帳號:guest(18.222.17.194)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:周煒翔
作者(英文):Wei-Hsiang Chou
論文名稱:探討木黴菌分泌之L-Amino acid oxidase轉移入植物
論文名稱(英文):Study the translocation of L-amino acid oxidase secreted by Trichoderma into plant
指導教授:林國知
指導教授(英文):Kuo-Chih Lin
口試委員:彭國証
林光慧
口試委員(英文):Kou-Cheng Peng
Guang-Huey Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:610813006
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:64
關鍵詞:木黴菌系統性抗性左旋胺基酸氧化酶葉綠素a/b結合蛋白
關鍵詞(英文):Trichodermasystemic resistanceL-amino acid oxidaseChlorophyll a/b binding protein
相關次數:
  • 推薦推薦:0
  • 點閱點閱:5
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
病菌或有益微生物誘發植物抗性主要是經由誘導植物產生內源性分子進而誘發植物抗病反應而成。Trichoderma harzianum產生的L-amino acid oxidase (ThLAAO)對植物病原真菌如Botrytis cinerea及Rhizoctonia solani產生抗病,且可誘發H2O2產生及誘導植物賀爾蒙(如水楊酸、乙烯、茉莉酸)生合成基因及防禦基因表現。此外、ThLAAO蛋白質可從植物根部吸收進入維管束,並且可運輸至葉肉細胞內之葉綠體。故推論T. harzianum可產生外源性分子(如ThLAAO)從植物根部進入,然後經維管束運輸至葉子誘發植物抗性。本研究在ThLAAO基因後面接上螢光蛋白基因如green fluorescence protein (GFP)及Orange fluorescence protein (OFP),並以T. harzianum LAAO gene、enolase gene及Aspergillus nidulans glyceraldehyde 3-phosphate dehydrogenase gene的promoters驅動ThLAAO表現,透過基因轉形建構木黴菌LAAO-GFP及LAAO-OFP轉形株。我們將檢測這些轉形株是否會表現LAAO-GFP及LAAO-OFP基因及蛋白質。日後將藉此觀測木黴菌所分泌的LAAO-GFP或LAAO-OFP是否可以運輸至植物的各個組織。
The mechanisms for activating disease resistance are mainly induced by endogenous molecules produced by plants. L-amino acid oxidase (ThLAAO) produced by Trichoderma harzianum has an antagonistic effect on plant pathogenic fungi such as Botrytis cinerea and Rhizoctonia solani, and can induce the production of H2O2 and plant hormones (such as salicylic acid, ethylene, jasmonic acid) biosynthesis gene and defense gene expression. In addition, ThLAAO can be absorbed and transported from plant roots to chloroplasts in mesophyll cells. Therefore, it is inferred that Trichoderma spp. can produce exogenous molecules, e.g., ThLAAO, that can directly enter the vascular system of plants and be transported to various parts to induce disease resistance in plants. In this study, the green fluorescence protein (GFP) and orange fluorescent protein (OFP) was cloned into the 3’-end of ThLAAO gene and triggered by the promoters of ThLAAO, enolase gene or Aspergillus nidulans glyceraldehyde 3-phosphate dehydrogenase gene. These constructs were transformed into Trichoderma via Agrobacterium-mediated transformation. We will detect the expression of LAAOA-GFP and LAAO-OFP, and the Trichoderma transformants will be used to determine whether the LAAOA-GFP and LAAO-OFP secreted by Trichoderma in the soil can be transported to various tissues in plants.
中文摘要: I
英文摘要: II
目錄: III
一、 前言 1
1. 木黴菌及其生物防治功能 1
2. 植物系統性抗性 2
3. 木黴菌誘導系統性抗性 3
4. 木黴菌胞外蛋白質—左旋胺基酸氧化酶(L-amino acid oxidase) 4
5. 葉綠體在植物免疫之角色 5
二、 研究目的 6
三、 實驗設計 7
四、 材料方法 8
1. 菌種 8
2. 引子及質體 8
3. 質體DNA的抽取 8
4. TA cloning 9
5. 製作大腸桿菌勝任細胞及電穿孔 10
6. 快速篩檢確認轉型株 11
7. 製作農桿菌AGL1勝任細胞及電穿孔 11
8. 農桿菌法轉形木黴菌 12
9. 構築Plaao-LAAO-GFP表現載體 13
10. 構築Plaao-Peno-LAAO-OFP-Teno-Tlaao表現載體 14
11. 構築Peno-LAAO-GFP-Teno表現載體 17
12. 構築Pgpd-LAAO-GFP-Ttrp表現載體 18
13. 抽取木黴菌轉殖株基因 21
14. 抽取木黴菌mRNA並反轉錄至cDNA 22
15. 木黴菌胞外蛋白質抽取及偵測 23
16. 以共軛焦顯微鏡偵測轉殖株螢光蛋白表現 24
五、 結果與討論 25
1. 建構LAAO-GFP及LAAO-OFP轉殖基因 25
2. 檢測木黴菌轉形株中之LAAO-GFP及LAAO-OFP轉基因 27
3. 檢測木黴菌轉形株中轉基因表現 30
4. 檢測木黴菌轉形株表現LAAO-GFP及LAAO-OFP胞外蛋白 31
5. 以共軛焦顯微鏡偵測木黴菌轉形株螢光蛋白表現 32
六、 總結 33
七、 參考文獻 34

陳冠佑(2014)。木黴菌酵成有機生物肥料。國立東華大學生命科學系碩士論文,花蓮縣。取自https://hdl.handle.net/11296/hxqc6c
Ali MS, Baek KH. 2020. Jasmonic acid signaling pathway in response to abiotic stresses in plants. International Journal of Molecular Sciences, 21:621.
Aung K, Xin X, Mecey C, He SY. 2017. Subcellular localization of Pseudomonas syringae pv. tomato effector proteins in plants. Methods in Molecular Biology 1531:141–153.
Bakker PAHM, Pieterse CMJ, Van Loon LC. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239-243.
Bhatnagar H. 1995. Integrated use of biocontrol agents with fungicides to control wilt incidence in pigeon-pea. World Journal of Microbiology & Biotechnology 11:564–566.
Brambilla , Anna Sommer, Yuanyuan Chen, Marion Wenigand Shahran
Caplan JL, Kumar AS, Park E, Padmanabhan MS, Hoban K, Modla S, Czymmek K, Dinesh-Kumar SP. 2015. Chloroplast stromules function during innate immunity. Developmental Cell 34:45–57.
Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T, Samuels GJ. 2015. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia, 107:558–590.
Cheng CH, Yang CA, Liu SY, Lo CT, Huang HC, Liao FC, Peng KC. 2011. Cloning of a novel L-amino acid oxidase from Trichodedrma harzianum ETS 323 and bioactive analysis of overexpressed L-amino acid oxidase. Journal of Agricultural and Food Chemistry 59:9142–9149.
Cheng CH, Yang CA, Liu SY, Lo CT, Peng KC. 2012. L-amino acid oxidase-induced apoptosis in filamentous Botrytis cinerea. Analytic Biochemistry 420:93-95.
Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J. 2011. Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signaling & Behavior 610:1554–1563.
Contreras-Cornejo HA, Macías-Rodríguez L, del-Val E, Larsen J. 2016. Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology 92: fiw036. doi: 10.1093/femsec/fiw036
Ding X, Jimenez-Gongora T, Krenz B, Lozano-Duran R. 2019. Chloroplast clustering around the nucleus is a general response to pathogen perception in Nicotiana benthamiana. Molecular Plant Pathology 20:1298–1306.
Exposito-Rodriguez M, Laissue PP, Yvon-Durocher G, Smirnoff N, Mullineaux PM. 2017. Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signaling mechanism. Nature Communications 8:1-11.
Gea FJ, Navarro MJ, Santos M, Diánez F, Carrasco J. 2021. Control of fungal diseases in mushroom crops while dealing with fungicide resistance: a review. Microorganisms 9:585.
Georgakopoulou VE, Melemeni D, Mantzouranis K, Damaskos C, Gkoufa A, Chlapoutakis S, Garmpis N, Garmpi A, Sklapani P, Trakas N, Tsiafaki X. 2021. Firstcase of pneumonia-parapneumonic effusion due to Trichoderma longibrachiatum. IDCases 25, e01239.
Gilda JE, Ghosh R, Cheah JX, West TM, Bodine SC, Gomes AV. 2015. Western Blotting Inaccuracies with Unverified Antibodies: Need for a Western Blotting Minimal Reporting Standard (WBMRS). PLoS One. 8: 19;10(8):e0135392.
Hake K, Romeis T. 2019. Protein kinase-mediated signalling in priming: immune signal initiation, propagation, and establishment of long-term pathogen resistance in plants. Plant Cell Environment 42:904-917.
Hermosa R, Viterbo A, Chet I, Monte E. 2012. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 1581:17–25.
Izidoro LFM, Sobrinho JC, Mendes MM, Costa TR, Grabner AN, Rodrigues VM, Soares AM. 2014. Snake venom l-amino acid oxidases: trends in pharmacology and biochemistry. BioMed Research International 2014 1–19.
Jelenska J, Yao N, Vinatzer BA, Wright CM, Brodsky JL, & Greenberg JT. 2007. A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Current Biology 17:499–508.
Jin H, Choi SM, Kang MJ, Yun SH, Kwon DJ, Noh YS, Noh B. 2018. Salicylic acid-induced transcriptional reprogramming by the HAC-NPR1-TGA histone acetyltransferase complex in Arabidopsis. Nucleic Acids Research 46:11712–11725.
Klessig DF, Choi HW, Dempsey DA. 2018. Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future. Molecular Plant-Microbe Interactions 31:871–888.
Li J, Wang J, Wang S, Xing M, Yu S, Liu G. 2012. Achieving efficient protein expression in Trichoderma reesei by using strong constitutive promoters. Microbial Cell Factories 11: 84.
Lu Y, Yao J. 2018. Chloroplasts at the crossroad of photosynthesis, pathogen infection and plant defense. International Journal of Molecular Sciences, 19:3900 doi:10.3390/ijms19123900
Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ. 2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48: 1–17.
Nawrocka J, Małolepsza U. 2013. Diversity in plant systemic resistance induced by Trichoderma. Biological Control 67:149–156.
Nayem
Newman MA, Sundelin T, Nielsen JT, Erbs G. 2013. MAMP (microbe-associated molecular pattern) triggered immunity in plants. Frontiers in Plant Science 4:139. doi: 10.3389/fpls.2013.00139.
Pawelek PD, Cheah J, Coulombe R, Macheroux P, Ghisla S, Vrielink A. 2000. The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. The EMBO Journal, 19:4204–4215.
Peng KC, Lin CC, Liao CF, Yu HC, Lo CT, Yang HH, Lin KC. 2021. Expression of L-amino acid oxidase of Trichoderma harzianum in tobacco confers resistance to Sclerotinia sclerotiorum and Botrytis cinerea. Plant Science 303:110772. doi: 10.1016/j.plantsci.2020.110772
Petre B, Lorrain C, Saunders DG, Win J, Sklenar J, Duplessis S, Kamoun S. 2016. Rust fungal effectors mimic host transit peptides to translocate into chloroplasts. Cellular Microbiology 18:453–465.
Pfordt A, Schiwek S, Karlovsky P, von Tiedemann A. 2020. Trichoderma afroharzianum ear rot–a new disease on maize in Europe. Frontiers in Agronomy 29. doi:10.3389/fagro.2020.547758
Rajani P, Rajasekaran C, Vasanthakumari MM, Olsson SB, Ravikanth G, Uma Shaanker R. 2021. Inhibition of plant pathogenic fungi by endophytic Trichoderma spp. through mycoparasitism and volatile organic compounds. Microbiological research 242:126595.
Sharfman M, Bar M, Ehrlich M, Schuster S, Melech-Bonfil S, Ezer R, Sessa G, Avni A. 2011. Endosomal signaling of the tomato leucine-rich repeat receptor-like protein LeEix2. The Plant Journal 68:413-423.
Singh A, Lim GH, Kachroo P. 2017. Transport of chemical signals in systemic acquired resistance. Journal of Integrative Plant Biology 59:336–344.
Tyśkiewicz R, Nowak A, Ozimek E, Jaroszuk-Ściseł J. 2022. Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. International Journal of Molecular Sciences 23: 2329.
Vlot AC, Sales JH, Lenk M, Bauer K, Brambilla A, Sommer A, Chen Y, Wenig M, Nayem S. 2021. Systemic propagation of immunity in plants. New Phytologist 229:1234–1250.
Yang CA, Cheng CH, Liu SY, Lo CT, Lee JW, Peng KC. 2011a. Identification of antibacterial mechanism of L-amino acid oxidase derived from Trichoderma harzianum ETS 323. FEBS Journal 278:3381–3394.
Yang CA, Cheng CH, Lo CT, Liu SY, Lee JW, Peng KC. 2011b. A novel L-amino acid oxidase from Trichoderma harzianum ETS 323 associated with antagonism of Rhizoctonia solani. Journal of Agricultural and Food Chemistry 59:4519-4526.
Yang F, Xiao K, Pan H, Liu J. 2021. Chloroplast: the emerging battlefield in plant-microbe interactions. Frontiers in Plant Science 12:637853. doi: 10.3389/fpls.2021.637853.
Zeilinger S. 2004. Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation. Current Genetics 45:54-60.
Zhou JM, Zhang Y. 2020. Plant immunity: danger perception and signaling. Cell doi:10.1016/j.cell.2020.04.028
(此全文20250926後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *