帳號:guest(18.221.92.180)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:鍾宇傑
作者(英文):Yu-Jie Zhong
論文名稱:含二硫(硒)磷酸配位基氫負離子為中心雙金屬簇的合成與團簇間反應之研究
論文名稱(英文):Intercluster Exchanges Leading to Hydride-centered Bimetallic clusters
指導教授:劉鎮維
指導教授(英文):Chen-Wei Liu
口試委員:江明錫
呂光烈
口試委員(英文):Mi-Tch Chiang
Kuang-Lieh Lu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610812111
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:185
關鍵詞:圖簇間反應氫負離子為中心的雙金屬簇多核種核磁共振光譜兩電子銀超原子團簇
關鍵詞(英文):Intercluster reactionBimetallic hydride clustermulti-NMRTwo-Electron Silver Superatom
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
本篇主要是探討[Ag7(H){E2P(OiPr)2}6] (E=S,1b;Se,2b) 和[Cu7(H){E2P(OiPr)2}6] (E=S,1a;Se,2a) 兩個氫化物為中心的單金屬簇混合,產生兩個系列以氫化物為中心的雙金屬簇[CuxAg7-x(H){E2P(OiPr)2}6] (x = 1-6;E=S,3a;Se,3b)。透過正電荷ESI-MS光譜並利用多核種的NMR光譜(1H、2H、31P{H}、77Se、109Ag)與X-ray 單晶繞射分析出[CuAg6(H){Se2P(OiPr)2}6](5a)、Cu4Ag3(H){S2P(OiPr)2}6 (4a) 、 [Cu6Ag(H){S2P(OiPr)2}6] (6a) 晶體結構得到充分的表徵。

溶液中單個化合物的的訊號是動態化學平衡的結果,主要是由金屬交換所驅動,實際上團簇間交換反應的過程,在加入1a 和 1b 時產生氫化物為中心的雙金屬簇 (3a) 可以利用濃度依賴性 31P NMR光譜看到,反應中含有濃度較高的 1b 可以看到其分布較為接近 1b 的共振,結果是遵循 Le Chatelier’s 原理,動態平衡由2D交換光譜加以確認,且觀察到金屬逐步的交換過程,證實了化合物在溶液中是以動態平衡的存在。


在合成起使團簇的過程中發現[Ag7(H){S2P(OiPr)2}6]在溶液中會緩慢的轉化成另一種團簇,並且利用加熱誘導[Ag7(H){S2P(OiPr)2}6]自身氧化還原合成出一種新型的兩電子超原子奈米團簇,透過正電荷ESI-MS光譜並利用多種分析技術( NMR光譜(1H、31P、13C)、Uv-vis、螢光光譜儀 ) 與X-ray 單晶繞射分析出[Ag10{S2P(OiPr)2}8]晶體結構得到了充分的表徵,Ag7(H)的金屬骨架屬於雙三角錐並向左右各延伸一個鋒與Ag10有高度相關的,這表示Ag7(H)在合成中扮演了還原劑以及模板的功用。
[Ag7(H){S2P(OiPr)2}6] and [Cu7(H){S2P(OiPr)2}6] hydride-centered monometallic clusters are mixed to produce hydride-centered bimetallic clusters [CuxAg7-x(H){S2P(OiPr)2}6]1 (x = 1-7). Their compositions are fully characterized by positive mode ESI-MS spectrometry, multi-NMR spectroscopy (1H, 2H, 31P{H}, 109Ag , 31P-31P{1H} 2D EXSY) and single crystal X-ray diffraction. This is the first report that intercluster exchanges is applied to the synthesis of hydride-centered bimetallic clusters.

A controllable synthesis under reducing conditions in the preparation of superatoms with cluster electron not exceeding two is challenging. Herein a dithiolate-stabilized two-electron silver nanocluster, Ag 10 {S2P(OiPr)2}8(1), is isolated via a self-redox reaction of Ag7(H){S2 P(OiPr)2}6 without adding extra reducing agents. The metal framework of Ag7, a bicapped trigonal bipyramid, is highly correlated to that of Ag10, suggesting Ag7(H){S2P(OiPr)2}6 as the both reducing agent and a template for cluster growth.
一、 緒論 1
1.1 金屬氫化物 (metal hydride) 1
1.2 簇間反應(Intercluster reaction) 2
1.3 超原子金屬簇(Superatom) 3
二、 實驗部分 6
2.1 溶劑系統 6
2.2 儀器 6
2.3實驗步驟 8
2.3.1 [NH4][S2P(OiPr)2] 配位基合成 8
2.3.2 [NH4][Se2P(OiPr)2] 配位基合成 9
2.3.3 [Cu7(H){S2P(OiPr)2}6] (1a) 的合成 10
2.3.4 [Ag7(H){S2P(OiPr)2}6] (1b) 的合成 10
2.3.5 [Cu7(H){Se2P(OiPr)2}6] ( 2a) 的合成 11
2.3.6 [Ag7(H){Se2P(OiPr)2}6] (2b) 的合成 12
2.3.7[CuxAg7-x(H){S2P(OiPr)2}6] (3a) 的合成 13
2.3.8 [CuxAg7-x(H){Se2P(OiPr)2}6] (3b) 的合成 16
2.3.9 [CuxAg7-x(D){S2P(OiPr)2}6] (3aD)的合成 18
2.3.10 [CuxAg7-x(D){Se2P(OiPr)2}6] (3bD) 的合成 19
2.3.11 [Ag10{S2P(OiPr)2}8的合成 20
三、結果與討論 22
3.1.1 [CuxAg7-x (H){E2P(OiPr)2}6] ( E= S;Se )核磁共振光譜討論 22
3.1.2 [CuxAg7-x (H){E2P(OiPr)2}6] ( E= S;Se )質量圖譜討論 41
3.1.3 [CuxAg7-x (H){E2P(OiPr)2}6] ( E=S;Se )晶體結構討論 45
3.2.1 Ag10{S2P(OiPr)2}8核磁共振光譜探討 49
3.2.2 Ag10{S2P(OiPr)2}8質量光譜探討 58
3.2.3 Ag10{S2P(OiPr)2}8光物理性質探討 59
3.2.4 Ag10{S2P(OiPr)2}8 XPS光譜討論 64
3.2.5 Ag10{S2P(OiPr)2}8晶體結構探討 66
五、 參考文獻 71
附錄 76
1. Peruzzini, M.; Poli, R., Eds. 2001 Recent Advances in Hydride Chemistry, New York.
2. Würtz, A. Sur L̀Hydrure De Ann. Chim. Phys. 1844, 11, 250–251.
3. Mikheeva, V. I.; Mal’tseva, N. N. Formation of Copper Hydride by the Reaction of Copper Sulphate with Diborane and Sodium Tetrahydroborate. Russ. J. Inorg. Chem. 1961, 6, 1.
4. Mikheeva, V. I. Hydrides of the Transition Metals; Office of Technical Services, Department of Commerce, Washington, D.C., 1962; p. 128.
5. Lipshutz, B. H. In Modern Organocopper Chemistry; Krause, N., Ed.; Wiley-VCH: Weinheim, Germany, 2002; p 167.
6. Müller, H.; Bradley, A. J. Copper Hydride and its Crystal Structure J. Chem. Soc. 1926, 129, 1669-1673.
7. Goedkoop, J. A.; Andresen, A. F. The Crystal Structure of Copper Hydride Acta Crystallogr. 1955, 8, 118-119.
8. Dhayal, R. S.; Liao, J.-H.; Lin, Y.-R.; Liao, P.-K.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. A Nanospheric Polyhydrido Copper Cluster of Elongated Triangular Orthobicupola Array: Liberation of H2 from Solar Energy J. Am. Chem. Soc. 2013, 135, 4704-4707.
9. Liao, J.-H.; Dhayal, R. S.; Wang, X.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Neutron Diffraction Studies of a Four-Coordinated Hydride in Near Square-Planar Geometry Inorg. Chem. 2014, 53, 11140-11145.
10. Dhayal, R. S.; Liao, J.-H.; Kahlal, S.; Wang, X.; Liu, Y.-C.; Chiang, M.-H.; Van Zyl, W. E.; Saillard, J.-Y.; Liu, C. W. [Cu32(H)20{S2P(OiPr)2}12]: The Largest Number of Hydrides Recorded in a Molecular Nanocluster by Neutron Diffraction Chem. Eur. J. 2015, 21, 8369-8374.
11. Dhayal, R. S.; Liao, J.-H.; Wang, X.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Diselenophosphates Induced Conversion of An Achiral Cu20(H)11{S2P(OiPr)2}9] into A Chiral [Cu20(H)11{Se2P(OiPr)2}9] Polyhydrido Nanocluster Angew. Chem., Int. Ed. 2015, 54, 13604-13608.
12. Dhayal, R. S.; Van Zyl, W. E.; Liu, C. W. Polyhydrido Copper Clusters: Synthetic Advances, Structural Diversity, and Nanocluster-to-Nanoparticle Conversion Acc. Chem. Res. 2016, 49, 1, 86-95.
13. (a) Kang, X.; Li, Y.; Zhu, M.; Jin, R. Atomically precise alloy nanoclusters: syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443-6514. (b) Kang, X.; Zhu, M. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422-2457. (c) Li, Q.; Chai, J.; Yang, S.; Song, Y.; Chen, T.; Chen, C.; Zhang, H.; Yu, H.; Zhu, M. Multiple ways realizing charge-state transform in Au-Cu bimetallic nanoclusters with atomic precision. Small 2020, accepted article, DOI: 10.1002/smll.201907114. (d) Kwak, K.; Lee, D. Electrochemistry of atomically precise metal nanoclusters. Acc. Chem. Res. 2019, 52, 12-22.
14. (a) Zhou, X.; Li, Y.; Kang, X.; Wei, X.; Wang, S.; Meng, X.; Zhu, M. Doping copper atoms into the nanocluster kernel: total structure determination of [Cu30Ag61(SAdm)38S3](BPh4). J. Phys. Chem. Lett. 2020, 11, 2272-2276. (b) Liao, L.; Zhou, S.; Dai, Y.; Liu, L.; Yao, C.; Fu, C.; Yang, J.; Wu, Z. Mono-mercury doping of Au25 and the HOMO/LUMO energies evaluation employing differential pulse voltammetry. J. Am. Chem. Soc. 2015, 137, 9511-9514. (c) Chang, W.-T.; Lee, P.-Y.; Liao, J.-H.; Chakrahari, K. K.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C. W. Eight‐electron silver and mixed gold/silver nanoclusters stabilized by selenium donor ligands. Angew. Chem. Int. Ed. 2017, 56, 10178-10182. (d) Chang, W.-T.; Sharma, S.; Liao, J.-H.; Kahlal, S.; Liu, Y.-C.; Chiang, M.-H.; Saillard, J.-Y.; Liu, C. W. Heteroatom‐doping increases cluster nuclearity: from an [Ag20] to an [Au3Ag18] core. Chem. Eur. J. 2018, 24, 14352-14357.
15. Kang, X.; Wei, X.; Jin, S.; Yuan, Q.; Luan, X.; Pei, Y.; Wang, S.; Zhu, M. Jin, R. Rational construction of a library of M29 nanoclusters from monometallic to tetrametallic. PNAS 2019, 116, 18834-18840.
16. (a) Krishnadas, K. R.; Baksi, A.; Ghosh, A.; Natarajan, G.; Pradeep, T. Structure-conserving spontaneous transformations between nanoparticles. Nat. Commun. 2016, 7, 13447. (b) Krishnadas, K. R.; Baksi, A.; Ghosh, A.; Natarajan, G.; Som, A.; Pradeep, T. Interparticle reactions: an emerging direction in nanomaterials chemistry. Acc. Chem. Res. 2017, 50, 1988-1996.
17. Huang, B.; Pei, Y. On the mechanism of inter-cluster alloying reactions: two-stage metal exchange of [Au25(PET)18]- and [Ag25(DMBT)18]- clusters. J. Mater. Chem. A 2020, 8, 10242-10251.
18. Bhat, S.; Baksi, Mudedla, A. K.; Natarajan, G.; Subramanian, V.; Pradeep, T. Au22Ir3(PET)18: an unusual alloy cluster through intercluster reaction. J. Phys. Chem. Lett. 2017, 8, 2787-2793.
19. Krishnadas, K. R.; Baksi, A.; Ghosh, A.; Natarajan, G.; Pradeep, T. Manifestation of geometric and electronic shell structures of metal Clusters in intercluster reactions. ACS Nano 2017, 11, 6015-6023.
20. Khatun, E.; Chakraborty, P.; Jacob, B. R.; Paramasivam, G.; Bodiuzzaman, M.; Dar, W. A.; Pradeep, T. Intercluster reactions resulting in silver-rich trimetallic nanoclusters. Chem. Mater. 2020, 32, 611-619.
21. (a) Kang, X.; Zhu, M. Transformation of atomically precise nanoclusters by ligand-exchange. Chem. Mater. 2019, 31, 9939-9969. (b) Kang, X.; Huang, L.; Liu, W.; Xiong, L.; Pei, Y.; Sun, Z.; Wang, S.; Wei, S.; Zhu, M. Reversible nanocluster structure transformation between face-centered cubic and icosahedral isomers. Chem. Sci. 2019, 10, 8685-8693. (c) Yao, Q.; Fung, V.; Sun, C.; Huang, S.; Chen, T.; Jiang. D.-e.; Lee, J. Y.; Xie, J. Revealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approach. Nat. Commun. 2018, 9, 1979.
22. (a) Poli, R.; Peruzzini, M. Recent Advances in Hydride Chemistry 1st Edition. Elsevier: Amsterdam, 2001, p 557. (b) Dhayal, R. S.; van Zyl, W. E.; Liu, C. W. Polyhydrido copper clusters: synthetic advances, structural diversity, and nanocluster-to-nanoparticle conversion. Acc. Chem. Res. 2016, 49, 86-95. (c) Du, X.; Jin, R. Atomically precise metal nanoclusters for catalysis. ACS Nano 2019, 13, 7383-7387.
23. Zhong, Y.-J.; Liao, J.-H.; Chiu, T.-H.; Wu, Y-.-Y.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Hydride-encapsulated bimetallic clusters supported by 1,1-dithiolates. Chem. Commun. 2020, 56, 9300-9303.tes. Chem. Commun. 2020, 56, 9300-9303.
24. Martins, J. L.; Car, R.; Buttet, J. Surf. Sci. 1981, 106, 265.
25. Knight, W.; Clemenger, K.; Heer, W.; Saunders, W.; Chou, M.; Cohen, M. Phys. Rev. Lett. 1984, 52, 2141.
26. de Heer, W. A. Rev. Mod. Phys. 1993, 65, 611.
27. Walter, M.; Akola, J.; Lopez-Acevedo, O.; Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Whetten, R. L.; Grönbeck, H.; Häkkinen, H. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 9157.
28. Wan-Ting Chang, Po-Yi Lee, Jian-Hong Liao, Samia Kahlal, Kiran Kumarvarma Chakraharj, Jean-Yves Saillard, C. W. Liu 2017, EightElectron Silver and Mixed Gold/Silver Nanoclusters Stabilized by SeDonor Ligands, Angew. Chem. Int. Ed., 56, 10178-10182 ; Angew. Chem., 129, 10312-10316.
29. Rajendra S. Dhayal, Yan-Ru Lin, Jian-Hong Liao, Yuan-Jang Chen, YuChiao Liu, Ming-Hsi Chiang, Samia Kahlal, Jean-Yves Saillard, C. W. Liu 2016, [Ag20{S2P(OR)2}12]: A Superatom With Chiral Metallic Core and Rich Isomerism Potentialities, Chem. Eur. J., 22, 9943-9947.
30. Yang, H.; Lei, J.; Wu, B.; Wang, Y.; Zhou, M.; Xia, A.; Zheng, L.; Zheng, N. Crystal structure of a luminescent thiolated Ag nanocluster with an octahedral Ag64+ core. Chem. Commun. 2013, 49, 300-302.
31. Kikukawa, Y.; Kuroda, Y.; Suzuki, K.; Hibino, M.; Yamaguchi, K.; Mizuno, N. A discrete octahedrally shaped [Ag6]4+ cluster encapsulated within silicotungstate ligands. Chem. Commun. 2013, 49, 376-378.
32. Yang, H.; Wang, Y.; Zheng, N. Stabilizing subnanometer Ag(0) nanoclusters by thiolate and diphosphine ligands and their crystal structures. Nanoscale 2013, 5, 2674-2677.
33. (a) Wang, Z.-Y.; Wang, M.-Q.; Li, Y.-L.; Luo, P.; Jia, T.-T.; Huang, R.-W.; Zang, S.-Q.; Mak, T. C. W. Atomically precise site-specific tailoring and directional assembly of superatomic silver nanoclusters. J. Am. Chem. Soc. 2018, 140, 1069-1076. (b) Wang, Z.; Su, H.-F.; Kurmoo, M.; Tung, C.-H.; Sun, D.; Zheng, L.-S. Trapping an octahedral Ag6 kernel in a seven-fold symmetric Ag56 nanowheel. Nat. Commun. 2018, 9, 2094. (c) Wang, Z.; Yang, F.-L.; Yang, Y.; Liu, Q.-Y.; Sun, D. Hierarchical multi-shell 66-nuclei silver nanoclusters trapping subvalent Ag6 kernels. Chem. Commun. 2019, 55, 10296-10299. (d) Wang, Z.; Qu, Q.-P.; Su, H.-F.; Huang, P.; Gupta, R. K.; Liu, Q.-Y.; Tung, C.-H.; Sun, D.; Zheng, L.-S. A novel 58-nuclei silver nanowheel encapsulating a subvalent Ag64+ kernel. Sci. China Chem. 2020, 63, 16-20. (e) Luo, X.-M.; Gong, C.-H.; Zhang, L.; Zang, S.-Q. Evolution of all-carboxylate-protected superatomic Ag clusters confined in Ti-organic cages. Nano Res. 2020, in press, DOI: 10.1007/s12274-020-3227-5.
34. Yonesato, K.; Ito, H.; Yokogawa, D.; Yamaguchi, K.; Suzuki, K. An ultrastable, small {Ag7}5+ nanocluster within a triangular hollow polyoxometalate framework. Angew. Chem. Int. Ed. 2020, 59, 16361-16365.
35. Yuan, S.-F.; Li, P.; Tang, Q.; Wan, X.-K.; Nan, Z.-A.; Jiang, D.-e.; Wang, Q.-M. Alkynyl-protected silver nanoclusters featuring an anticuboctahedral kernel. Nanoscale 2017, 9, 11405-11409.
36. Liu, K.-G.; Gao, X.-M.; Liu, T.; Hu, M.-L.; Jiang, D.-e. All-carboxylate-protected superatomic silver nanocluster with an unprecedented rhombohedral Ag8 core. J. Am. Chem. Soc. 2020, 142, 16905-16909.
37. Chakrahari, K. K.; Liao, J.; Silalahi, R. P. B.; Chiu, T.-H.; Liao, J.-H.; Wang, X.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Isolation and structural elucidation of 15‐nuclear copper dihydride clusters: an intermediate in the formation of a two‐electron copper superatom. Small 2020, in press, DOI: 10.1002/smll.202002544
38. Liu, C. W.; Pitts, J. T.; Fackler Jr., J. P. Polyhedron 1997, 16, 3899-3909.
39. Phys. Chem. Chem. Phys., 2009,11, 9850-9860
40. Liu, C. W.; Lin, Y.-R.; Fang, C.-S.; Latouche, C.; Kahlal, S.; Saillard, J.-Y.[Ag7(H){E2P(OR)2}6] (E = Se, S): precursors for the fabrication of silver nanoparticles. Inorg. Chem. 2013, 52, 2070-2077.
(此全文20260121後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 二硫磷酸配位基與銅的金屬團簇,催化碳-氮鍵[3+2]環化反應之研究
2. 以陰離子模板合成含二硫磷酸配位基之多核銀金屬團簇
3. 含碘與多硫磷酸配位基之多核金屬團簇(銅,銀)的合成、結構與光物理性質研究
4. 2,2’—聯嘧啶架橋之鑭系金屬(鈰、釤、銪)與過渡金屬(鐵、鋅)雙核化合物的合成與研究
5. 利用碘分子行氧化加成於硒(給予電子)配位基所形成的雙核金化合物中之反應研究
6. 含有二硫(硒)磷酸配位基之十一核銅金屬簇的合成、結構與光物理性質研究
7. 含有聯奈酚磷酸酯配位基與鋅、鎘、銅、銀金屬錯合物的結構和合成反應研究
8. 利用黃酸鹽與有機硒化磷配位基合成多核銅金屬團簇之反應與研究
9. 含有機硒化磷配位基之銻、鉍、鉻、銅金屬錯合物及含二硫磷酸配位基之中心體硫九核銀金屬團簇的反應研究
10. 利用雙硫配位基合成含氫離子之銅與銀金屬團簇的反應與研究
11. 含二硫(硒)磷酸配位基及鹵素之金屬鎘、汞配位聚合物之研究
12. 含二硒磷酸配位基之釕化合物合成以及二硒(硫)磷酸配位基與含氮配位基之鋅金屬發光化合物的研究
13. 使用銻和鉍的二硒磷酸錯合物以Solvothermal Method製備奈米尺度的金屬硒化物和金屬磷酸物
14. 利用二硒代氨基甲酸鹽類配位基合成多核銅金屬團簇之反應與研究
15. 含二硫磷酸配位基之雙核鑭系金屬錯合物之化學及物理性質研究
 
* *