帳號:guest(18.217.241.102)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李以軒
作者(英文):Yi-Syuan Lee
論文名稱:透過紅外線光譜儀,在高壓下探討不同濃度離子液體與D-pyridine的作用力
論文名稱(英文):Using infrared spectroscopy to study the interactions between with various ionic liquid concentration and D-pyridine at high-pressures
指導教授:張海舟
指導教授(英文):Hai-Chou Chang
口試委員:賴建智
胡安仁
口試委員(英文):Chien-Chih Lai
An-Ren Hu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610812109
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:51
關鍵詞:紅外線光譜儀高壓離子液體吡啶分子作用力
關鍵詞(英文):ionic liquidinfrared spectroscopyhigh pressure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏收藏:0
此篇論文是在探討在高壓環境下,用紅外吸收光譜檢測[EMIM][TFSI]和 D-pyridine 之間與[HEMI][TFSI]和 D-pyridine 之間的作用與結構上的變化。首先我們將探討常壓下不同濃度的離子液體與 D-pyridine 的作用,接著以相同環境但加大壓力下去檢測其陰陽離子的變化,發現 D-pyridine 的加入會使陽離子上碳鏈的 C-H以及咪唑鎓 imidazolium 上的 C2-H、C4、5-H 的頻譜產生相對藍位移的現象,再從其頻譜變化中得知,壓力對純離子液體的陰陽離子如何作用,而 D-pyridine 又在何時擠入陰陽離子,或相反的被擠出去,接著,[EMIM][TFSI]和 D-pyridine 之間會傾向與咪唑鎓環上的C2-H 絡合,在[HEMI][TFSI]和 D-pyridine 之間會傾向與咪唑鎓碳鏈上的 O-H 絡合,最後將不同濃度同高壓實驗做成趨勢圖,探討其紅外線吸收峰位置變化,將發現在特定壓力 D-pyridine 會切開離子液體的大團簇,在壓力的上升過程擠進離子液體進而影響陰陽離子,改變其構型,產生新的穩定結構。
In this study, we using infrared (IR) absorption spectroscopy to discover two types of non-covalent interactions for ionic liquids (ILs) and the D-pyridine system at high-pressures. (1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [EMIM] [TSFI], and D-pyridine system or 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [HMIM] [TSFI], and D-pyridine system).

We will discuss about the effects of ionic liquids of different concentrations and D-pyridine under normal pressure, and then continue to detect the changes of anion and cation in the same environment but with increased pressure. It is found that the addition of D-pyridine makes absorption peak of the C-H of the carbon chain on the cation and the C2-H, C4, 5-H on imidazolium produced a relative blue shift, then identify from the changes in the frequency spectrum, how the pressure affects the anions and cations of the pure ionic liquid, and when D-pyridine is squeezed into the anions and cations, or vice versa,

[EMIM][TFSI] and D-pyridine will tend to complex with C2-H on the imidazolium ring, and between [HEMI][TFSI] and D-pyridine will tend to complex with O-H on the imidazolium carbon chain.

Finally, the different concentrations will be compared with the high-pressure experimental trend chart, and the changes in the infrared absorption peak position will be discussed. It will be found that D-pyridine will cleave the ionic liquid under a certain pressure. The large clusters squeezed into the boots of the ionic liquid in the process of rising pressure affect the anions and cations, change their configuration, and produce a new stable structure.
壹、序論 1
一、前言 1
二、離子液體的結構 2
三、Pyridine介紹 4
四、弱氫鍵 5
五、紅外線光譜法 6
貳、實驗 9
一、實驗藥品 9
二、實驗儀器 11
2.1 紅外光譜儀 11
2.2鹽片 12
2.3精密鑽孔機及高速鎢鋼鑽頭 12
2.4鎳鉻合金墊片 13
2.5水分天平 13
2.6 高壓鑽石鉆(Diamond anvil cell, DAC) 14
2.7實體顯微鏡 15
三、樣品處理 16
四、實驗步驟 16
4.1常壓實驗 16
4.1.1 常壓紅外光譜測量 16
4.2高壓實驗 16
4.2.1製作墊片 16
4.2.2 DAC的壓力校正 17
4.2.3 高壓紅外光譜測量 18
4.3 數據分析 20
參、結果與討論 21
一、離子液體[EMIM][TFSI]與D-pyridine 21
1.常壓部分 21
2.高壓部分 25
二、離子液體[HEMI][TFSI]與D-pyridine 33
1.常壓部分 33
2.高壓部分 38
肆、結論 47
伍、參考文獻 49
1.Yu, L., et al., One-pot conversion of ketones to amides via Beckmann rearrangement catalyzed by metal chloride-ionic liquids under solvent-free condition. Catalysis Communications, 2019. 123: p. 119-123.
2.De Boeck, M., et al., Fast and easy extraction of antidepressants from whole blood using ionic liquids as extraction solvent. Talanta, 2018. 180: p. 292-299.
3.Stärk, K., et al., Oxidative depolymerization of lignin in ionic liquids. ChemSusChem, 2010. 3(6): p. 719-723.
4.Dier, T.K., et al., Sustainable electrochemical depolymerization of lignin in reusable ionic liquids. Scientific reports, 2017. 7(1): p. 1-12.
5.Singh, S.K., Solubility of lignin and chitin in ionic liquids and their biomedical applications. International journal of biological macromolecules, 2019. 132: p. 265-277.
6.Jordan, A., et al., Synthesis of a series of amino acid derived ionic liquids and tertiary amines: green chemistry metrics including microbial toxicity and preliminary biodegradation data analysis. Green Chemistry, 2016. 18(16): p. 4374-4392.
7.Seyyedi, N., F. Shirini, and M.S.N. Langarudi, DABCO-based ionic liquids: green and recyclable catalysts for the synthesis of barbituric and thiobarbituric acid derivatives in aqueous media. RSC advances, 2016. 6(50): p. 44630-44640.
8.Thomas, P.A. and B.B. Marvey, Room temperature ionic liquids as green solvent alternatives in the metathesis of oleochemical feedstocks. Molecules, 2016. 21(2): p. 184.
9.Horváth, I.T., Introduction: sustainable chemistry. 2018, ACS Publications.
10.Fujiwara, Y., T. Jintoku, and K. Takaki, CHEMTECH1990, 636.[CAS],[Google Scholar](b) Trost. BM Science, 1991. 278: p. 1471.
11.Zhang, Y., B.R. Bakshi, and E.S. Demessie, Life cycle assessment of an ionic liquid versus molecular solvents and their applications. Environmental science & technology, 2008. 42(5): p. 1724-1730.
12.Jessop, P.G., Fundamental properties and practical applications of ionic liquids: concluding remarks. Faraday discussions, 2017. 206: p. 587-601.
13.Lei, Z., et al., Introduction: ionic liquids. 2017, ACS Publications.
14.Sugden, S. and H. Wilkins, The parachor and chemical constitution XII: Fused metal and salts. Joumal of the Chemical Society, 1929. 1: p. 291-1.
15.Zhang, Q. and J.n.M. Shreeve, Energetic ionic liquids as explosives and propellant fuels: a new journey of ionic liquid chemistry. Chemical reviews, 2014. 114(20): p. 10527-10574.
16.Osaka, N., et al., Unexpected cosolvency of water on poly (propylene glycol) in hydrophobic ionic liquid. Colloid and Polymer Science, 2019. 297(10): p. 1375-1381.
17.Chang, H.-C., T.-H. Wang, and C.M. Burba, Probing structures of interfacial 1-butyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid on nano-aluminum oxide surfaces using high-pressure infrared spectroscopy. Applied Sciences, 2017. 7(8): p. 855.
18.Li, H., et al., Fabrication of thermally stable polysulfone microcapsules containing [EMIm][NTf2] ionic liquid for enhancement of in situ self‐lubrication effect of epoxy. Macromolecular Materials and Engineering, 2016. 301(12): p. 1473-1481.
19.Wang, T.-H., S.-Y. Hong, and H.-C. Chang, The validity of high pressure IR for detecting the interactions between β-cyclodextrin and imidazolium based ionic liquids. AIP Advances, 2019. 9(7): p. 075007.
20.Horowitz, A.I., P. Arias, and M.J. Panzer, Spectroscopic determination of relative Brønsted acidity as a predictor of reactivity in aprotic ionic liquids. Chemical Communications, 2015. 51(30): p. 6651-6654.
21.Yang, Y.-l. and Y. Kou, Determination of the Lewis acidity of ionic liquids by means of an IR spectroscopic probe. Chemical Communications, 2004(2): p. 226-227.
22.Tanner, E.E., C. Batchelor-McAuley, and R.G. Compton, Carbon dioxide reduction in room-temperature ionic liquids: the effect of the choice of electrode material, cation, and anion. The Journal of Physical Chemistry C, 2016. 120(46): p. 26442-26447.
23.Aathira, M., P.K. Khatri, and S.L. Jain, Synthesis and evaluation of bio-compatible cholinium amino acid ionic liquids for lubrication applications. Journal of Industrial and Engineering Chemistry, 2018. 64: p. 420-429.
24.Liu, T., et al., Solvation of AgTFSI in 1‐ethyl‐3‐methylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquid investigated by vibrational spectroscopy and DFT calculations. Journal of Raman Spectroscopy, 2016. 47(4): p. 449-456.
25.Singh, S.K. and A.W. Savoy, Ionic liquids synthesis and applications: An overview. Journal of Molecular Liquids, 2020. 297: p. 112038.
26.Li, K. and T. Kobayashi, A FT-IR spectroscopic study of ultrasound effect on aqueous imidazole based ionic liquids having different counter ions. Ultrasonics Sonochemistry, 2016. 28: p. 39-46.
27.Kroon, M.C., et al., High-pressure phase behavior of systems with ionic liquids: Part V. The binary system carbon dioxide+ 1-butyl-3-methylimidazolium tetrafluoroborate. Journal of Chemical & Engineering Data, 2005. 50(1): p. 173-176.
28.Hajipour, A.R. and F. Rafiee, Recent progress in ionic liquids and their applications in organic synthesis. Organic Preparations and Procedures International, 2015. 47(4): p. 249-308.
29.Giordano, N., et al., High-pressure polymorphism in pyridine. IUCrJ, 2020. 7(1): p. 58-70.
30.Gujjarappa, R., N. Vodnala, and C. Malakar, Recent Advances in Pyridine‐Based Organocatalysis and its Application towards Valuable Chemical Transformations. ChemistrySelect, 2020. 5(28): p. 8745-8758.
31.Desiraju, G.R. and T. Steiner, The weak hydrogen bond: in structural chemistry and biology. Vol. 9. 2001: International Union of Crystal.
32.Stuart, B., Kirk-Othmer Encycl. Chem. Technol. 2015.
33.Wong, P. and D. Moffatt, The uncoupled OH or OD stretch in water as an internal pressure gauge for high-pressure infrared spectroscopy of aqueous systems. Applied spectroscopy, 1987. 41(6): p. 1070-1072.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *