鍵詞:風格轉換卷積神經網路泰勒展開式理查森外插法
關鍵詞(英文):Style TransferConvolutional Neural NetworksTaylor ExpansionRichardson Extrapolation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:34
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
於本文首先回顧風格轉換的發展、2016年Gatys等人所提出 的風格轉換演算法及其使用的卷積神經網路架構。我們應用一種 稱為理查森外插法的技術,已提高Gatys風格轉換演算法的計算 效率及有效性,大多數基於CNN的風格轉換模型旨在提高計算效 率。而本文從泰勒展開式衍生的理查森外插法用於估計損失函數 對於輸入至CNN圖像的梯度,藉助理查森外插梯度,我們的風格 轉換方法可以節省通過CNN前向傳遞來計算損失函數的時間,以 及反向傳遞計算損失函數相對於輸入梯度之時間。由數值模擬顯 示,透過我們提出的算法於加快轉換效率中顯示驚艷的結果。
In this thesis, we first review the development of style transfer, including the style-transfer algorithm proposed of Gatys et al and the used convolutional neural network(CNN) architecture. This work applies an extrapolation technique, termed as Richardson extrapolation(RE), to improve the Gatys style transfer algorithm both in computational efficiency and effectiveness. Most of the style transfer model based on CNNs is aimed at enhancing computational efficiency. Richardson Extrapolation derived from Taylor expansion is employed to estimate the gradient of the loss function with respect to an input image to a CNN. With Richardson gradients extrapolation, our style transfer approach could save time for computing the total loss function through CNN forward pass and the gradient of the total loss function with respect to input through CNN backward pass. Numerical simulations show encouraging results of speeding up the transfer efficiency by our algorithm.
Acknowledgments i
摘要 iii
Abstract v
Contents vii
List of Figure ix
List of Table xi
1. Introduction 1
2. Style Transfer using Convolutional Neural Networks 3
2.1 Model Architecture and Feature Extraction 3
2.2 Derivation of Loss function and Gradients 4
3. Richardson Extrapolation 7
3.1 Richardson Extrapolation (RE) 7
3.2 Applied Richardson Extrapolation to Style Transfer 8
3.3 Style Transfer with backward pass and Richardson Extrapolation 10
4. Experiences 15
4.1 Fixed style 16
4.2 Style Revolution 16
5. Conclusions
References
[1] Lettvin, Jerome Y., “On Seeing Sidelong.” The Sciences, vol. 16, no. 4, 1976, pp. 10–20., https://doi.org/10.1002/j.2326-1951.1976.tb01231.x.
[2] B. Julesz, "Visual Pattern Discrimination," in IRE Transactions on Information Theory, vol. 8, no. 2, pp. 84-92, February 1962, doi: 10.1109/ TIT.1962.1057698.
[3] Portilla, Javier, and Eero P. Simoncelli., “A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients.” International Journal of Computer Vision, Kluwer Academic Publishers, https://link.springer.com/article/10.1023/ A:1026553619983#citeas.
[4] Krizhevsky, Alex & Sutskever, Ilya & Hinton, Geoffrey. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Neural Information Processing Systems. 25. 10.1145/3065386.
[5] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, "Gradient-based learning applied to document recognition," in Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998, doi: 10.1109/5.726791.
[6] Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei. (* = equal contribution) ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015.
[7] Leon A. Gatys, Alexander S. Ecker, Matthias Bethge, “Image Style Transfer Using Convolutional Neural Networks” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2414-2423
[8] Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition.
[9] Liu, D.C., Nocedal, J. On the limited memory BFGS method for large scale optimization. Mathematical Programming 45, 503–528 (1989). https://doi.org/10.1007/BF01589116
[10] Kingma, D. P., & Ba, J. (2017). Adam: A Method for Stochastic Optimization.
[11] Johnson J., Alahi A., Fei-Fei L. (2016) “Perceptual Losses for Real-Time Style Transfer and Super-Resolution.” In: Leibe B., Matas J., Sebe N., Welling M. (eds) Computer Vision – ECCV 2016. ECCV 2016. Lecture Notes in Computer Science, vol 9906. Springer, Cham. https:// doi.org/10.1007/978-3-319-46475-6_43
[12] Ghiasi, Golnaz, et al. “Exploring the Structure of a Real-Time, Arbitrary Neural Artistic Stylization Network.”, 2017.
[13] Richardson, L. F. (1911). "The approximate arithmetical solution by finite differences of physical problems including differential equations, with an application to the stresses in a masonry dam". Philosophical Transactions of the Royal Society A. 210 (459–470): 307– 357. doi:10.1098/rsta.1911.0009.
[14] Richardson, L. F., Gaunt, J. A. (1927). "The deferred approach to the limit". Philosophical Transactions of the Royal Society A. 226 (636– 646): 299–349. doi:10.1098/rsta.1927.0008.
[15] Jiann-Ming Wu, http:/134.208.26.59/%E6%95%B8%E5%80%BC% E6%96%B9%E6%B3%952021/Lecture-differentition-%E6%95%B8%E5 %80%BC%E5%BE%AE%E5%88%86.pdf
[16] Jiann-Ming Wu, http://134.208.26.59/%E6%95%B8%E5%80%BC %E6%96%B9%E6%B3%952021/Lecture0519.pdf
[17] Bach, F. (2020). On the Effectiveness of Richardson Extrapolation in Machine Learning.
[18] Dumoulin, V., Shlens, J., & Kudlur, M. (2016). A Learned Representation For Artistic Style. CoRR, abs/1610.07629. http://arxiv.org/ abs/1610.07629
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *