帳號:guest(18.226.4.234)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:邱子豪
作者(英文):Tzu-Hao Chiu
論文名稱:利用二硫(硒)磷酸配位基合成超原子之合金金屬奈米團簇之研究
論文名稱(英文):Superatom-Type Alloy Nanoclusters Supported by dithiophosphate (diselenophosphate) Ligands
指導教授:劉鎮維
指導教授(英文):Chen-Wei Liu
口試委員:呂光烈
江明錫
口試委員(英文):Kuang-Lieh Lu
Ming-Hsi Chiang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610812101
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:155
關鍵詞:合金奈米團簇超原子
關鍵詞(英文):PlatinumSilverAlloynanoclustersuperatom
相關次數:
  • 推薦推薦:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
近幾年在學術界探討銀奈米團簇的物理化學特性的相關研究激增,由於金屬團簇的基礎研究以及合成奈米材料方面的應用價值受到關注,使團簇科學成為一個活躍的研究領域,近年來更引入了”超原子(Superatom)”的概念,即為特定尺寸與組成的團簇可模擬元素週期表中單個原子或一族元素的性質。
在學術界裡,對銀奈米團簇的性質經過了過去的幾年已經有了很多的研究,然而在最近的幾年,添加第二種金屬在銀奈米團簇中可以發生物理與化學性質的改變,所以相關研究激增。本篇提供了新的合成策略成功合成PtAg19[S2P(OR)2]12與PtAg20[S2P(OR)2]12並以其作為起始物合成PtAg19[Se2P(OR)2]12與PtAg20[Se2P(OR)2]12,利用ESI-MS,UV-vis,X-ray等方式來鑑定。其中PtAg19[S2P(OR)2]12為第一個在銀奈米團簇中帶有七個自由電子的例子。
In recent years, superatom theory has been used to describe the stability of alloy nanoclusters of group 11, and most of these clusters have closed shell of electrons. Herein, we show the first open shell Pt-Ag superatom [PtAg19{S2P(OPr)2}12] with 7 free electrons, the first all-selenolate-proptected Pt-Ag superatom [PtAg20{Se2P(OPr)2}12] and fully characterized by single crystal X-Ray diffraction, ESI-MS, NMR and EPR spectroscopy, and UV-vis spectroscopy.
一、緒論 1
二、實驗部分 7
2.1溶劑系統 7
2.2儀器 8
2.3實驗步驟 10
2.3.1 PtAg19[S2P(OnPr)2]12的合成 10
2.3.2 PtAg20[S2P(OiPr)2]12的合成 11
2.3.3 PtAg19[Se2P(OiPr)2]12的合成 12
2.3.4 PtAg20[Se2P(OiPr)2]12的合成 12
2.3.5 PtAg20[Se2P(OnPr)2]12的合成 13
三、結果與討論 14
3.1 Pt-Ag合金奈米團簇的合成與結構分析 14
3.1.1 PtAg20[S2P(OR)2]12(R=iPr or nPr)的合成與結構分析 14
3.1.2 PtAg19[S2P(OnPr)2]12的合成與結構分析 19
3.1.2 PtAg20[Se2P(OR)2]12(R=iPr or nPr)的合成與結構分析 24
3.2 Pt-Ag合金奈米團簇的光譜分析 28
3.2.1 NMR光譜分析 28
3.2.2吸收光譜與螢光光譜 38
3.2.3 ESI-MS 48
3.2.4 EPR 52
3.2.5 TGA 53
四.結論 57
五、參考文獻 58
Ⅱ [PtAg21{S2P(OiPr)2}12]BF4的合成與結構分析 61
Ⅱ-1 [PtAg21{S2P(OiPr)2}12]BF4的合成 61
Ⅱ-2 PtAg21[S2P(OR)2]12+(R=iPr or nPr)的結構與光譜分析 61
附 錄 65
圖目錄
Figure 1. PtAg20[S2P(OR)2]12結構(a)R = nPr (b)R = iPr 14
Figure 2. PtAg20[S2P(OnPr)2]12金屬骨架 15
Figure 3. PtAg20[S2P(OiPr)2]12金屬骨架 16
Figure 4. PtAg20[S2P(OnPr)2]12加蓋原子移動示意圖 18
Figure 5. PtAg20[S2P(OiPr)2]12加蓋原子移動示意圖 18
Figure 6. PtAg19[S2P(OnPr)2]12結構 20
Figure 7. PtAg19[S2P(OnPr)2]12 金屬骨架 20
Figure 8. (a)PtAg19[S2P(OnPr)2]12與(b)PtAg20[S2P(OnPr)2]12加蓋原子差異 22
Figure 9. (a)PtAg19[S2P(OnPr)2]12中的二十面體PtAg12核(b) PtAg20[S2P(OnPr)2]12中的二十面體PtAg12核 22
Figure 10. PtAg20[Se2P(OR)2]12結構(R=iPr or nPr) 25
Figure 11. PtAg20[Se2P(OR)2]12金屬骨架 26
Figure 12. PtAg20[Se2P(OiPr)2]12在晶格中排列方式 27
Figure 13. PtAg20[Se2P(OnPr)2]12在晶格中排列方式 27
Figure 14. 將Ag20[S2P(OnPr)2]12與Pt[S2P(OnPr)2]2反應2天後的31P NMR光譜 29
Figure 15. 十二個磷連成二十面體 30
Figure 16. PtAg19[S2P(OnPr)2]12的31P NMR光譜 31
Figure 17. PtAg20[S2P(OnPr)2]12的31P NMR光譜 32
Figure 18. PtAg20[S2P(OiPr)2]12的31P NMR光譜 32
Figure 19.配位模式 33
Figure 20. [NH4][Se2P(OnPr)2]的31P NMR光譜 34
Figure 21. [NH4][Se2P(OiPr)2]的31P NMR光譜 34
Figure 22. PtAg20[Se2P(OnPr)2]12的31P NMR光譜 35
Figure 23. PtAg20[Se2P(OiPr)2]12的31P NMR光譜 35
Figure 24. PtAg19[Se2P(OiPr)2]12的31P NMR光譜 36
Figure 25. PtAg19[S2P(OnPr)2]12之吸收光譜 38
Figure 26. PtAg20[S2P(OnPr)2]12之吸收光譜與放光光譜 39
Figure 27. PtAg20[S2P(OiPr)2]12之吸收光譜與放光光譜 40
Figure 28. PtAg20[Se2P(OnPr)2]12之吸收光譜與放光光譜 41
Figure 29. PtAg20[Se2P(OiPr)2]12之吸收光譜與放光光譜 42
Figure 30. PtAg19[Se2P(OiPr)2]12之吸收光譜與放光光譜 43
Figure 31. PtAg20[E2P(OnPr)2]12 (E=S, Se) 298 K吸收光譜與77 K放光光譜 46
Figure 32. PtAg20[E2P(OiPr)2]12 (E=S, Se) 298 K吸收光譜與77 K放光光譜 46
Figure 33. (a) PtAg20[Se2P(OnPr)2]12溶於2Me-THF中保存在棕色瓶內(b) PtAg20[Se2P(OnPr)2]12溶於2Me-THF中並照光 47
Figure 34. (a) PtAg20[Se2P(OiPr)2]12溶於2Me-THF中保存在棕色瓶內 (b) PtAg20[Se2P(OiPr)2]12溶於2Me-THF中並照光 47
Figure 35. PtAg19[S2P(OnPr)2]12的正電荷ESI-MS圖譜 48
Figure 36. PtAg20[S2P(OnPr)2]12的正電荷ESI-MS圖譜 49
Figure 37. PtAg20[Se2P(OnPr)2]12的正電荷ESI-MS圖譜 50
Figure 38. PtAg19[Se2P(OiPr)2]12的正電荷ESI-MS圖譜 51
Figure 39. PtAg19[S2P(OnPr)2]12的EPR光譜 52
Figure 40. TGA圖譜 53
Figure 41. [PtAg21{S2P(OR)2}12]+結構 62
Figure 42. PtAg20與PtAg21間的差異 62
Figure 43. [PtAg21{S2P(OiPr)2}12]BF4的31P NMR光譜 63
Figure 44. [PtAg21{S2P(OiPr)2}12]BF4與PtAg20[S2P(OiPr)2]12吸收光譜比較 64
Figure 45. [PtAg21{S2P(OiPr)2}12]+ ESI-MS圖譜 64
表目錄
Table 1. PtAg19&PtAg20的31P NMR訊號比較 37
Table 2. PtAg19&PtAg20吸收與放光訊號比較 44
Table 3. PtAg19&PtAg20的m/z實驗值比較 51
Table 4: Crystallographic data for PtAg19[S2P(OnPr)2]12 54
Table 5: Crystallographic data for PtAg20[S2P(OR)2]12 (R=nPr or iPr) 55
Table 6: Crystallographic data for PtAg20[Se2P(OR)2]12 (R=nPr or iPr) 56
Table 7. Selected Bond lengths (Å) and angles (deg) for [PtAg19{S2P(OnPr)2}12]. 66
Table 8. Selected Bond lengths (Å) and angles (deg) for [PtAg20{S2P(OnPr)2}12]. 83
Table 9. Selected Bond lengths (Å) and angles (deg) for [PtAg20{S2P(OiPr)2}12]. 100
Table 10. Selected Bond lengths (Å) and angles (deg) for [PtAg20{Se2P(OnPr)2}12]. 116
Table 11. Selected Bond lengths (Å) and angles (deg) for [PtAg20{Se2P(OiPr)2}12]. 130
圖表目錄
Chart 1. Pt-Ag鍵長比較 22
Chart 2. Agico-Agico鍵長比較 22

1.Henry, C. R. Surface studies of supported model catalysts. Surf. Sci. Rep. 1998, 31, 231-233.
2.Binns, C. Nanoclusters deposited on surfaces. Surf. Sci. Rep. 2001, 44, 1-49.
3.Yamazoe, S.; Koyasu, K.; Tsukuda, T. Nonscalable Oxidation Catalysis of Gold Clusters. Acc. Chem. Res. 2014, 47, 816-824.
4.Du, Y.; Sheng, H.; Astruc, D.; Zhu, M. Atomically Precise Noble Metal Nanoclusters as Efficient Catalysts: A Bridge between Structure and Properties. Chem. Rev. 2020, 120, 526– 622.
5.Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-Protected Gold Clusters Revisited:  Bridging the Gap between Gold(I)−Thiolate Complexes and Thiolate-Protected Gold Nanocrystals. J. Am. Chem. Soc., 2005, 127, 5261-5270.
6.Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem. Rev. 2016, 116, 10346-10413.
7.Cathcart, N.; Mistry, P.; Makra, C.; Pietrobon, B.; Coombs, N.; Masoud, J.-N., M.; Kitaev, V. Chiral Thiol-Stabilized Silver Nanoclusters with Well-Resolved Optical Transitions Synthesized by a Facile Etching Procedure in Aqueous Solutions. Langmuir 2009, 25, 5840-5846.
8.Bakr, O. M.; Amendola, V.; Aikens, C. M.; Wenseleers, W.; Li, R.; Dal Negro, L.; Schatz, G. C.; Stellacci, F. Silver Nanoparticles with Broad Multiband Linear Optical Absorption. Angew. Chem. Int. Ed. 2009, 48, 5921-5926.
9.Martins, J. L.; Car, R.; Buttet, J. Variational spherical model of small metallic particles. Surf. Sci. 1981, 106, 265-271.
10.de Heer, W. A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 1993, 65, 611.
11.Häkkinen, H. Atomic and electronic structure of goldclusters: understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 2008, 37, 1847-1859.
12.Negishi, Y.; Chaki, N. K.; Shichibu, Y.; Whetten, T. L.; Tsukuda, T. Origin of Magic Stability of Thiolated Gold Clusters:  A Case Study on Au25(SC6H13)18¬. J. Am. Chem. Soc., 2007, 129, 11322-11323.
13.Zhu, M.; Eckenhoff, W. T; Pintauer, T.; Jin, R. Conversion of Anionic [Au25(SCH2CH2Ph)18]− Cluster to Charge Neutral Cluster via Air Oxidation. J. Phys. Chem. C, 2008, 112, 14221-14224.
14.Li, Y.; Zhou, M.; Jin, S.; Xiong, L.; Yuan, Q.; Du, W.; Pei, Y.; Wang, S.; Zhu, M. Total structural determination of [Au1Ag24(Dppm)3(SR)17]2+ comprising an open icosahedral Au1Ag12 core with six free valence electrons. Chem. Commun. 2019, 55, 6457-6460.
15.Chiu, T.-H.; Liao, J.-H.; Gam, F.; Chantrenne, I.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Homoleptic Platinum/Silver Superatoms Protected by Dithiolates: Linear Assemblies of Two and Three Centered Icosahedra Isolobal to Ne2 and I3–. J. Am. Chem. Soc. 2019, 141, 12957-12961.
16.Gam, F.; Liu, C. W.; Kahlal, S.; Saillard, J.-Y. Electron counting and bonding patterns in assemblies of three and more silver-rich superatoms. Nanoscale 2020, 12, 20308-20316.
17.Joshi, C. P.; Bootharaju, M. S.; Alhilaly, M. J.; Bakr, O. M. J. Am. Chem. Soc. 2015, 137, 11578-11581.
18.AbdulHalim, L. G.; Bootharaju, M. S.; Tang, Q.; Gobbo, S. D.; AbdulHalim, R. G.; Eddaoudi, M.; Jiang, D.; Bakr, O. M. [Ag25(SR)18]−: The “Golden” Silver Nanoparticle. J. Am. Chem. Soc. 2015, 137, 11970-11975.
19.Chen, S.; Du, W.; Qin, C.; Liu, D.; Tang, L.; Liu, Y.; Wang, S.; Zhu, M. Assembly of the Thiolated [Au1Ag22(S‐Adm)12]3+ Superatom Complex into a Framework Material through Direct Linkage by SbF6− Anions. Angew. Chem., Int. Ed. 2020, 59, 7542-7547.
20.Lin, Y.-R.; Kishore, P. V. V. N.; Liao, J.-H.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C. W. Synthesis, structural characterization and transformation of an eight-electron superatomic alloy, [Au@Ag19{S2P(OPr)2}12]. Nanoscale 2018, 10, 6855-6860.
21.Liao, J.-H.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C. W. Identification of an eight-electron superatomic cluster and its alloy in one co-crystal structure. J. Cluster Sci. 2018, 29, 827-835.
22.Chang, W.-T.; Sharma, S.; Liao, J.-H.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C. W. Heteroatom‐Doping Increases Cluster Nuclearity: From an [Ag20] to an [Au3Ag18] Core. Chem. - Eur. J. 2018, 24, 14352-14357.
23.Li, Q.; Wang, S.; Kirschbaum, K.; Lambright, K. J.; Das, A.; Jin, R. Heavily doped Au25–xAgx(SC6H11)18− nanoclusters: silver goes from the core to the surface. Nanoscale 2016, 52, 5194-5197.
24.Xi, X.-J.; Yang, J.-S.; Wang, J.-Y; Dong, X.-Y.; Zang, S.-Q. New stable isomorphous Ag34 and Ag33Au nanoclusters with an open shell electronic structure. Nanoscale 2018, 10, 21013-21018.
25.Liu, X.; Chen, J.; Yuan, J.; Li, Y.; Zhou, S.; Yao, C.; Liao, L.; Zhuang, S.; Zhao, Y.; Deng, H.; Yang, J.; Wu, Z. A Silver Nanocluster Containing Interstitial Sulfur and Unprecedented Chemical Bonds. Angew. Chem., Int. Ed. 2018, 57, 11273-11277.
26.Liu, C.; Li, Tao; Abroshan, H.; Li, Z.; Zhang, C.; Kim, H. J.; Li, G.; Jin, R. Chiral Ag23 nanocluster with open shell electronic structure and helical face-centered cubic framework. Nat. Commun., 2018, 9, 744-749.
27.Yan, J.; Malola, S.; Hu, C.; Peng, J.; Dittrich, B.; Teo, B. K.; Häkkinen, H.; Zheng, L.; Zheng, N. Co-crystallization of atomically precise metal nanoparticles driven by magic atomic and electronic shells. Nat. Commun., 2018, 9, 3357-3364.
28.Ma, X.; Bai, Y.; Song, Y.; Li, Q.; Lv, Y.; Zhang, H.; Yu, H.; Zhu, M. Rhombicuboctahedral Ag100: Four‐Layered Octahedral Silver Nanocluster Adopting the Russian Nesting Doll Model. Angew. Chem., Int. Ed. 2020, 132, 17387-17391.
29.Zhu, M.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. Kinetically Controlled, High-Yield Synthesis of Au25 Clusters. J. Am. Chem. Soc. 2008, 130, 1138-1139.
30.Dainese, T.; Antonello, S.; Bogialli, S.; Fei, W.; Venzo, A.; Maran, F. Gold Fusion: From Au25(SR)18 to Au38(SR)24, the Most Unexpected Transformation of a Very Stable Nanocluster. ACS Nano 2018, 12, 7057-7066.
31.Suyama, M.; Takano, S.; Nakamura, T.; Tsukuda, T. Stoichiometric Formation of Open-Shell [PtAu24(SC2H4Ph)18]− via Spontaneous Electron Proportionation between [PtAu24(SC2H4Ph)18]2– and [PtAu24(SC2H4Ph)18]0. J. Am. Chem. Soc. 2019, 141, 14048-14051.
32.Ito, E.; Takano, S.; Nakamura, T.; Tsukuda, T. Controlled Dimerization and Bonding Scheme of Icosahedral M@Au12 (M=Pd, Pt) Superatoms. Angew. Chem., Int. Ed. 2020, 133, 655-659.
33.Sharma, S.; Chakrahari, K. K.; Saillard, J.-Y.; Liu, C. W. Structurally Precise Dichalcogenolate-Protected Copper and Silver Superatomic Nanoclusters and Their Alloys. Acc. Chem. Res. 2018, 51, 2475-2483.
34.Barik, S. K.; Chiu, T.-H.; Liu, Y. -C; Chiang, M.-H.; Gam, F.; Chantrenne, I.; Kahlal, S.; Saillard, J. -Y.; Liu, C. W. Mono- and hexa-palladium doped silver nanoclusters stabilized by dithiolates. Nanoscale 2019, 11, 14581-14586.
35.Kang, X.; Zhu, M. Metal Nanoclusters Stabilized by Selenol Ligands. small 2019, 15, 1902703.
36.Chakraborty, I.; Kurashige, W.; Kanehira, K.; Gell, L.; Häkkinen, H.; Negishi; Pradeep, Y. T. Ag44(SeR)30: A Hollow Cage Silver Cluster with Selenolate Protection. J. Phys. Chem. Lett. 2013, 4, 3351-3355.
37.Bootharaju, M. S.; Chang, H.; Deng, G.; Malola, S.; Beak, W.; Häkkinen, H.; Zheng, N.; Hyeon, T. Cd12Ag32(SePh)36: Non-Noble Metal Doped Silver Nanoclusters. J. Am. Chem. Soc., 2019, 141, 8422-8425.
38.Dhayal, R. S.; Liao, J.-H.; Wang, X.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Diselenophosphate‐Induced Conversion of an Achiral [Cu20H11{S2P(OiPr)2}9] into a Chiral [Cu20H11{Se2P(OiPr)2}9] Polyhydrido Nanocluster. Angew. Chem., Int. Ed., 2015, 54, 13604-13608.
(此全文20260121後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用配體交換合成二硒磷酸配位基超原子之銀奈米團簇之研究
2. 以第一原理研究一氧化氮吸附在過渡金屬原子團簇以及含銠的雙金屬團簇上的反應行為
3. (I) 利用二硫磷酸配位基合成銅銀超原子合金團簇的研究 (II) 以有機橋接分子連接超原子銀奈米簇及其光物理性質
4. 二硫磷酸配位基與銅的金屬團簇,催化碳-氮鍵[3+2]環化反應之研究
5. 以陰離子模板合成含二硫磷酸配位基之多核銀金屬團簇
6. 含碘與多硫磷酸配位基之多核金屬團簇(銅,銀)的合成、結構與光物理性質研究
7. 2,2’—聯嘧啶架橋之鑭系金屬(鈰、釤、銪)與過渡金屬(鐵、鋅)雙核化合物的合成與研究
8. 利用碘分子行氧化加成於硒(給予電子)配位基所形成的雙核金化合物中之反應研究
9. 含有二硫(硒)磷酸配位基之十一核銅金屬簇的合成、結構與光物理性質研究
10. 含有聯奈酚磷酸酯配位基與鋅、鎘、銅、銀金屬錯合物的結構和合成反應研究
11. 利用黃酸鹽與有機硒化磷配位基合成多核銅金屬團簇之反應與研究
12. 含有機硒化磷配位基之銻、鉍、鉻、銅金屬錯合物及含二硫磷酸配位基之中心體硫九核銀金屬團簇的反應研究
13. 利用雙硫配位基合成含氫離子之銅與銀金屬團簇的反應與研究
14. 含二硫(硒)磷酸配位基及鹵素之金屬鎘、汞配位聚合物之研究
15. 含二硒磷酸配位基之釕化合物合成以及二硒(硫)磷酸配位基與含氮配位基之鋅金屬發光化合物的研究
 
* *