|
1. Peruzzini, M.; Poli, R., Eds. 2001 Recent Advances in Hydride Chemistry, New York. 2. Würtz, A. Sur L̀Hydrure De Ann. Chim. Phys. 1844, 11, 250–251. 3. Mikheeva, V. I.; Mal’tseva, N. N. Formation of Copper Hydride by the Reaction of Copper Sulphate with Diborane and Sodium Tetrahydroborate. Russ. J. Inorg. Chem. 1961, 6, 1. 4. Mikheeva, V. I. Hydrides of the Transition Metals; Office of Technical Services, Department of Commerce, Washington, D.C., 1962; p. 128. 5. Lipshutz, B. H. In Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH: Weinheim, Germany, 2002; p 167. 6. Müller, H.; Bradley, A. J. Copper Hydride and its Crystal Structure J. Chem. Soc. 1926, 129, 1669-1673. 7. Goedkoop, J. A.; Andresen, A. F. The Crystal Structure of Copper Hydride Acta Crystallogr. 1955, 8, 118-119. 8. Dhayal, R. S.; Liao, J.-H.; Lin, Y.-R.; Liao, P.-K.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. A Nanospheric Polyhydrido Copper Cluster of Elongated Triangular Orthobicupola Array: Liberation of H2 from Solar Energy J. Am. Chem. Soc. 2013, 135, 4704-4707. 9. Liao, J.-H.; Dhayal, R. S.; Wang, X.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Neutron Diffraction Studies of a Four-Coordinated Hydride in Near Square-Planar Geometry Inorg. Chem. 2014, 53, 11140-11145. 10. Dhayal, R. S.; Liao, J.-H.; Kahlal, S.; Wang, X.; Liu, Y.-C.; Chiang, M.-H.; Van Zyl, W. E.; Saillard, J.-Y.; Liu, C. W. [Cu32(H)20{S2P(OiPr)2}12]: The Largest Number of Hydrides Recorded in a Molecular Nanocluster by Neutron Diffraction Chem. Eur. J. 2015, 21, 8369-8374. 11. Dhayal, R. S.; Liao, J.-H.; Wang, X.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Diselenophosphates Induced Conversion of An Achiral Cu20(H)11{S2P(OiPr)2}9] into A Chiral [Cu20(H)11{Se2P(OiPr)2}9] Polyhydrido Nanocluster Angew. Chem., Int. Ed. 2015, 54, 13604-13608. 12. Dhayal, R. S.; Van Zyl, W. E.; Liu, C. W. Polyhydrido Copper Clusters: Synthetic Advances, Structural Diversity, and Nanocluster-to-Nanoparticle Conversion Acc. Chem. Res. 2016, 49, 1, 86-95. 13. (a) Kang, X.; Li, Y.; Zhu, M.; Jin, R. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443-6514. (b) Kang, X.; Zhu, M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422-2457. (c) Li, Q.; Chai, J.; Yang, S.; Song, Y.; Chen, T.; Chen, C.; Zhang, H.; Yu, H.; Zhu, M. Multiple ways realizing charge-state transform in Au-Cu bimetallic nanoclusters with atomic precision. Small 2020, accepted article, DOI: 10.1002/smll.201907114. (d) Kwak, K.; Lee, D. Electrochemistry of atomically precise metal nanoclusters. Acc. Chem. Res. 2019, 52, 12-22. 14. (a) Zhou, X.; Li, Y.; Kang, X.; Wei, X.; Wang, S.; Meng, X.; Zhu, M. Doping copper atoms into the nanocluster kernel: total structure determination of [Cu30Ag61(SAdm)38S3](BPh4). J. Phys. Chem. Lett. 2020, 11, 2272-2276. (b) Liao, L.; Zhou, S.; Dai, Y.; Liu, L.; Yao, C.; Fu, C.; Yang, J.; Wu, Z. Mono-mercury doping of Au25 and the HOMO/LUMO energies evaluation employing differential pulse voltammetry. J. Am. Chem. Soc. 2015, 137, 9511-9514. (c) Chang, W.-T.; Lee, P.-Y.; Liao, J.-H.; Chakrahari, K. K.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C. W. Eight‐electron silver and mixed gold/silver nanoclusters stabilized by selenium donor ligands. Angew. Chem. Int. Ed. 2017, 56, 10178-10182. (d) Chang, W.-T.; Sharma, S.; Liao, J.-H.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C. W. Heteroatom‐doping increases cluster nuclearity: from an [Ag20] to an [Au3Ag18] core. Chem. Eur. J. 2018, 24, 14352-14357. 15. Kang, X.; Wei, X.; Jin, S.; Yuan, Q.; Luan, X.; Pei, Y.; Wang, S.; Zhu, M. Jin, R. Rational construction of a library of M29 nanoclusters from monometallic to tetrametallic. PNAS 2019, 116, 18834-18840. 16. (a) Krishnadas, K. R.; Baksi, A.; Ghosh, A.; Natarajan, G.; Pradeep, T. Structure-conserving spontaneous transformations between nanoparticles. Nat. Commun. 2016, 7, 13447. (b) Krishnadas, K. R.; Baksi, A.; Ghosh, A.; Natarajan, G.; Som, A.; Pradeep, T. Interparticle reactions: an emerging direction in nanomaterials chemistry. Acc. Chem. Res. 2017, 50, 1988-1996. 17. Huang, B.; Pei, Y. On the mechanism of inter-cluster alloying reactions: two-stage metal exchange of [Au25(PET)18]- and [Ag25(DMBT)18]- clusters. J. Mater. Chem. A 2020, 8, 10242-10251. 18. Bhat, S.; Baksi, Mudedla, A. K.; Natarajan, G.; Subramanian, V.; Pradeep, T. Au22Ir3(PET)18: an unusual alloy cluster through intercluster reaction. J. Phys. Chem. Lett. 2017, 8, 2787-2793. 19. Krishnadas, K. R.; Baksi, A.; Ghosh, A.; Natarajan, G.; Pradeep, T. Manifestation of geometric and electronic shell structures of metal Clusters in intercluster reactions. ACS Nano 2017, 11, 6015-6023. 20. Khatun, E.; Chakraborty, P.; Jacob, B. R.; Paramasivam, G.; Bodiuzzaman, M.; Dar, W. A.; Pradeep, T. Intercluster reactions resulting in silver-rich trimetallic nanoclusters. Chem. Mater. 2020, 32, 611-619. 21. (a) Kang, X.; Zhu, M. Transformation of atomically precise nanoclusters by ligand-exchange. Chem. Mater. 2019, 31, 9939-9969. (b) Kang, X.; Huang, L.; Liu, W.; Xiong, L.; Pei, Y.; Sun, Z.; Wang, S.; Wei, S.; Zhu, M. Reversible nanocluster structure transformation between face-centered cubic and icosahedral isomers. Chem. Sci. 2019, 10, 8685-8693. (c) Yao, Q.; Fung, V.; Sun, C.; Huang, S.; Chen, T.; Jiang. D.-e.; Lee, J. Y.; Xie, J. Revealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approach. Nat. Commun. 2018, 9, 1979. 22. (a) Poli, R.; Peruzzini, M. Recent Advances in Hydride Chemistry 1st Edition. Elsevier: Amsterdam, 2001, p 557. (b) Dhayal, R. S.; van Zyl, W. E.; Liu, C. W. Polyhydrido copper clusters: synthetic advances, structural diversity, and nanocluster-to-nanoparticle conversion. Acc. Chem. Res. 2016, 49, 86-95. (c) Du, X.; Jin, R. Atomically precise metal nanoclusters for catalysis. ACS Nano 2019, 13, 7383-7387. 23. Zhong, Y.-J.; Liao, J.-H.; Chiu, T.-H.; Wu, Y-.-Y.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Hydride-encapsulated bimetallic clusters supported by 1,1-dithiolates. Chem. Commun. 2020, 56, 9300-9303.tes. Chem. Commun. 2020, 56, 9300-9303. 24. Martins, J. L.; Car, R.; Buttet, J. Surf. Sci. 1981, 106, 265. 25. Knight, W.; Clemenger, K.; Heer, W.; Saunders, W.; Chou, M.; Cohen, M. Phys. Rev. Lett. 1984, 52, 2141. 26. de Heer, W. A. Rev. Mod. Phys. 1993, 65, 611. 27. Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 9157. 28. Wan-Ting Chang, Po-Yi Lee, Jian-Hong Liao, Samia Kahlal, Kiran Kumarvarma Chakraharj, Jean-Yves Saillard, C. W. Liu 2017, EightElectron Silver and Mixed Gold/Silver Nanoclusters Stabilized by SeDonor Ligands, Angew. Chem. Int. Ed., 56, 10178-10182 ; Angew. Chem., 129, 10312-10316. 29. Rajendra S. Dhayal, Yan-Ru Lin, Jian-Hong Liao, Yuan-Jang Chen, YuChiao Liu, Ming-Hsi Chiang, Samia Kahlal, Jean-Yves Saillard, C. W. Liu 2016, [Ag20{S2P(OR)2}12]: A Superatom With Chiral Metallic Core and Rich Isomerism Potentialities, Chem. Eur. J., 22, 9943-9947. 30. Yang, H.; Lei, J.; Wu, B.; Wang, Y.; Zhou, M.; Xia, A.; Zheng, L.; Zheng, N. Crystal structure of a luminescent thiolated Ag nanocluster with an octahedral Ag64+ core. Chem. Commun. 2013, 49, 300-302. 31. Kikukawa, Y.; Kuroda, Y.; Suzuki, K.; Hibino, M.; Yamaguchi, K.; Mizuno, N. A discrete octahedrally shaped [Ag6]4+ cluster encapsulated within silicotungstate ligands. Chem. Commun. 2013, 49, 376-378. 32. Yang, H.; Wang, Y.; Zheng, N. Stabilizing subnanometer Ag(0) nanoclusters by thiolate and diphosphine ligands and their crystal structures. Nanoscale 2013, 5, 2674-2677. 33. (a) Wang, Z.-Y.; Wang, M.-Q.; Li, Y.-L.; Luo, P.; Jia, T.-T.; Huang, R.-W.; Zang, S.-Q.; Mak, T. C. W. Atomically precise site-specific tailoring and directional assembly of superatomic silver nanoclusters. J. Am. Chem. Soc. 2018, 140, 1069-1076. (b) Wang, Z.; Su, H.-F.; Kurmoo, M.; Tung, C.-H.; Sun, D.; Zheng, L.-S. Trapping an octahedral Ag6 kernel in a seven-fold symmetric Ag56 nanowheel. Nat. Commun. 2018, 9, 2094. (c) Wang, Z.; Yang, F.-L.; Yang, Y.; Liu, Q.-Y.; Sun, D. Hierarchical multi-shell 66-nuclei silver nanoclusters trapping subvalent Ag6 kernels. Chem. Commun. 2019, 55, 10296-10299. (d) Wang, Z.; Qu, Q.-P.; Su, H.-F.; Huang, P.; Gupta, R. K.; Liu, Q.-Y.; Tung, C.-H.; Sun, D.; Zheng, L.-S. A novel 58-nuclei silver nanowheel encapsulating a subvalent Ag64+ kernel. Sci. China Chem. 2020, 63, 16-20. (e) Luo, X.-M.; Gong, C.-H.; Zhang, L.; Zang, S.-Q. Evolution of all-carboxylate-protected superatomic Ag clusters confined in Ti-organic cages. Nano Res. 2020, in press, DOI: 10.1007/s12274-020-3227-5. 34. Yonesato, K.; Ito, H.; Yokogawa, D.; Yamaguchi, K.; Suzuki, K. An ultrastable, small {Ag7}5+ nanocluster within a triangular hollow polyoxometalate framework. Angew. Chem. Int. Ed. 2020, 59, 16361-16365. 35. Yuan, S.-F.; Li, P.; Tang, Q.; Wan, X.-K.; Nan, Z.-A.; Jiang, D.-e.; Wang, Q.-M. Alkynyl-protected silver nanoclusters featuring an anticuboctahedral kernel. Nanoscale 2017, 9, 11405-11409. 36. Liu, K.-G.; Gao, X.-M.; Liu, T.; Hu, M.-L.; Jiang, D.-e. All-carboxylate-protected superatomic silver nanocluster with an unprecedented rhombohedral Ag8 core. J. Am. Chem. Soc. 2020, 142, 16905-16909. 37. Chakrahari, K. K.; Liao, J.; Silalahi, R. P. B.; Chiu, T.-H.; Liao, J.-H.; Wang, X.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Isolation and structural elucidation of 15‐nuclear copper dihydride clusters: an intermediate in the formation of a two‐electron copper superatom. Small 2020, in press, DOI: 10.1002/smll.202002544 38. Liu, C. W.; Pitts, J. T.; Fackler Jr., J. P. Polyhedron 1997, 16, 3899-3909. 39. Phys. Chem. Chem. Phys., 2009,11, 9850-9860 40. Liu, C. W.; Lin, Y.-R.; Fang, C.-S.; Latouche, C.; Kahlal, S.; Saillard, J.-Y.[Ag7(H){E2P(OR)2}6] (E = Se, S): precursors for the fabrication of silver nanoparticles. Inorg. Chem. 2013, 52, 2070-2077.
|