帳號:guest(18.224.59.50)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:王韋翔
作者(英文):Wei-Xiang Wang
論文名稱:利用紅外光譜儀,探討不同濃度離子液體與高分子PVDF在高壓環境下的作用力
論文名稱(英文):Using infrared spectroscopy to study the interactions between ionic liquids with various concentrations and PVDF polymer at high-pressures
指導教授:張海舟
指導教授(英文):Hai-Chou Chang
口試委員:賴建智
胡安仁
口試委員(英文):Chien-Chih Lai
An-Ren Hu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610812112
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:61
關鍵詞:離子液體高壓實驗聚偏二氟乙烯紅外光譜
關鍵詞(英文):ionic liquidhigh pressureinfrared spectroscopyPVDF
相關次數:
  • 推薦推薦:0
  • 點閱點閱:26
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏收藏:0
在這科技蓬勃發展的時代,電子資訊產品的續航為其重要,而其中的電池更是核心價值所在,但是電池裡的電解質在選擇上也是挺重要的,而離子液體的理想特性,如高電導率,熱穩定性,可忽略的蒸氣壓等,加上與高分子的混合,形成凝膠聚合物電解質,在近期的應用上有不錯的貢獻。
本實驗使用[HEMIm]NTf2和[HETMA]NTf2與高分子PVDF混合,在不同的濃度以及結構上去做研究。在常壓下,有imidazolium的[HEMIm]NTf2,高分子PVDF會優先與C4,5-H作用,而沒有環的[HETMA]NTf2,PVDF會與O-H作用。在高壓下,隨著離子液體濃度下降,兩個離子液體混合物的位移比常壓來的明顯,而[HEMIm]NTf2環上的C4,5-H位移變化更來得明顯。還發現了都有羥基的離子液體在與高分子混合後,不管在常壓還是高壓,隨著離子液體濃度下降,大概在訊號3640 cm-1處會出現一個特徵峰。
With the development of technology in the last decade, the batteries cycle life of electronic information products is important, and the battery is the crucial point, but the choice of electrolyte in the battery is also very important. Ionic liquids (ILs) are well known as the choice in the electrolyte system thanks to their many properties such as high electrical conductivity, thermal stability, negligible vapor pressure, etc. Gel polymer electrolytes in ion-batteries are made by ILs and polymers, have made a good contribution to recent applications.
In this experiment, [HEMIm]NTf2 and [HETMA]NTf2 are mixed with PVDF and do research in different concentrations and structures. Under normal pressure, with imidazolium [HEMIm]NTf2, PVDF will preferentially interact with C4,5-H, while without ring of [HETMA]NTf2, PVDF will interact with O-H. At high pressure, as the ILs concentration decreases, the displacement of the two ILs mixtures is more obvious than normal pressure, and the displacement of C4,5-H on the [HEMIm]NTf2 ring changes more obviously. It was also found that ILs with hydroxyl groups were mixed with polymers, whether at normal pressure or high pressure, with the concentration of ILs decreased, a characteristic peak appeared around at 3640 cm-1.
摘要 i
1. 序論 1
1.1 前言 1
1.2. 離子液體 2
1.3. 高分子 4
1.4. 聚偏二氟乙烯(PVDF) 5
1.5. 弱氫鍵 6
2. 實驗 9
2.1. 儀器 9
2.1.1. 紅外線光譜儀 9
2.1.2. 鑽石高壓產生器(DAC) 10
2.1.3. 精密萬能鑽孔機及高速鋼鑽頭(0.3mm) 11
2.1.4. 鎳鎘合金墊片 11
2.1.5. 鹽片 12
2.1.6. 手動液壓薄片機 12
2.1.7. 顯微鏡 13
2.1.8. 超音波震盪器 13
2.1.9. 水流抽氣幫浦 14
2.1.10. 電磁加熱攪拌器 14
2.1.11. 水份分析儀 15
2.2. 實驗藥品 16
2.2.1. 藥品名稱(Name):choline bis(trifluoromethylsulfonyl)imide ( [HETMA]NTf2 ) 16
2.2.2. 藥品名稱(Name):1-(2-Hydroxyethyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ( [HEMIm]NTf2 ) 16
2.2.3. 藥品名稱(Name):Poly(vinylidene fluoride) (PVDF) 17
2.2.4. 藥品名稱(Name):N,N-dimethylformamide (DMF) 17
2.3. 實驗步驟 19
2.3.1.樣品配置 19
PVDF處理 19
離子液體/PVDF混合溶液濃度處理 19
2.3.2.常壓實驗 20
離子液體常壓實驗 20
高分子與離子液體/PVDF常壓實驗 20
2.3.3.高壓實驗 21
製作墊片 21
離子液體高壓實驗 21
高分子與離子液體/PVDF高壓實驗 23
2.3.4.壓力校正 24
2.3.5.圖譜製作 27
3. 結果與討論 29
3.1. 離子液體[HEMIm]NTf2與高分子PVDF 29
3.1.1. 常壓部分 29
3.1.2. 常壓趨勢圖 31
3.1.3. 高壓部分 35
3.1.4. 高壓趨勢圖 41
3.2. 離子液體[HETMA]NTf2與高分子PVDF 46
3.2.1. 常壓部分 46
3.2.2. 常壓趨勢圖 48
3.2.3. 高壓部分 50
3.2.4. 高壓趨勢圖 54
3.3. 還原性 56
4. 結論 57
5. 參考文獻 59

1.Sen, S., et al., Gel–Polymer Electrolytes Based on Poly(Ionic Liquid)/Ionic Liquid Networks. ACS Applied Polymer Materials, 2020.
2.Sugden, S. and H. Wilkins, CLXVII.—The parachor and chemical constitution. Part XII. Fused metals and salts. Journal of the Chemical Society (Resumed), 1929(0): p. 1291-1298.
3.Hurley, F.H. and T.P. Wier, The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature. Journal of The Electrochemical Society, 1951. 98(5): p. 207.
4.Davis, J.H. and P.A. Fox, From curiosities to commodities: ionic liquids begin the transition. Chemical Communications, 2003(11): p. 1209-1212.
5.Bonhôte, P., et al., Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorg Chem, 1996. 35(5): p. 1168-1178.
6.Wasserscheid, P. and W. Keim, Ionic liquids - New "solutions" for transition metal catalysis. Angewandte Chemie-International Edition, 2000. 39(21): p. 3772-3789.
7.Rogers, R.D., K.R. Seddon, and S. Volkov, Green industrial applications of ionic liquids. Vol. 92. 2012: Springer Science & Business Media.
8.Petkovic, M., et al., Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev, 2011. 40(3): p. 1383-403.
9.Doyle, M., S.K. Choi, and G. Proulx, High‐temperature proton conducting membranes based on perfluorinated ionomer membrane‐ionic liquid composites. Journal of the Electrochemical Society, 2000. 147(1): p. 34.
10.Mistry, M.K., et al., Interfacial interactions in aprotic ionic liquid based protonic membrane and its correlation with high temperature conductivity and thermal properties. Langmuir, 2009. 25(16): p. 9240-9251.
11.Kubo, W., et al., Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator. Chemical communications, 2002(4): p. 374-375.
12.Rashid, T.U., Ionic liquids: Innovative fluids for sustainable gas separation from industrial waste stream. Journal of Molecular Liquids, 2020: p. 114916.
13.Marrucho, I.M., L.C. Branco, and L.P.N. Rebelo, Ionic Liquids in Pharmaceutical Applications. Annual Review of Chemical and Biomolecular Engineering, 2014. 5(1): p. 527-546.
14.Pitner, W., et al., Ionic Liquids in the nuclear industry, in Green Industrial Applications of Ionic Liquids. 2003, Springer. p. 209-226.
15.Straka, M., Toward a Greenish Nuclear Fuel Cycle: Ionic Liquids as Solvents for Spent Nuclear Fuel Reprocessing and Other Decontamination Processes for Contaminated Metal Waste. Physical Sciences Reviews, 2016. 1(12): p. 20160074.
16.Wei, G.-T., Z. Yang, and C.-J. Chen, Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions. Analytica Chimica Acta, 2003. 488(2): p. 183-192.
17.Wei, G.T., J.C. Chen, and Z. Yang, Studies on liquid/liquid extraction of copper ion with room temperature ionic liquid. Journal of the Chinese Chemical Society, 2003. 50(6): p. 1123-1130.
18.Characteristics, Applications and Properties of Polymers, in Polymer Engineering Science and Viscoelasticity: An Introduction. 2008, Springer US: Boston, MA. p. 55-97.
19.Fried, J.R., Polymer Science and Technology. 3rd ed. 2014.
20.Davis, G.T., et al., Electric‐field‐induced phase changes in poly(vinylidene fluoride). Journal of Applied Physics, 1978. 49(10): p. 4998-5002.
21.Takahashi, Y. and H. Tadokoro, Crystal Structure of Form III of Poly(vinylidene fluoride). Macromolecules, 1980. 13(5): p. 1317-1318.
22.Tashiro, K., et al., Calculation of Elastic and Piezoelectric Constants of Polymer Crystals by a Point Charge Model: Application to Poly(vinylidene fluoride) Form I. Macromolecules, 1980. 13(3): p. 691-698.
23.Lovinger, A.J., Annealing of poly(vinylidene fluoride) and formation of a fifth phase. Macromolecules, 1982. 15(1): p. 40-44.
24.Tocci, E., et al., Effect of Green Solvents in the Production of PVDF-Specific Polymorphs. Industrial & Engineering Chemistry Research, 2020. 59(12): p. 5267-5275.
25.Tan, X., et al., Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. Journal of Membrane Science, 2006. 271(1): p. 59-68.
26.Coster, H.G.L., T.D. Farahani, and T.C. Chilcott, Production and characterization of piezo-electric membranes. Desalination, 2011. 283: p. 52-57.
27.Tator, K.B., Protective Organic Coatings. Polyvinylidene Fluoride-Based Coatings Technology, ed. R.A. Iezzi. Vol. 5B. 2015.
28.Pauling, L., The Nature of the Chemical Bond. Vol. 260. 1960: Cornell university press Ithaca, NY.
29.Berger, I., M. Egli, and A. Rich, Inter-strand C-H...O hydrogen bonds stabilizing four-stranded intercalated molecules: stereoelectronic effects of O4' in cytosine-rich DNA. Proc Natl Acad Sci U S A, 1996. 93(22): p. 12116-21.
30.Musah, R.A., et al., Variation in Strength of an Unconventional C−H to O Hydrogen Bond in an Engineered Protein Cavity. Journal of the American Chemical Society, 1997. 119(38): p. 9083-9084.
31.Banerjee, P. and T. Chakraborty, Weak hydrogen bonds: insights from vibrational spectroscopic studies. International Reviews in Physical Chemistry, 2018. 37(1): p. 83-123.
32.Perlstein, J., The Weak Hydrogen Bond In Structural Chemistry and Biology (International Union of Crystallography, Monographs on Crystallography, 9) By Gautam R. Desiraju (University of Hyderabad) and Thomas Steiner (Freie Universität Berlin). Oxford University Press:  Oxford and New York. 1999. xiv + 507 pp. $150. ISBN 0-19-850252-4. Journal of the American Chemical Society, 2001. 123(1): p. 191-192.
33.Bock, H., et al., The CH⋯ O hydrogen bond adduct of two trinitromethanes to dioxane. Journal of the Chemical Society, Chemical Communications, 1993(24): p. 1792-1793.
34.The Uncoupled O-H or O-D Stretch in Water as an Internal Pressure Gauge for High-Pressure Infrared Spectroscopy of Aqueous Systems. Applied Spectroscopy, 1987. 41(6): p. 1070-1072.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 使用紅外光譜儀觀測並探討在高壓環境中,不同濃度離子液體與PVDF-co-HFP高分子表面之間的作用力
2. 探討聚四氟乙烯和聚甲基丙烯酸甲酯與氟化離子液體中陰陽離子的作用力變化
3. 利用高壓紅外光譜研究離子液體與奈米粒子SiO2的作用
4. 利用高壓研究離子液體與奈米金粒子之間的作用力
5. 利用高壓紅外光譜觀察咪唑碘離子液體與石墨烯、石墨烯氧化物之間的作用
6. 透過高壓技術應用於紅外光譜來探討離子液體與木質素之間的作用力關係
7. 在高壓環境下,探討離子液體吸附在奈米二氧化矽表面上形成不同層數離子液體的紅外線吸收光譜變化
8. 透過高壓紅外光譜來探討離子液體與Salmon testes DNA之間的作用力關係
9. 探討離子液體和其環糊精包合複合物於高壓下之紅外線吸收光譜的變化
10. 使用紅外光譜儀觀測並探討在高壓環境中,不同濃度離子液體Li[TFSI]G3的作用力
11. 利用Tween80和EPM擾動離子液體的內部作用力並探討壓力相關性
12. 在高壓環境下,探討澱粉溶於離子液體 的糊化現象於紅外線吸收光譜之變化
13. 利用高壓環境,探討離子液體與聚氧化乙烯的紅外線吸收光譜變化
14. 透過紅外線光譜儀,在高壓下探討不同濃度離子液體與D-pyridine的作用力
15. 以紅外光譜儀研討PEEK協調離子液體與鈣鈦礦晶體及在不同壓力下結構變化
 
* *