|
1.Sen, S., et al., Gel–Polymer Electrolytes Based on Poly(Ionic Liquid)/Ionic Liquid Networks. ACS Applied Polymer Materials, 2020. 2.Sugden, S. and H. Wilkins, CLXVII.—The parachor and chemical constitution. Part XII. Fused metals and salts. Journal of the Chemical Society (Resumed), 1929(0): p. 1291-1298. 3.Hurley, F.H. and T.P. Wier, The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature. Journal of The Electrochemical Society, 1951. 98(5): p. 207. 4.Davis, J.H. and P.A. Fox, From curiosities to commodities: ionic liquids begin the transition. Chemical Communications, 2003(11): p. 1209-1212. 5.Bonhôte, P., et al., Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorg Chem, 1996. 35(5): p. 1168-1178. 6.Wasserscheid, P. and W. Keim, Ionic liquids - New "solutions" for transition metal catalysis. Angewandte Chemie-International Edition, 2000. 39(21): p. 3772-3789. 7.Rogers, R.D., K.R. Seddon, and S. Volkov, Green industrial applications of ionic liquids. Vol. 92. 2012: Springer Science & Business Media. 8.Petkovic, M., et al., Ionic liquids: a pathway to environmental acceptability. Chem Soc Rev, 2011. 40(3): p. 1383-403. 9.Doyle, M., S.K. Choi, and G. Proulx, High‐temperature proton conducting membranes based on perfluorinated ionomer membrane‐ionic liquid composites. Journal of the Electrochemical Society, 2000. 147(1): p. 34. 10.Mistry, M.K., et al., Interfacial interactions in aprotic ionic liquid based protonic membrane and its correlation with high temperature conductivity and thermal properties. Langmuir, 2009. 25(16): p. 9240-9251. 11.Kubo, W., et al., Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator. Chemical communications, 2002(4): p. 374-375. 12.Rashid, T.U., Ionic liquids: Innovative fluids for sustainable gas separation from industrial waste stream. Journal of Molecular Liquids, 2020: p. 114916. 13.Marrucho, I.M., L.C. Branco, and L.P.N. Rebelo, Ionic Liquids in Pharmaceutical Applications. Annual Review of Chemical and Biomolecular Engineering, 2014. 5(1): p. 527-546. 14.Pitner, W., et al., Ionic Liquids in the nuclear industry, in Green Industrial Applications of Ionic Liquids. 2003, Springer. p. 209-226. 15.Straka, M., Toward a Greenish Nuclear Fuel Cycle: Ionic Liquids as Solvents for Spent Nuclear Fuel Reprocessing and Other Decontamination Processes for Contaminated Metal Waste. Physical Sciences Reviews, 2016. 1(12): p. 20160074. 16.Wei, G.-T., Z. Yang, and C.-J. Chen, Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions. Analytica Chimica Acta, 2003. 488(2): p. 183-192. 17.Wei, G.T., J.C. Chen, and Z. Yang, Studies on liquid/liquid extraction of copper ion with room temperature ionic liquid. Journal of the Chinese Chemical Society, 2003. 50(6): p. 1123-1130. 18.Characteristics, Applications and Properties of Polymers, in Polymer Engineering Science and Viscoelasticity: An Introduction. 2008, Springer US: Boston, MA. p. 55-97. 19.Fried, J.R., Polymer Science and Technology. 3rd ed. 2014. 20.Davis, G.T., et al., Electric‐field‐induced phase changes in poly(vinylidene fluoride). Journal of Applied Physics, 1978. 49(10): p. 4998-5002. 21.Takahashi, Y. and H. Tadokoro, Crystal Structure of Form III of Poly(vinylidene fluoride). Macromolecules, 1980. 13(5): p. 1317-1318. 22.Tashiro, K., et al., Calculation of Elastic and Piezoelectric Constants of Polymer Crystals by a Point Charge Model: Application to Poly(vinylidene fluoride) Form I. Macromolecules, 1980. 13(3): p. 691-698. 23.Lovinger, A.J., Annealing of poly(vinylidene fluoride) and formation of a fifth phase. Macromolecules, 1982. 15(1): p. 40-44. 24.Tocci, E., et al., Effect of Green Solvents in the Production of PVDF-Specific Polymorphs. Industrial & Engineering Chemistry Research, 2020. 59(12): p. 5267-5275. 25.Tan, X., et al., Polyvinylidene fluoride (PVDF) hollow fibre membranes for ammonia removal from water. Journal of Membrane Science, 2006. 271(1): p. 59-68. 26.Coster, H.G.L., T.D. Farahani, and T.C. Chilcott, Production and characterization of piezo-electric membranes. Desalination, 2011. 283: p. 52-57. 27.Tator, K.B., Protective Organic Coatings. Polyvinylidene Fluoride-Based Coatings Technology, ed. R.A. Iezzi. Vol. 5B. 2015. 28.Pauling, L., The Nature of the Chemical Bond. Vol. 260. 1960: Cornell university press Ithaca, NY. 29.Berger, I., M. Egli, and A. Rich, Inter-strand C-H...O hydrogen bonds stabilizing four-stranded intercalated molecules: stereoelectronic effects of O4' in cytosine-rich DNA. Proc Natl Acad Sci U S A, 1996. 93(22): p. 12116-21. 30.Musah, R.A., et al., Variation in Strength of an Unconventional C−H to O Hydrogen Bond in an Engineered Protein Cavity. Journal of the American Chemical Society, 1997. 119(38): p. 9083-9084. 31.Banerjee, P. and T. Chakraborty, Weak hydrogen bonds: insights from vibrational spectroscopic studies. International Reviews in Physical Chemistry, 2018. 37(1): p. 83-123. 32.Perlstein, J., The Weak Hydrogen Bond In Structural Chemistry and Biology (International Union of Crystallography, Monographs on Crystallography, 9) By Gautam R. Desiraju (University of Hyderabad) and Thomas Steiner (Freie Universität Berlin). Oxford University Press: Oxford and New York. 1999. xiv + 507 pp. $150. ISBN 0-19-850252-4. Journal of the American Chemical Society, 2001. 123(1): p. 191-192. 33.Bock, H., et al., The CH⋯ O hydrogen bond adduct of two trinitromethanes to dioxane. Journal of the Chemical Society, Chemical Communications, 1993(24): p. 1792-1793. 34.The Uncoupled O-H or O-D Stretch in Water as an Internal Pressure Gauge for High-Pressure Infrared Spectroscopy of Aqueous Systems. Applied Spectroscopy, 1987. 41(6): p. 1070-1072.
|