帳號:guest(3.133.113.72)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:鄭博陽
作者(英文):Po-Yang Cheng
論文名稱:含分枝碳氟鏈發光團之合成與光物理性質研究
論文名稱(英文):Synthesis and photophysical properties of branched semi-perfluoroalkyl-substituted chromophores
指導教授:林哲仁
指導教授(英文):Che-Jen Lin
口試委員:杜澄達
陳國庭
口試委員(英文):Ching-Tat TO
Kuo-Ting Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610812103
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:202
關鍵詞:發光團聚集誘導放光氟鏈聚集螢光淬滅α-氰基二苯乙烯苝雙醯亞胺自組裝引導分子排列光物理
關鍵詞(英文):AIEchromophoresACQAggregation-Induced EmissionAggregation-Caused QuenchingPerylene Bisimideα-CyanostilbeneBranched Semi-Perfluoroalkyl ChainPerfluoroalkyl ChainPerfluoroSelf-assemblyphotophysical
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
含氟化合物分子之間具有氟-氟、氟-氫的交互作用,引入長氟鏈可影響分子間之堆疊。由於化合物能引入基團的位置有限,引入分枝氟鏈可提升化合物含氟比例,並避免使用長氟鏈而導致之生物累積性。本論文改良文獻中合成分枝氟鏈之方法,並開發出新的分枝氟鏈、引入不同官能基(如胺基、重氮、乙烯基)。本論文將氟鏈引入發光團(苝雙醯亞胺、α-氰基二苯乙烯),探討分枝氟鏈對於溶液態、聚集態與固態之光物理性質之影響。在苝雙醯亞胺的苯環區與醯亞胺皆成功引入分枝氟鏈,含分枝氟鏈苝雙醯亞胺於溶液態的螢光量子產率高,而於聚集態有分子聚集螢光淬滅,但也觀察到激發雙體的形成。於α-氰基二苯乙烯醯胺鍵的間位引入分枝氟鏈醯胺,其溶液態螢光量子產率低,但聚集態有聚集誘導發光的現象;在靠近氰基的苯環引入分枝氟鏈的α-氰基二苯乙烯,其溶劑中螢光量子產率高但聚集時螢光下降。
摘要 ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 緒論 1
1-1 長氟鏈性質 1
1-1.1 長氟鏈分子的性質 1
1-1.2 氟鏈分子與分子間交互作用 1
1-2 堆疊與光物理特性 6
1-2.1 分子聚集螢光增加與淬滅特性 6
1-2.2 J堆疊與H堆疊 8
1-3 苝二醯亞胺 9
1-3.1苝二醯亞胺性質 9
1-3.2 苝二醯亞胺引入位阻基團性質 10
1-4 α-氰基二苯乙烯 12
1-4.1 α-氰基二苯乙烯光物理特性 12
1-4.2 α-氰基二苯乙烯應用 13
1-4 研究動機 16
第二章 結果與討論 17
2-1合成方法 17
2-1.1 分枝氟鏈合成 17
2-1.2 苝二醯亞胺的合成 20
2-1.3 α-氰基二苯乙烯合成 21
2-2 光譜結果與討論 26
2-2.1 化合物12與13的吸收光譜 26
2-2.2化合物12與13的螢光光譜與螢光量子產率 27
2-2.3 化合物12與13的 AIE 效應 28
2-2.4 化合物 18 的吸收光譜 29
2-2.5 化合物18的螢光光譜 30
2-2.6 化合物18的 AIE 效應 30
2-2.4 化合物 20、23、26 的吸收光譜 31
2-2.5 化合物 20、23、26的螢光光譜與螢光量子產率 32
2-2.6 化合物 20、23、26的 AIE 效應 34
第三章 結論與未來規劃 35
第四章 實驗方法 36
4-1 儀器、藥品 36
4-2 方法 40
4-3合成步驟 43
參考文獻 64
附錄:各化合物1H NMR、13C NMR、19F NMR 69
1. O'Hagan, D., Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 2008, 37 (2), 308-319.
2. Lee, S.; Cho, S.; Park, K.-H.; Sung, S. W.; Jheon, S., Transpleural perfusion with oxygenated perfluorocarbon increases systemic oxygenation. Respirology 2009, 14 (5), 695-700.
3. Ma, X.; Yao, M.; Shi, J.; Li, X.; Gao, Y.; Luo, Q.; Hou, R.; Liang, X.; Wang, F., High Intensity Focused Ultrasound-Responsive and Ultrastable Cerasomal Perfluorocarbon Nanodroplets for Alleviating Tumor Multidrug Resistance and Epithelial-Mesenchymal Transition. ACS nano 2020, 14 (11), 15904-15918.
4. Usta, H.; Facchetti, A.; Marks, T. J., n-Channel Semiconductor Materials Design for Organic Complementary Circuits. Acc. Chem. Res. 2011, 44 (7), 501-510.
5. Cormanich, R. A.; O'Hagan, D.; Bühl, M., Hyperconjugation Is the Source of Helicity in Perfluorinated n-Alkanes. Angew. Chem. Int. Ed. 2017, 56 (27), 7867-7870.
6. Gilday, L. C.; Robinson, S. W.; Barendt, T. A.; Langton, M. J.; Mullaney, B. R.; Beer, P. D., Halogen Bonding in Supramolecular Chemistry. Chem. Rev. 2015, 115 (15), 7118-7195.
7. Corradi, E.; Meille, S. V.; Messina, M. T.; Metrangolo, P.; Resnati, G., Halogen Bonding versus Hydrogen Bonding in Driving Self-Assembly Processes. Angew. Chem. Int. Ed. 2000, 39 (10), 1782-1786.
8. Baker, R. J.; Colavita, P. E.; Murphy, D. M.; Platts, J. A.; Wallis, J. D., Fluorine–Fluorine Interactions in the Solid State: An Experimental and Theoretical Study. The Journal of Physical Chemistry A 2012, 116 (5), 1435-1444.
9. Lim, I.; Vian, A.; van de Wouw, H. L.; Day, R. A.; Gomez, C.; Liu, Y.; Rheingold, A. L.; Campàs, O.; Sletten, E. M., Fluorous Soluble Cyanine Dyes for Visualizing Perfluorocarbons in Living Systems. J. Am. Chem. Soc. 2020, 142 (37), 16072-16081.
10. Sletten, E. M.; Swager, T. M., Fluorofluorophores: Fluorescent Fluorous Chemical Tools Spanning the Visible Spectrum. J. Am. Chem. Soc. 2014, 136 (39), 13574-13577.
11. Schmidt, R.; Ling, M. M.; Oh, J. H.; Winkler, M.; Könemann, M.; Bao, Z.; Würthner, F., Core-Fluorinated Perylene Bisimide Dyes: Air Stable n-Channel Organic Semiconductors for Thin Film Transistors with Exceptionally High On-to-Off Current Ratios. Adv. Mater. 2007, 19 (21), 3692-3695.
12. Yoshinaga, K.; Swager, T. M., Fluorofluorescent Perylene Bisimides. Synlett 2018, 29 (19), 2509-2514.
13. Sun, H.; Putta, A.; Kloster, J. P.; Tottempudi, U. K., Unexpected photostability improvement of aromatics in polyfluorinated solvents. Chem. Commun. 2012, 48 (99), 12085-12087.
14. Lu, N.; Zheng, J.-H.; Lin, L.-C.; Liu, L.-K.; Chiang, H.-F.; Li, T.-Y.; Wen, Y.-S.; Yang, C.-K.; Chen, S.-W.; Thrasher, J. S., Studies of two different types of intramolecular C–H···F–C interactions from polyfluorinated diiodometal(II) diimine complexes. J. Chin. Chem. Soc. 2019, 66 (1), 31-40.
15. Barker, N. M.; Li, Y.-X.; Lee, M. M.; Shen, C.-R.; Krause, J. A.; Sun, S.-S.; Lu, N.; Connick, W. B.; McMillin, D. R., Synthesis, Luminescence, and Structure of a Polymorphic Polyfluorinated Diiodoplatinum(II) Diimine Complex. Inorg. Chem. 2019, 58 (16), 10716-10724.
16. Seybold, G.; Wagenblast, G., New perylene and violanthrone dyestuffs for fluorescent collectors. Dyes and Pigments 1989, 11 (4), 303-317.
17. Li, Y.; Tan, L.; Wang, Z.; Qian, H.; Shi, Y.; Hu, W., Air-Stable n-Type Semiconductor:  Core-Perfluoroalkylated Perylene Bisimides. Org. Lett. 2008, 10 (4), 529-532.
18. Martin, J. W.; Smithwick, M. M.; Braune, B. M.; Hoekstra, P. F.; Muir, D. C. G.; Mabury, S. A., Identification of Long-Chain Perfluorinated Acids in Biota from the Canadian Arctic. Environ. Sci. Technol. 2004, 38 (2), 373-380.
19. Miller, M. A.; Sletten, E. M., A General Approach to Biocompatible Branched Fluorous Tags for Increased Solubility in Perfluorocarbon Solvents. Org. Lett. 2018, 20 (21), 6850-6854.
20. Jüstel, T.; Möller, S.; Winkler, H.; Adam, W., Luminescent Materials. In Ullmann's Encyclopedia of Industrial Chemistry.
21. Mei, J.; Hong, Y.; Lam, J. W. Y.; Qin, A.; Tang, Y.; Tang, B. Z., Aggregation-Induced Emission: The Whole Is More Brilliant than the Parts. Adv. Mater. 2014, 26 (31), 5429-5479.
22. Hong, Y.; Lam, J. W. Y.; Tang, B. Z., Aggregation-induced emission. Chem. Soc. Rev. 2011, 40 (11), 5361-5388.
23. Zhao, Z.; Chen, S.; Lam, J. W. Y.; Lu, P.; Zhong, Y.; Wong, K. S.; Kwok, H. S.; Tang, B. Z., Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries. Chem. Commun. 2010, 46 (13), 2221-2223.
24. Zong, L.; Xie, Y.; Wang, C.; Li, J.-R.; Li, Q.; Li, Z., From ACQ to AIE: the suppression of the strong π–π interaction of naphthalene diimide derivatives through the adjustment of their flexible chains. Chem. Commun. 2016, 52 (77), 11496-11499.
25. Hestand, N. J.; Spano, F. C., Expanded Theory of H- and J-Molecular Aggregates: The Effects of Vibronic Coupling and Intermolecular Charge Transfer. Chem. Rev. 2018, 118 (15), 7069-7163.
26. Li, J.; Dierschke, F.; Wu, J.; Grimsdale, A. C.; Müllen, K., Poly(2,7-carbazole) and perylene tetracarboxydiimide: a promising donor/acceptor pair for polymer solar cells. J. Mater. Chem. 2006, 16 (1), 96-100.
27. Sonar, P.; Fong Lim, J. P.; Chan, K. L., Organic non-fullerene acceptors for organic photovoltaics. Energy & Environmental Science 2011, 4 (5), 1558-1574.
28. Kaufmann, C.; Kim, W.; Nowak-Król, A.; Hong, Y.; Kim, D.; Würthner, F., Ultrafast Exciton Delocalization, Localization, and Excimer Formation Dynamics in a Highly Defined Perylene Bisimide Quadruple π-Stack. J. Am. Chem. Soc. 2018, 140 (12), 4253-4258.
29. Zhao, Q.; Zhang, S.; Liu, Y.; Mei, J.; Chen, S.; Lu, P.; Qin, A.; Ma, Y.; Sun, J. Z.; Tang, B. Z., Tetraphenylethenyl-modified perylene bisimide: aggregation-induced red emission, electrochemical properties and ordered microstructures. J. Mater. Chem. 2012, 22 (15), 7387-7394.
30. Schmidt, R.; Oh, J. H.; Sun, Y.-S.; Deppisch, M.; Krause, A.-M.; Radacki, K.; Braunschweig, H.; Könemann, M.; Erk, P.; Bao, Z.; Würthner, F., High-Performance Air-Stable n-Channel Organic Thin Film Transistors Based on Halogenated Perylene Bisimide Semiconductors. J. Am. Chem. Soc. 2009, 131 (17), 6215-6228.
31. Zhang, F.; Ma, Y.; Chi, Y.; Yu, H.; Li, Y.; Jiang, T.; Wei, X.; Shi, J., Self-assembly, optical and electrical properties of perylene diimide dyes bearing unsymmetrical substituents at bay position. Sci. Rep. 2018, 8 (1), 8208.
32. Stolte, M.; Schembri, T.; Süß, J.; Schmidt, D.; Krause, A.-M.; Vysotsky, M. O.; Würthner, F., 1-Mono- and 1,7-Disubstituted Perylene Bisimide Dyes with Voluminous Groups at Bay Positions: In Search for Highly Effective Solid-State Fluorescence Materials. Chem. Mater. 2020, 32 (14), 6222-6236.
33. Bhosale, R. S.; Aljabri, M.; La, D. D.; Bhosale, S. V.; Jones, L. A.; Bhosale, S. V., Tetraphenylethene Derivatives: A Promising Class of AIE Luminogens—Synthesis, Properties, and Applications. In Principles and Applications of Aggregation-Induced Emission, Tang, Y.; Tang, B. Z., Eds. Springer International Publishing: Cham, 2019; pp 223-264.
34. Zhu, L.; Zhao, Y., Cyanostilbene-based intelligent organic optoelectronic materials. J. Mater. Chem. C 2013, 1 (6), 1059-1065.
35. An, B.-K.; Lee, D.-S.; Lee, J.-S.; Park, Y.-S.; Song, H.-S.; Park, S. Y., Strongly Fluorescent Organogel System Comprising Fibrillar Self-Assembly of a Trifluoromethyl-Based Cyanostilbene Derivative. J. Am. Chem. Soc. 2004, 126 (33), 10232-10233.
36. An, B.-K.; Gihm, S. H.; Chung, J. W.; Park, C. R.; Kwon, S.-K.; Park, S. Y., Color-Tuned Highly Fluorescent Organic Nanowires/Nanofabrics: Easy Massive Fabrication and Molecular Structural Origin. J. Am. Chem. Soc. 2009, 131 (11), 3950-3957.
37. An, B.-K.; Gierschner, J.; Park, S. Y., π-Conjugated Cyanostilbene Derivatives: A Unique Self-Assembly Motif for Molecular Nanostructures with Enhanced Emission and Transport. Acc. Chem. Res. 2012, 45 (4), 544-554.
38. Jana, P.; Paramasivam, M.; Khandelwal, S.; Dutta, A.; Kanvah, S., Perturbing the AIEE activity of pyridine functionalized α-cyanostilbenes with donor substitutions: an experimental and DFT study. New J. Chem. 2020, 44 (1), 218-230.
39. Yoon, S.-J.; Chung, J. W.; Gierschner, J.; Kim, K. S.; Choi, M.-G.; Kim, D.; Park, S. Y., Multistimuli Two-Color Luminescence Switching via Different Slip-Stacking of Highly Fluorescent Molecular Sheets. J. Am. Chem. Soc. 2010, 132 (39), 13675-13683.
40. Xu, Y.; Wang, K.; Zhang, Y.; Xie, Z.; Zou, B.; Ma, Y., Fluorescence mutation and structural evolution of a π-conjugated molecular crystal during phase transition. J. Mater. Chem. C 2016, 4 (6), 1257-1262.
41. Zhu, L.; Ang, C. Y.; Li, X.; Nguyen, K. T.; Tan, S. Y.; Ågren, H.; Zhao, Y., Luminescent Color Conversion on Cyanostilbene-Functionalized Quantum Dots via In-situ Photo-Tuning. Adv. Mater. 2012, 24 (29), 4020-4024.
42. Jones, B. A.; Facchetti, A.; Wasielewski, M. R.; Marks, T. J., Tuning Orbital Energetics in Arylene Diimide Semiconductors. Materials Design for Ambient Stability of n-Type Charge Transport. J. Am. Chem. Soc. 2007, 129 (49), 15259-15278.
43. Aebischer, O. F.; Muñoz, D. T.; Tondo, P.; Débieux, J.-L.; Jenny, T. A., Synthesis of Hexa-peri-hexobenzocoronenes Carrying Linear or Branched Perfluoroalkylated Side Chains. Synthesis 2010, 2010 (07), 1123-1140.
44. Alameddine, B.; Aebischer, O. F.; Amrein, W.; Donnio, B.; Deschenaux, R.; Guillon, D.; Savary, C.; Scanu, D.; Scheidegger, O.; Jenny, T. A., Mesomorphic Hexabenzocoronenes Bearing Perfluorinated Chains. Chem. Mater. 2005, 17 (19), 4798-4807.
45. Lewis, F. D.; Kalgutkar, R. S.; Yang, J.-S., The Photochemistry of trans-ortho-, -meta-, and -para-Aminostilbenes. J. Am. Chem. Soc. 1999, 121 (51), 12045-12053.
46. Yang, J.-S.; Liau, K.-L.; Li, C.-Y.; Chen, M.-Y., Meta Conjugation Effect on the Torsional Motion of Aminostilbenes in the Photoinduced Intramolecular Charge-Transfer State. J. Am. Chem. Soc. 2007, 129 (43), 13183-13192.
47. Yang, J.-S.; Huang, G.-J.; Liu, Y.-H.; Peng, S.-M., Photoisomerization of the green fluorescence protein chromophore and the meta- and para-amino analogues. Chem. Commun. 2008, (11), 1344-1346.
48. Breen, J. M.; Olejarz, S.; Seddon, K. R., Microwave Synthesis of Short-Chained Fluorinated Ionic Liquids and Their Surface Properties. ACS Sustainable Chemistry & Engineering 2016, 4 (2), 387-391.
49. Chen, Z.; Fimmel, B.; Würthner, F., Solvent and substituent effects on aggregation constants of perylene bisimide π-stacks – a linear free energy relationship analysis. Org. Biomol. Chem. 2012, 10 (30), 5845-5855.
50. Ge, C.-W.; Mei, C.-Y.; Ling, J.; Wang, J.-T.; Zhao, F.-G.; Liang, L.; Li, H.-J.; Xie, Y.-S.; Li, W.-S., Acceptor–acceptor conjugated copolymers based on perylenediimide and benzothiadiazole for all-polymer solar cells. J. Polym. Sci., Part A: Polym. Chem. 2014, 52 (8), 1200-1215.
51. Son, M.; Park, K. H.; Shao, C.; Würthner, F.; Kim, D., Spectroscopic Demonstration of Exciton Dynamics and Excimer Formation in a Sterically Controlled Perylene Bisimide Dimer Aggregate. J. Phys. Chem. Lett. 2014, 5 (20), 3601-3607.
52. Zhang, Y.; Zhuang, G.; Ouyang, M.; Hu, B.; Song, Q.; Sun, J.; Zhang, C.; Gu, C.; Xu, Y.; Ma, Y., Mechanochromic and thermochromic fluorescent properties of cyanostilbene derivatives. Dyes and Pigments 2013, 98 (3), 486-492.
53. Karimi, B.; Golshani, B., Iodine-Catalyzed, Efficient and Mild Procedure for Highly Chemoselective Acetalization of Carbonyl Compounds under Neutral Aprotic Conditions. Synthesis 2002, 2002 (06), 0784-0788.
54. Shang, X.; Liu, X.; Sun, Y., Flexible on-site halogenation paired with hydrogenation using halide electrolysis. Green Chemistry 2021, 23 (5), 2037-2043.
55. Fischer, C.; Sparr, C., Direct Transformation of Esters into Heterocyclic Fluorophores. Angew. Chem. Int. Ed. 2018, 57 (9), 2436-2440.
56. Kim, E.; Koh, M.; Lim, B. J.; Park, S. B., Emission Wavelength Prediction of a Full-Color-Tunable Fluorescent Core Skeleton, 9-Aryl-1,2-dihydropyrrolo[3,4-b]indolizin-3-one. J. Am. Chem. Soc. 2011, 133 (17), 6642-6649.

(此全文20260908後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *