帳號:guest(3.14.254.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:孫仲德
作者(英文):Chung-Te Sun
論文名稱:合成具磁性之Ce/Fe複合奈米材料於多磷酸化磷酸化蛋白質體學之應用
論文名稱(英文):Synthesis of Ce/Fe oxide magnetic nanomaterials for the selective enrichment of multi-phosphopeptides
指導教授:江政剛
指導教授(英文):Cheng-Kang Chiang
口試委員:何彥鵬
廖美儀
口試委員(英文):Yen-Peng Ho
Mei-Yi Liao
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610812105
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:93
關鍵詞:溶膠凝膠法磁性奈米材料四氧化三鐵二氧化鈰多磷酸化蛋白質體學
關鍵詞(英文):sol–gel processmagnetic nanomaterialiron oxidecerium oxidemuti-phosphoproteomic
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
本研究旨在探討利用共沉澱法與溶膠−凝膠法,搭配高溫爐鍛燒來合成的具磁性之Ce/Fe複合奈米材料以用於純化複雜生物基質中的多磷酸化胜肽。吾人首先合成四氧化三鐵(Fe3O4)奈米材料,藉由溶膠−凝膠法合成二氧化矽包覆之鐵奈米粒子後,最後利用高溫鍛燒法合成Ce/Fe合金包覆之方形磁性奈米材料(Fe3O4@Ce/Fe)。實驗結果顯示Fe3O4@Ce/Fe奈米材料,可於調整溶液裡的麩胺酸(Glutamic acid)濃度下,對於多磷酸化胜肽有良好的靈敏度和專一性。當利用Fe3O4@Ce/Fe奈米材料作為多磷酸化胜肽選擇性探針時,最低可偵測到20 femtomole之低濃度β-酪蛋白(β-casein)之多磷酸化胜肽外,亦可於牛血清蛋白(BSA)和β-casein以莫爾數比5000:1的比例混合下,有效偵測屬於-casein的多磷酸化胜肽片段。此外,Fe3O4@Ce/Fe奈米材料也能從β-酪蛋白(β-casein)和α-酪蛋白(α-casein)的胰蛋白酶消化胜肽富集多磷酸化胜肽,並能有效真實樣品如脫酯奶粉的分析時,亦可選擇性的分離9條多磷酸化胜肽。
Herein we provide a straightforward strategy for the synthesis of cubic Ce/Fe magnetic nanomaterials (Fe3O4@Ce/Fe) using a sol-gel method under hydrothermal treatment for the enrichment of multi-phosphpeptides in complex biological matrices. Under optimized glutamic acid concentration, Fe3O4@Ce/Fe nanomaterials display superuor affinity towards muti-phosphopeptides with good detection limit (20 fmol for β-casein tryptic lysates), immoderate selectivity (5000:1 molar ratio of bovine serum albumin digest vesus β-casein digest), and reasonable repeatability. In addition, the improved performance of muti-phosphopeptides enrichment by Fe3O4@Ce/Fe has been shown by serial dilution of sample matrix composed of α-casein and b-casein digests. Moreover, the Fe3O4@Ce/Fe also demonstrate their feasibility by efficiently capturing 9 muti-phosphopeptides from a milk powder digest.
總目錄
謝誌 I
中文摘要 III
英文摘要 V
總目錄 VII
圖目錄 XI
表目錄 XV
一、 緒論 1
1.1 奈米材料和磁性奈米材料的基本特性 1
1.2 利用質譜法進行蛋白質體學或磷酸化蛋白質體學分析 3
1.3 固定化金屬離子層析法(immobilized metal-ion affinity chromatography,IMAC) 5
1.4 金屬氧化物親和層析法(metal oxide affinity chromatography,MOAC) 6
1.5 以溶膠−凝膠法(sol-gel method)製備二氧化矽包覆之鐵奈米粒子 7
1.6 富集磷酸化胜肽的方法 9
二、 研究目標 13
三、 研究內容 15
3.1 藥品 15
3.2 儀器 16
3.3 實驗方法 17
3.3.1 Fe3O4奈米材料的合成 17
3.3.2 Fe3O4@MPS的合成 17
3.3.3 Fe3O4@Ce/Fe(1:0.3)的合成 17
3.3.4 Fe3O4@Ce/Fe(1:0.6)的合成 17
3.3.5 Fe3O4@Ce/Fe(1:0.9)的合成 18
3.3.6 Fe3O4@Ce/Fe(1:1.2)的合成 18
3.3.7 製備α-casein經胰蛋白酶酵素消化之胜肽樣品 18
3.3.8 製備β-casein經胰蛋白酶酵素消化之胜肽樣品 19
3.3.9 製備BSA經胰蛋白酶酵素消化之胜肽樣品 19
3.3.10 製備脫脂牛奶經胰蛋白酶酵素消化之胜肽樣品 19
3.3.11 製備人類血清(human serum)經胰蛋白酶酵素消化之胜肽樣品 20
3.3.12 利用所合成之磁性奈米材料進行磷酸化胜肽富集 20
3.3.13 利用Fe3O4@Ce/Fe(1:0.6)奈米材料富集脫脂奶粉中經由胰蛋白酶消化後產生之磷酸化胜肽 20
3.3.14 利用Fe3O4@Ce/Fe(1:0.6)奈米材料富集人類血清中經由胰蛋白酶消化後產生之磷酸化胜肽 20
3.4 儀器設定參數 21
3.4.1 MALDI-MS參數設定 21
3.4.2 MALDI-MS校正 21
四、 實驗結果 23
4.1 合成並鑑定所合成之Ce/Fe修飾之鐵奈米粒子 23
4.2 量測不同奈米材料的FT-IR圖譜 26
4.3 不同磁性奈米材料的磁性能力分析 28
4.4 不同奈米材料的熱重分析儀之結果分析 30
4.5 不同奈米材料的X光繞射分析圖譜分析 32
4.6 Fe3O4@Ce/Fe奈米材料的能量色散X射線譜分析 34
4.7 研究不同奈米材料的富集效果 35
4.8 合成不同莫爾比例的Fe3O4@Ce/Fe奈米材料 37
4.9 不同奈米材料的Zeta-potential圖譜分析 39
4.10 不同莫爾比例Fe3O4@Ce/Fe奈米材料的ICP-MS圖譜 41
4.11 不同莫爾比例Fe3O4 @Ce/Fe奈米材料的XRD圖譜 43
4.12 不同莫爾比例Fe3O4@Ce/Fe奈米材料的富集效果 45
4.13 不同奈米材料的X射線光電子能譜學圖譜分析 47
4.14 Loading Buffer中不同濃度的Glutamic acid對於多磷酸化胜肽之富集效果 51
4.15 不同Glutamic acid濃度對於α-casein與-casein多磷酸化胜肽之富集效果 53
4.16 研究不同奈米材料對於α-casein與-casein富集單磷酸和多磷酸的效率 56
4.17 Fe3O4@Ce/Fe(1:0.6)富集不同濃度下α-casein與-casein磷酸化胜肽之效率 58
4.18 利用最佳化Fe3O4@Ce/Fe奈米材料富集含有不同數量磷酸根之磷酸化胜肽 60
4.19 利用最佳化Fe3O4@Ce/Fe(1:0.6)奈米材料做重複性的測試 61
4.20 以Fe3O4@Ce/Fe(1:0.6)富集β-casein磷酸化胜肽之最低濃度的測試 62
4.21 以Fe3O4@Ce/Fe(1:0.6)奈米材料不同複雜的基質中富集β-casein磷酸化胜肽 63
4.22 利用最佳化Fe3O4@Ce/Fe奈米材料和相對較小的Fe3O4@Ce/Fe奈米材料比較β-casein富集效果 64
4.23 利用最佳化Fe3O4@Ce/Fe奈米材料富集脫酯牛奶之磷酸化胜肽 66
4.24 利用最佳化Fe3O4@Ce/Fe奈米材料富集人類血清之磷酸化胜肽 67
五、 結論 69
六、 參考文獻 71
1. Kravets, V. G.; Kabashin, A. V.; Barnes, W. L.; Grigorenko, A. N., Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chemical Reviews 2018, 118 (12), 5912-5951.
2. Ross, M. B.; Mirkin, C. A.; Schatz, G. C., Optical Properties of One-, Two-, and Three-Dimensional Arrays of Plasmonic Nanostructures. The Journal of Physical Chemistry C 2016, 120 (2), 816-830.
3. Colombo, M.; Carregal-Romero, S.; Casula, M. F.; Gutierrez, L.; Morales, M. P.; Bohm, I. B.; Heverhagen, J. T.; Prosperi, D.; Parak, W. J., Biological applications of magnetic nanoparticles. Chem Soc Rev 2012, 41 (11), 4306-34.
4. Lee, N.; Yoo, D.; Ling, D.; Cho, M. H.; Hyeon, T.; Cheon, J., Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy. Chemical Reviews 2015, 115 (19), 10637-10689.
5. Enlei, Z.; Lijie, W.; Bengui, Z.; Chuanbi, S.; Ying, Z.; Guosheng, W., Effect of Fenton Oxidation Performance and Kinetics with Different Morphologies of α-Fe₂O₃ Nanocrystals. J Nanosci Nanotechnol 2018, 18 (4), 2637-2642.
6. Fütterer, S.; Andrusenko, I.; Kolb, U.; Hofmeister, W.; Langguth, P., Structural characterization of iron oxide/hydroxide nanoparticles in nine different parenteral drugs for the treatment of iron deficiency anaemia by electron diffraction (ED) and X-ray powder diffraction (XRPD). Journal of pharmaceutical and biomedical analysis 2013, 86, 151-60.
7. Aslam, B.; Basit, M.; Nisar, M. A.; Khurshid, M.; Rasool, M. H., Proteomics: Technologies and Their Applications. Journal of chromatographic science 2017, 55 (2), 182-196.
8. Ke, M.; Shen, H.; Wang, L.; Luo, S.; Lin, L.; Yang, J.; Tian, R., Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics. Advances in experimental medicine and biology 2016, 919, 345-382.
9. Protein Phosphorylation. Kinexus.
10. Ficarro, S. B.; McCleland, M. L.; Stukenberg, P. T.; Burke, D. J.; Ross, M. M.; Shabanowitz, J.; Hunt, D. F.; White, F. M., Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat Biotechnol 2002, 20 (3), 301-305.
11. Gronborg, M.; Kristiansen, T. Z.; Stensballe, A.; Andersen, J. S.; Ohara, O.; Mann, M.; Jensen, O. N.; Pandey, A., A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies: identification of a novel protein, Frigg, as a protein kinase A substrate. Mol Cell Proteomics 2002, 1 (7), 517-527.
12. Osterberg, R., Metal and hydrogen-ion binding properties of o-phosphoserine. Nature 1957, 179 (4557), 476-7.
13. Porath, J.; Carlsson, J.; Olsson, I.; Belfrage, G., Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 1975, 258 (5536), 598-599.
14. Andersson, L.; Porath, J., Isolation of phosphoproteins by immobilized metal (Fe3+) affinity chromatography. Anal Biochem 1986, 154 (1), 250-254.
15. Michel, H. P.; Bennett, J., Identification of the phosphorylation site of an 8.3 kDa protein from photosystem II of spinach. FEBS Letters 1987, 212 (1), 103-108.
16. Suen, S. Y.; Liu, Y. C.; Chang, C. S., Exploiting immobilized metal affinity membranes for the isolation or purification of therapeutically relevant species. J Chromatogr B Analyt Technol Biomed Life Sci 2003, 797 (1-2), 305-319.
17. Wolschin, F.; Wienkoop, S.; Weckwerth, W., Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 2005, 5 (17), 4389-4397.
18. Wolschin, F.; Weckwerth, W., Combining metal oxide affinity chromatography (MOAC) and selective mass spectrometry for robust identification of in vivo protein phosphorylation sites. Plant Methods 2005, 1 (1), 9.
19. Larsen, M. R.; Thingholm, T. E.; Jensen, O. N.; Roepstorff, P.; Jorgensen, T. J., Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 2005, 4 (7), 873-886.
20. Pearson, R. G., Hard and Soft Acids and Bases. Journal of the American Chemical Society 1963, 85 (22), 3533-3539.
21. Malucelli, G., Hybrid Organic/Inorganic Coatings Through Dual-Cure Processes: State of the Art and Perspectives. 2016, 6 (1), 10.
22. Chen, C.-T.; Chen, Y.-C., Fe3O4/TiO2 Core/Shell Nanoparticles as Affinity Probes for the Analysis of Phosphopeptides Using TiO2 Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry 2005, 77 (18), 5912-5919.
23. Cheng, G.; Zhang, J. L.; Liu, Y. L.; Sun, D. H.; Ni, J. Z., Synthesis of novel Fe3O4@SiO2@CeO2 microspheres with mesoporous shell for phosphopeptide capturing and labeling. Chem Commun (Camb) 2011, 47 (20), 5732-4.
24. Peng, J.; Niu, H.; Zhang, H.; Yao, Y.; Zhao, X.; Zhou, X.; Wan, L.; Kang, X.; Wu, R. a., Highly Specific Enrichment of Multi-phosphopeptides by the Diphosphorylated Fructose-Modified Dual-Metal-Centered Zirconium–Organic Framework. ACS Applied Materials & Interfaces 2018, 10 (38), 32613-32621.
25. Zhong, H.; Xiao, X.; Zheng, S.; Zhang, W.; Ding, M.; Jiang, H.; Huang, L.; Kang, J., Mass spectrometric analysis of mono- and multi-phosphopeptides by selective binding with NiZnFe2O4 magnetic nanoparticles. Nature Communications 2013, 4 (1), 1656.
26. Qing, G.; Lu, Q.; Li, X.; Liu, J.; Ye, M.; Liang, X.; Sun, T., Hydrogen bond based smart polymer for highly selective and tunable capture of multiply phosphorylated peptides. Nature Communications 2017, 8 (1), 461.
27. Xu, L.; Ma, W.; Shen, S.; Li, L.; Bai, Y.; Liu, H., Hydrazide functionalized monodispersed silica microspheres: a novel probe with tunable selectivity for a versatile enrichment of phosphopeptides with different numbers of phosphorylation sites in MS analysis. Chemical Communications 2016, 52 (6), 1162-1165.
28. Ma, W.; Xu, S.; Li, J.; Guo, J.; Lin, Y.; Wang, C., Hydrophilic dual-responsive magnetite/PMAA core/shell microspheres with high magnetic susceptibility and ph sensitivity via distillation-precipitation polymerization. 2011, 49 (12), 2725-2733.
29. Mai, H.-X.; Sun, L.-D.; Zhang, Y.-W.; Si, R.; Feng, W.; Zhang, H.-P.; Liu, H.-C.; Yan, C.-H., Shape-Selective Synthesis and Oxygen Storage Behavior of Ceria Nanopolyhedra, Nanorods, and Nanocubes. The Journal of Physical Chemistry B 2005, 109 (51), 24380-24385.
30. Yin; Yin; Wu; Qi; Tian; Zhang; Hu; Feng, Characterization of Coals and Coal Ashes with High Si Content Using Combined Second-Derivative Infrared Spectroscopy and Raman Spectroscopy. Crystals 2019, 9 (10).
31. Ning, J.; Shi, P.; Jiang, M.; Liu, C.; Li, X., Effect of Ce Doping on the Structure and Chemical Stability of Nano-alpha-Fe2O3. Nanomaterials (Basel) 2019, 9 (7).
32. Paramarta, V.; Kristianto, Y.; Taufik, A.; Saleh, R., Improve sonocatalytic performance using modified semiconductor catalyst SnO2 and ZrO2 by magnetite materials. IOP Conference Series: Materials Science and Engineering 2017, 188.
33. Zeng, Y.; Hao, R.; Xing, B.; Hou, Y.; Xu, Z., One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Chemical Communications 2010, 46 (22), 3920-3922.
34. Wang, P.; Meng, F.; Gao, C.; Xie, W.; Wang, J.; Li, A., Structural, morphological and optical characteristics of fusiform Co-doped CeO2 via a facile hydrothermal method. Journal of Materials Science: Materials in Electronics 2018, 29 (13), 11482-11488.
35. Schmidt, A.; Csaszar, E.; Ammerer, G.; Mechtler, K., Enhanced detection and identification of multiply phosphorylated peptides using TiO2 enrichment in combination with MALDI TOF/TOF MS. Proteomics 2008, 8 (21), 4577-92.
36. Kalai Priya, A.; Sunny, A.; Karthikeyan, B.; Sastikumar, D., Optical, spectroscopic and fiber optic gas sensing of potassium doped α-Fe2O3 nanostructures. Optical Fiber Technology 2020, 58, 102304.
37. Wang, F.; Li, M.; Yu, L.; Sun, F.; Wang, Z.; Zhang, L.; Zeng, H.; Xu, X., Corn-like, recoverable γ-Fe2O3@SiO2@TiO2 photocatalyst induced by magnetic dipole interactions. Scientific Reports 2017, 7 (1), 6960.
38. Sulaeman, U.; Permadi, R. D.; Ningsih, D. R.; Diastuti, H.; Riapanitra, A.; Yin, S., Data of XPS in incorporating the platinum complexes dopant on the surface of Ag(3)PO(4) photocatalyst. Data in brief 2020, 28, 104988.
39. Sun, S.; Ma, H.; Han, G.; Wu, R.; Zou, H.; Liu, Y., Efficient enrichment and identification of phosphopeptides by cerium oxide using on-plate matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Rapid Commun Mass Spectrom 2011, 25 (13), 1862-1868.

(此全文20260923後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *