帳號:guest(3.147.43.234)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Susanna Manuel John
作者(英文):Susanna Manuel John
論文名稱:利用細胞色素C做為標記並藉由拉曼光譜分析來分辨著床前小鼠胚胎的品質
論文名稱(英文):Cytochrome c, a marker to estimate the quality of preimplantation mouse embryos using Raman spectroscopy
指導教授:李佳洪
鄭嘉良
指導教授(英文):Chia-Hung Lee
Chia-Liang Cheng
口試委員:李佳洪
張新侯
口試委員(英文):Chia-Hung Lee
Xin-hou Zhang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:610813009
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:42
關鍵詞(英文):Raman spectroscopy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏收藏:0
Cytochrome c, a protein found in the matrix between the inner and outer membrane of mitochondria plays a key role in the synthesis of Adenosine Triphosphate (ATP), the energy currency of the cell through the electron transport chain. The location and the oxidation state of cytochrome c play a vital role in deciding the fate of a cell. Besides its function in the electron transport chain (ETC) where cell survival is ensured, it also activates apoptotic proteins in the cytosol, upon cellular damage and stress leading to apoptosis otherwise known as programed cell death. Thus, cytochrome C in the right place with the right oxidation state possesses the ability to make or break the cell. The study of early stages of embryonic development provides insights into understanding processes during development and is important for applications in Assisted Reproductive Technology (ART). Embryos that look healthy morphologically could have molecular changes that could lead to cellular damage during the later course of development. We can suggest that these internal abnormalities can be determined by Raman spectroscopy which is a potential tool to estimate changes on a molecular scale. In the event of cellular damage by external factors like radiation or chemical treatment, there is a release of cytochrome c into the cytoplasm which triggers the process of apoptosis by the activation of cascade proteins. In healthy cells under stress, this activation is interrupted by the reduction of cytochrome c. Thus, the analysis of changes in the Raman peak at 1585 cm-1, which is one of the characteristic peaks of cytochrome c, in embryos damaged artificially by laser irradiation are compared and discussed. In this study, Raman spectroscopy is applied to study the changes in the oxidation states of cytochrome C. Immunostaining is applied to understand the distribution of cytochrome c post laser treatment. This in vitro analysis of developing and laser treated embryos can aid in the better understanding of parameters that could be used for the quality estimation of preimplantation embryos.
Table of contents ……………………………………………………………. iii
Index of figures ……………………………………………………………... v
Acknowledgements …………………………………………………………. vii
Abstract ……………………………………………………………………… viii
Aim …………………………………………………………………………..
Chapter 1: Introduction
1.1 Artificial reproductive technology (ART) ……………………………….. 1
1.2 Quality determination of preimplantation embryos ……………………… 1
1.3 Raman Spectroscopy ……………………………………………………... 2
1.3.1 Raman spectra of a murine (mouse) embryo ……………………… 3
1.4 Cytochrome c can make or break the cell ………………………………... 5
1.5 Research motivation ……………………………………………………... 8
Chapter 2: Materials and methods
2.1 Extraction and preparation of embryos
2.1.1 Extraction embryos ………………………………………………… 9
2.1.1 Animals ……………………………………………………………. 9
2.1.2 Embryo collection …………………………………………………. 9
2.2 Treatment and investigation
2.2.1 High power laser treatment ………………………………………… 10
2.2.2 Raman measurement ……………………………………………….. 10
2.2.3 Immunostaining …………………………………………………….. 11
Chapter 3: Results and discussion
3.1 Raman analysis of embryos exposed to laser ……………………………... 13
3.2 Localization of cytochrome c through immunocytochemistry ……………. 18
Chapter 4: Conclusion ………………………………………. 23
References ………………………………………………………… 24








1. Kamel, Remah. (2013). Assisted Reproductive Technology after the Birth of Louise Brown. Journal of reproduction & infertility. 14. 96-109. 10.4172/2161-0932.1000156.
2. Borini, Andrea & Lagalla, Cristina & Sciajno, Raffaella & Distratis, Vincenzo & Bonu, Maria & Cattoli, Monica & Coticchio, Giovanni. (2005). Artificial Reproductive Technology Achievements for Optimizing Embryo Quality. Annals of the New York Academy of Sciences. 1034. 252-61. 10.1196/annals.1335.027.
3. Boiso, Irene & Veiga, Anna & Edwards, Robert. (2002). Fundamentals of human embryonic growth in vitro and the selection of high-quality embryos for transfer. Reproductive biomedicine online. 5. 328-50. 10.1016/S1472-6483(10)61841-X.
4. Wymelenberg, Suzanne. (1990). Science and Babies: Private Decisions, Public Dilemmas. Studies in Family Planning. 21. 298. 10.2307/1966512.
5. Rondeau, M & Guay, P & Goff, A.K. & Cooke, G.M.. (1995). Assessment of embryo potential by visual and metabolic evaluation. Theriogenology. 44. 351-66. 10.1016/0093-691X(95)00190-J.
6. Thompson, Jeremy & Brown, Hannah & Sutton-Mcdowall, Mel. (2016). Measuring embryo metabolism to predict embryo quality. Reproduction, Fertility and Development. 28. 41. 10.1071/RD15340.
7. Khurana, N.K. & Niemann, Heiner. (2000). Effects of cryopreservation on glucose metabolism and survival of bovine morulae and blastocysts derived in vitro or in vivo. Theriogenology. 54. 313-26. 10.1016/S0093-691X(00)00351-4.
8. Ferraro, J.R. & Nakamoto, K. & Brown, C.W.. (2003). Introductory Raman Spectroscopy: Second Edition. Introductory Raman Spectroscopy: Second Edition. 1-434.
9. Ellis, David & Cowcher, David & Ashton, Lorna & O’Hagan, Steve & Goodacre, Royston. (2013). Illuminating disease and enlightening biomedicine: Raman spectroscopy as a diagnostic tool. The Analyst. 138. 10.1039/c3an00698k.
10. Tadir, Yona & Douglas-Hamilton, Diarmaid. (2007). Laser Effects in the Manipulation of Human Eggs and Embryos for In Vitro Fertilization. Methods in cell biology. 82. 409-31. 10.1016/S0091-679X(06)82014-5.
11. Heraud, Philip & Marzec, Katarzyna & Zhang, Qinghua & Yuen, Wai & Carroll, John & Wood, Bayden. (2017). Label-free in vivo Raman microspectroscopic imaging of the macromolecular architecture of oocytes. Scientific Reports. 7. 10.1038/s41598-017-08973-0.
12. Perevedentseva, Elena & Krivokharchenko, Alexander & Karmenyan, Artashes & Chang, Hsin-Hou & Cheng, Chia-Liang. (2019). Raman spectroscopy on live mouse early embryo while it continues to develop into blastocyst in vitro. Scientific Reports. 9. 6636. 10.1038/s41598-019-42958-5.
13. Nunnari, Jodi & Suomalainen Wartiovaara, Anu. (2012). Mitochondria: In Sickness and in Health. Cell. 148. 1145-59. 10.1016/j.cell.2012.02.035.
14. Brown, Guy & Borutaite, Vilmante. (2008). Regulation of apoptosis by the redox state of cytochrome c. Biochimica et biophysica acta. 1777. 877-81. 10.1016/j.bbabio.2008.03.024.
15. Stelter, Meike & Melo, Ana & Pereira, Manuela & Gomes, Cláudio & Hreggvidsson, Gudmundur & Hjörleifsdottir, Sigridur & Saraiva, Lígia & Teixeira, Miguel & Archer, Margarida. (2008). A Novel Type of Monoheme Cytochrome c : Biochemical and Structural Characterization at 1.23 Å Resolution of Rhodothermus marinus Cytochrome c † ‡. Biochemistry. 47. 11953-63. 10.1021/bi800999g.
16. Riedl, Stefan & Salvesen, Guy. (2007). Riedl SJ, Salvesen GS.. The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8: 405-413. Nature reviews. Molecular cell biology. 8. 405-13. 10.1038/nrm2153.
17. Fadeel, B & Ottosson, A & Pervaiz, Shazib. (2008). Big wheel keeps on turning: Apoptosome regulation and its role in chemoresistance. Cell death and differentiation. 15. 443-52. 10.1038/sj.cdd.4402265.
18. Suto, Daisuke & Sato, Kazuaki & Ohba, Yoshihiro & Yoshimura, Tetsuhiko & Fujii, Junichi. (2006). Suppression of the pro-apoptotic function of cytochrome c by singlet oxygen via a haem redox state-independent mechanism. The Biochemical journal. 392. 399-406. 10.1042/BJ20050580.
19. li, Kenny & Li, Yucheng & Shelton, John & Richardson, James & Spencer, Erika & Chen, Zhijian & Wang, Xiaodong & Williams, R.Sanders. (2000). Cytochrome c Deficiency Causes Embryonic Lethality and Attenuates Stress-Induced Apoptosis. Cell. 101. 389-99. 10.1016/S0092-8674(00)80849-1.
20. Luo, Charlie & Zuñiga, Juliana & Edison, Earnessa & Palla, Shana & Dong, Wenli & Parker-Thornburg, Jan. (2011). Superovulation Strategies for 6 Commonly Used Mouse Strains. Journal of the American Association for Laboratory Animal Science : JAALAS. 50. 471-8.
21. Rugh, R. (1968). The mouse; its reproduction and development. Minneapolis: Burgess Pub. Co.
22. Krivokharchenko, Alexander & Karmenyan, Artashes & Sarkisov, Oleg & Bader, Michael & Chiou, Arthur & Shakhbazyan, Avetik. (2012). Laser Fusion of Mouse Embryonic Cells and Intra-Embryonic Fusion of Blastomeres without Affecting the Embryo Integrity. PloS one. 7. e50029. 10.1371/journal.pone.0050029.
23. Zhang, Yanjun & Guo, Juan & Qi, Yuhong & Shao, Qiuju & Liang, Jun. (2014). The prevention of radiation-induced DNA damage and apoptosis in human intestinal epithelial cells by salvianic acid A. Journal of Radiation Research and Applied Sciences. 7. 10.1016/j.jrras.2014.05.003.
24. Liu, Lin & Trimarchi, James & Keefe, David. (2000). Involvement of Mitochondria in Oxidative Stress-Induced Cell Death in Mouse Zygotes. Biology of reproduction. 62. 1745-53. 10.1095/biolreprod62.6.1745.
25. Thavarajah, Rooban & Mudimbaimannar, Vidya & Elizabeth, Joshua & Rao, Umadevi & Ranganathan, Kannan. (2012). Chemical and physical basics of routine formaldehyde fixation. Journal of oral and maxillofacial pathology : JOMFP. 16. 400-5. 10.4103/0973-029X.102496.
26. Palonpon, Almar & Sodeoka, Mikiko & Fujita, Katsumasa. (2013). Molecular imaging of live cells by Raman microscopy. Current opinion in chemical biology. 17. 10.1016/j.cbpa.2013.05.021.
27. Howell, Nazlin & Arteaga, Guillermo & Nakai, Shuryo & Li-Chan, Eunice. (1999). Raman Spectral Analysis in the C−H Stretching Region of Proteins and Amino Acids for Investigation of Hydrophobic Interactions. Journal of agricultural and food chemistry. 47. 924-33. 10.1021/jf981074l.
28. Pomeroy, Kimball & Reed, Michael. (2015). The effect of light on embryos and embryo culture. 10.1017/CBO9781107294295.
29. Waterhouse, Nigel & Goldstein, Joshua & Muck, Ruth & Newmeyer, Don & Green, Douglas. (2001). Chapter 16 The (Holey) study of mitochondria in apoptosis. Methods in Cell Biology - METHOD CELL BIOL. 66. 365-391. 10.1016/S0091-679X(01)66017-5.
30. Crowley, Lisa & Marfell, Brooke & Scott, Adrian & Waterhouse, Nigel. (2016). Analysis of Cytochrome c Release by Immunocytochemistry. Cold Spring Harbor Protocols. 2016. pdb.prot087338. 10.1101/pdb.prot087338.
31. Kitahama, Yasutaka & Ozaki, Yukihiro. (2016). Surface-enhanced resonance Raman scattering of hemoproteins and those in complicated biological systems. The Analyst. 141. 10.1039/c6an01009a.
32. Matin, Mohammad & Islam, Mazharul & Bredow, Thomas & Aziz, Md. (2017). The Effects of Oxidation States, Spin States and Solvents on Molecular Structure, Stability and Spectroscopic Properties of Fe-Catechol Complexes: A Theoretical Study. Advances in Chemical Engineering and Science. 07. 137-153. 10.4236/aces.2017.72011.
33. Russo, Vanessa & Candeloro, Patrizio & Malara, Natalia & Perozziello, Gerardo & Iannone, Michelangelo & Scicchitano, Miriam & Mollace, Rocco & Musolino, Vincenzo & Gliozzi, Micaela & Carresi, Cristina & Morittu, Valeria & Gratteri, Santo & Palma, Ernesto & Muscoli, Carolina & Di Fabrizio, Enzo & Mollace, Vincenzo. (2019). Express: The Key Role of Cytochrome C for Apoptosis Detection Using Raman Micro-Imaging in an Animal Model of Brain Ischemia with Insulin Treatment. Applied Spectroscopy. 73. 000370281985867. 10.1177/0003702819858671.
34. Ashton, Lorna & Wright, Karen & Smith, Rachael. (2016). Raman Spectroscopy: An evolving technique for live cell studies. The Analyst. 141. 10.1039/C6AN00152A.
35. Wood, Bayden & Hammer, Larissa & Davis, Lara & Mcnaughton, Don. (2005). Raman microspectroscopy and imaging provides insights into heme aggegration and denaturation with human erythrocytes. Journal of biomedical optics. 10. 14005. 10.1117/1.1854678.
36. Brazhe, Nadezda & Treiman, Marek & Brazhe, Alexey & Find, Ninett & Maksimov, Georgy & Sosnovtseva, Olga. (2012). Mapping of Redox State of Mitochondrial Cytochromes in Live Cardiomyocytes Using Raman Microspectroscopy. PloS one. 7. e41990. 10.1371/journal.pone.0041990.
37. Uchida, Takeshi & Stevens, Julie & Daltrop, Oliver & Harvat, Edgar & Hong, Lin & Ferguson, Stuart & Kitagawa, Teizo. (2005). The Interaction of Covalently Bound Heme with the Cytochrome c Maturation Protein CcmE. The Journal of biological chemistry. 279. 51981-8. 10.1074/jbc.M408963200.
38. Quinn, Peter. (2002). Phospholipid metabolism in apoptosis.
39. Benador, Ilan & Veliova, Michaela & Mahdaviani, Kiana & Petcherski, Anton & Wikstrom, Jakob & Assali, Essam & Acín-Pérez, Rebeca & Shum, Michael & Oliveira, Marcus & Cinti, Saverio & Sztalryd, Carole & Barshop, William & Wohlschlegel, James & Corkey, Barbara & Liesa, Marc & Shirihai, Orian. (2018). Mitochondria Bound to Lipid Droplets Have Unique Bioenergetics, Composition, and Dynamics that Support Lipid Droplet Expansion. Cell Metabolism. 27. 869-885.e6. 10.1016/j.cmet.2018.03.003.
40. Karunakaran, Venugopal & Sun, Yuhan & Benabbas, Abdelkrim & Champion, Paul. (2014). Investigations of the Low Frequency Modes of Ferric Cytochrome C Using Vibrational Coherence Spectroscopy.. The journal of physical chemistry. B. 118. 10.1021/jp501298c.
41. Myer, Yash & Srivastava, Raja & Kumar, Swatantar & Raghavendra, K.. (1983). State of heme in heme c systems: Cytochrome c and heme c models. Journal of Protein Chemistry. 2. 13-42. 10.1007/BF01025166.
42. M. Sarmiento, E. Barus, E. Perevedentseva, A. Krivokharchenko, A. Karmenyan, H.H. Chang, C.L. Cheng. Study of nanoparticles influence on pre-implantation mammalian embryo: perspectives of embryonic quality through spectroscopy. International Conference on New Diamond and Nano Carbon NDNC2019, May 12-17 2019, Hualien, Taiwan, P1-18
43. Philip L. Yeagle. (2016). The Membranes of Cells (Third Edition)
44. Yuan, Xiaofei & Song, Yanqing & Song, Yizhi & Xu, Jiabao & Wu, Yinhu & Glidle, Andrew & Cusack, Maggie & Ijaz, Umer & Cooper, Jonathan & Huang, Wei & Yin, Huabing. (2018). Effect of laser irradiation on cell function and its implications in Raman spectroscopy.
45. Kim, Seongheun & Chung, Jean & Kwak, Kyungwon & Bowman, Sarah & Bren, Kara & Bagchi, Biman & Fayer, M. (2008). Native and Unfolded Cytochrome c Comparison of Dynamics using 2D-IR Vibrational Echo Spectroscopy. The journal of physical chemistry. B. 112. 10054-63. 10.1021/jp802246h.
46. Hanske, Jonas & Toffey, Jason & Morenz, Anna & Vincelli, Amber & Schiavoni, Katherine & Pletneva, Ekaterina. (2011). Conformational properties of cardiolipin-bound cytochrome c. Proceedings of the National Academy of Sciences of the United States of America. 109. 125-30. 10.1073/pnas.1112312108.
47. World Health Organization. (2020, February 5).
48. Brazhe, Nadezda & Treiman, Marek & Faricelli, Barbara & Vestergaard, Jakob & Sosnovtseva, Olga. (2013). In Situ Raman Study of Redox State Changes of Mitochondrial Cytochromes in a Perfused Rat Heart. PloS one. 8. e70488. 10.1371/journal.pone.0070488.
49. Torregrosa-Muñumer, R., Goffart, S., Haikonen, J. A., & Pohjoismäki, J. L. (2015). Low doses of ultraviolet radiation and oxidative damage induce dramatic accumulation of mitochondrial DNA replication intermediates, fork regression, and replication initiation shift. Molecular biology of the cell, 26(23), 4197–4208. https://doi.org/10.1091/mbc.E15-06-0390.
50. Eskew, A. M., & Jungheim, E. S. (2017). A History of Developments to Improve in vitro Fertilization. Missouri medicine, 114(3), 156–159.
51. Rocha, J. C., Passalia, F., Matos, F. D., Maserati, M. P., Jr, Alves, M. F., Almeida, T. G., Cardoso, B. L., Basso, A. C., & Nogueira, M. F. (2016). Methods for assessing the quality of mammalian embryos: How far we are from the gold standard?. JBRA assisted reproduction, 20(3), 150–158. https://doi.org/10.5935/1518-0557.20160033
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *