帳號:guest(18.189.143.111)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳樂霖
作者(英文):Yue-Lin Chen
論文名稱:A. Formation pathways of ketene (H2CCO) B. Synthesis of the trisilacyclopropyl radical (Si3H5) via SiH ( 2Π ) + disilane Si2H6 ( 1A1g ) reaction
論文名稱(英文):A. Formation pathways of ketene (H2CCO) B. Synthesis of the trisilacyclopropyl radical (Si3H5) via SiH ( 2Π ) + disilane Si2H6 ( 1A1g ) reaction
指導教授:張秀華
指導教授(英文):Hsiu-Hwa Chang
口試委員:梁剛荐
楊雪慧
口試委員(英文):Max K. Leong
Hsueh-Hui Yang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610812102
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:144
關鍵詞(英文):keteneSi2H6
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
A.烯酮(H2CCO)的形成途徑
先前的研究表明,通過紅外多光子離解(IRMPD)方法離解的研究部門炸藥(RDX)形成了亞甲基硝胺(H2CNNO2),再進行離解而形成了疊氮基(H2CN2)。在此實驗中,驗證亞甲基硝胺(H2CNNO2)會解離形成甲醛(H2CO)。兩個甲醛(H2CO)發生反應,然後形成的烯酮(H2CCO)與疊氮基(H2CN2)的質荷比相同。
通過從頭算電子結構計算研究了乙烯酮(H2CCO)合成的反應途徑。反應物,過渡態,中間體和離解產物的結構可通過計算得到的B3LYP / cc-pVTZ進行優化。通過CCSD(T)/ CBS和B3LYP / cc-pVTZ零點能量校正來計算能量,並將結果與實驗進行比較。

B.通過SiH(2Π)+乙矽烷Si2H6(1A1g)反應合成三矽環丙基自由基(Si3H5)
在本文中,我們研究了單次碰撞條件下的SiH(2Π)+ Si2H6(1A1g)反應。使用密度泛函理論,帶有cc-pVTZ基集的混合功能B3LYP優化了碰撞配合物,中間體,過渡態和離解產物沿反應通道的幾何結構。然後使用B3LYP / cc-pVTZ零點能量校正來計算CCSD(T)/ CBS能量。
我們發現H2損失產品是主要產品,而不是H損失單重態或三重態產品。利用RRKM速率常數確定最可能的反應途徑。
A. Formation pathways of ketene (H2CCO)
Previous studies indicate that Research Department explosive (RDX) dissociated by the Infrared multiple photon dissociation (IRMPD) method formed methylene nitramine (H2CNNO2), which carry on again dissociate formed azimethylene (H2CN2). In this experiment, verify methylene nitramine (H2CNNO2) dissociate forming formaldehyde (H2CO). Two formaldehyde (H2CO) occur reaction, then form ketene (H2CCO) is identical to azimethylene (H2CN2) mass-to-charge ratio.
The reaction pathways of ketene (H2CCO) synthesis were studied by ab initio electronic structure calculations. The structures of reactant, transition states, intermediates, and dissociation products are optimized with B3LYP/cc-pVTZ calculated. The energies were calculated via CCSD(T)/CBS with B3LYP/cc-pVTZ zero-point energy corrections, and the results compare with experiments.
B. Synthesis of the trisilacyclopropyl radical (Si3H5) via SiH ( 2Π ) + Disilane Si2H6 ( 1A1g ) reaction
In this thesis, we investigate the SiH(2Π) + Si2H6(1A1g) reaction under single collision condition. The geometries along the reaction channels for collision complexes, intermediates, transition states, and dissociation products were optimized with density functional theory, hybrid functional B3LYP with cc-pVTZ basis sets. The CCSD(T)/CBS energies were then calculated with B3LYP/cc-pVTZ zero-point energy corrections.
We revealed the H2-loss product is the main product, rather than the H-loss singlet or triplet product. The most probable reaction pathways were determined utilizing the RRKM rate constant.
A. Formation pathways of ketene (H2CCO) 1
1. Introduction 1
2. Theoretical methods 3
2.1 reaction pathway predictions by ab initio electronic structure calculations 3
2.2 Density functional theory (DFT) 3
2.3 Coupled cluster CCSD(T) 4
3. Results and Discussions 5
3.1 Methylene nitramine reaction pathways 5
3.2 Ketene reaction pathways 6
3.3 Comparison with the experimental results 11
4. Conclusion 13
5. Reference 15
Table 1. H2CN2O2 energy with cc-pVTZ basis set. 17
Table 2. H4C2O2 energy with cc-pVTZ basis set. 18
Figure 1. The dissociation pathways of methylene nitramine 24
Figure 2. The pathways of H2CO + H2CO 25
Figure 3. The pathways of the i16 26
Figure 4. The pathways of the i1 and i1' 27
Figure 5. The pathways of the i12 28
Figure 6. The pathways of i5, i13, and i15 29
Figure 7. The pathways of the i10 30
Figure 8. The most probable pathways 31
Figure 9. The B3LYP/cc-pVTZ calculated structures of reactant, intermediate, and prodoct of formaldehyde 32
Figure 10. The B3LYP/cc-pVTZ calculated structures of transition states of formaldehyde. 33
Figure 11. The B3LYP/cc-pVTZ calculated structures of reactants, intermediates, and products of ketene 34
Figure 12. The B3LYP/cc-pVTZ calculated geometries of transition states of ketene 37
Figure 13. The IRC each channel paths. 42
B. Synthesis of the trisilacyclopropyl radical (Si3H5) via SiH ( 2Π ) + Disilane Si2H6( 1A1g ) reaction 55
1. Introduction 55
2. Theoretical methods 57
2.1 The reaction pathway searches through ab initio electronic structure calculations 57
2.2 Hybrid functional B3LYP 57
2.3 CCSD(T)/CBS calculations 58
2.4 RRKM rate constant 58
3. Results and Discussions 59
3.1 Collision Complexes 59
3.2 Reaction pathways 60
3.3 The most probable paths 65
4. Conclusion 67
5. Reference 69
Table 1. SiH (2Π) + Si2H6 (1A1g) energy with cc-pVTZ basis set 71
Table 2. The RRKM model rate constants (s-1) 85
Figure 1. The probable pathways of the SiH (2Π) + Si2H6 (1A1g) 89
Figure 2. The probable pathways of the c1 90
Figure 3. The probable pathways of the c1' 91
Figure 4. The probable pathways of the i1 92
Figure 5. The probable pathways of the i1' 93
Figure 6. The probable pathways of the i2 94
Figure 7. The probable pathways of the i7 95
Figure 8. The probable pathways of the i7' 96
Figure 9. The B3LYP/cc-pVTZ calculated geometries of reactants, complexes, intermediates, and products of SiH (2Π) + Si2H6 (1A1g) 97
Figure 10. The B3LYP/cc-pVTZ calculated transition states(to intermediate) structures 108
Figure 11. The B3LYP/cc-pVTZ calculated transition states (to product) structures 116
Figure 12. The IRC paths of each channel. 120
A. Formation pathways of ketene (H2CCO)
1. G. F. Adams, R. W. Shaw, Annu. Rev. Phys. Chem. 1992, 43, 311-340.
2. M. Greenfield, Y. Q. Guo, E. R. Bernstein, Chem. Phys. Lett. 2006, 430, 277-281.
3. Y. Q. Guo, M. Greenfield, A. Bhattacharya, E. R. Bernstein, J. Chem. Phys. 2007, 127, 154301.
4. N. C. Dang, J. L. Gottfried, F. C. De Lucia, Appl. Opt. 2017, 56, B85-B91.
5. C. Capellos, P. Papagiannakopoulos, Y. L. Liang, Chem. Phys. Lett. 1989, 164, 533-538.
5. H. Zuckermann, G. D. Greenblatt, Y. Haas, J. Phys. Chem. 1987, 91, 5159-5161.
6. K. L. Gares, S. V. Bykov, T. Brinzer, S. A. Asher, Appl. Spectrosc. 2015, 69, 545-554.
7. T. R. Botcher, C. A. Wight, J. Phys. Chem. 1993, 97, 9149-9153.
8. Y. Lee, C. J. Tang, T. A. Litzinger, Combust. Flame. 1999, 117, 600-628.
9. X. Zhao, E. J. Hintsa, Y. T. Lee, J. Chem. Phys. 1988, 88, 801-810.
10. R. Behrens, S. Bulusu, J. Phys. Chem. 1992, 96, 8877-8891.
11. J. T. Dickinson, L. C. Jensen, D. L. Doering, R. Yee, J. Appl. Phys. 1990, 67, 3641-3651.
12. R. W. Molt, T. Watson, A. P. Bazante, R. J. Bartlett, N. G. J. Richards, Phys. Chem. Chem. Phys. 2016, 18, 26069-26077.
13. M. J. Abplanalp, M. Förstel, R. I. Kaiser, Chem. Phys. Lett. 2016, 644, 79-98.
14. O. Kostko, B. Bandyopadhyay, M. Ahmed, Annu. Rev. Phys. Chem. 2016, 67, 19-40.
15. B. M. Jones, R. I. Kaiser, J. Phys. Chem. Lett. 2013, 4, 1965-1971.
16. R. I. Kaiser, S. Maity, B. M. Jones, Phys. Chem. Chem. Phys. 2014, 16, 3399-3424.
17. S. K. Singh, J. La Jeunesse, V. Vuppuluri, S. F. Son, B. J. Sun, Y. L. Chen, A. H. H. Chang, A. M. Mebel, R. I. Kaiser, Chemphyschem. 2020, 21, 837-842.
18. C. Lee, W. Yang, R. G. Parr, Phys Rev B Condens Matter 1988, 37, 785-789.
19. A. D. Becke, Phys. Rev. A. Gen. Phys. 1988, 38, 3098-3100.
20. I. N. Levine, Quantum chemistry. 2004, 567.
21. J. A. Pople, M. Head‐Gordon, K. Raghavachari, J. Chem. Phys. 1989, 90, 4635-4636.
22. R. J. Bartlett, J. Chem. Phys. 1989, 93, 1697-1708.
23. J. Čížek, J. Paldus, Phys. Scr. 1980, 21, 251-255.
24. J. Čížek, J. Chem. Phys. 1966, 45, 4256-4266.

B. Synthesis of the trisilacyclopropyl radical (Si3H5) via SiH ( 2Π ) + Disilane Si2H6 ( 1A1g ) reaction
1. I. Langmuir, J. Am. Chem. Soc. 1919, 41, 868-934.
2. I. Langmuir, J. Am. Chem. Soc. 1919, 41, 1543-1559.
3. R. I. Kaiser, S. P. Krishtal, A. M. Mebel, O. Kostko, M. Ahmed, Astrophys. J. 2012, 761, 178.
4. M. Kosa, M. Karni, Y. Apeloig, J. Chem. Theory Comput. 2006, 2, 956-964.
5. M. S. Gordon, D. Bartol, J. Am. Chem. Soc. 1987, 109, 5948-5950.
6. W. Thiel, A. A. Voityuk, J. Mol. Struct.: THEOCHEM 1994, 313, 141-154.
7. P. Antoniotti, C. Canepa, L. Operti, R. Rabezzana, G. Tonachini, G. A. Vaglio, J. Phys. Chem. A, 1999, 103, 10945-10954.
8. M. B. Coolidge, D. A. Hrovat, W. T. Borden, J. Am. Chem. Soc. 1992, 114, 2354-2359.
9. R. I. Kaiser, X. Gu, J. Chem. Phys. 2009, 131, 104311.
10. D. S. N. Parker, A. V. Wilson, R. I. Kaiser, N. J. Mayhall, M. Head-Gordon, A. G. G. M. Tielens, Astrophys. J. 2013, 770, 33.
11. S. Ishida, T. Iwamoto, C. Kabuto, M. Kira, Nature 2003, 421, 725-727.
12. H. Tanaka, S. Inoue, M. Ichinohe, M. Driess, A. Sekiguchi, Organometallics 2011, 30, 3475-3478.
13. T. Veszprémi, K. Petrov, C. T. Nguyen, Organometallics 2006, 25, 1480-1484.
14. M. Kosa, M. Karni, Y. Apeloig, J. Am. Chem. Soc. 2004, 126, 10544–10545.
15. G. Sun, M. Lucas, Y. Song, J. Zhang, C. Brazier, P. L. Houston, J. M. Bowman, J Phys Chem A 2019, 123, 9957-9965.
16. W. Xu, J. Yang, W. Xiao, J. Phys. Chem. A 2004, 108, 11345-11353.
17. A. Burcat, E. Goos, Int. J. Chem. Kinet 2018, 50, 633-650.
18. J. A. Gámez, M. Hermann, G. Frenking, Z. Anorg. Allg. Chem. 2013, 639, 2493-2501.
19. S. Doddipatla, Z, Yang, A. M. Thomas, Y. L. Chen, B. J. Sun, A. H. H. Chang, A. M. Mebel, and R. I. Kaiser, J. Phys. Chem. Lett. 2020, 11, 7874-7881.
20. A. D. Becke, Phys. Rev. A. Gen. Phys. 1988, 38, 3098-3100.
21. C. Lee, W. Yang, R. G. Parr, Phys Rev B Condens Matter 1988, 37, 785-789.
22. A. H. H. Chang, A. M. Mebel, X. M. Yang, S. H. Lin, Y. T. Lee, J. Chem. Phys. 1998, 109, 2748-2761.
23. R. A. Marcus, J. Chem. Phys. 1952, 20, 359-364.
(此全文20260517後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *