帳號:guest(3.15.5.99)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:羅丞勛
作者(英文):Cheng-Syun Luo
論文名稱:三溴化鉻塊材的偏振拉曼散射研究
論文名稱(英文):Polarized Raman scattering studies of a bulk CrBr3
指導教授:馬遠榮
指導教授(英文):Yuan-Ron Ma
口試委員:賴建智
許華書
口試委員(英文):Chien-Chih Lai
Hua-Shu Hsu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610814207
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:40
關鍵詞:三溴化鉻二維材料凡德瓦力拉曼光譜偏振拉曼光譜
關鍵詞(英文):Chromium TribromideTwo-dimensional materialsVan der WaalRaman spectroscopyPolarized Raman Spectroscopy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
三溴化鉻(CrBr3)作為二維鐵磁半導體材料在電子自旋器件有很大的潛力,利用光學顯微鏡觀察其外觀,以場發射掃描式電子顯微鏡進行表面觀測確認其材料具有層狀結構並屬於二維材料,利用能量散射X射線譜研究此固態材料的元素為鉻和溴組成,並使用X射線光電子能譜儀確認其鍵結狀態與分子組成,X射線繞射儀與穿透式電子顯微鏡觀察其原子的排列型態與區域衍射型態去確認其屬於六方晶系,接著使用偏振拉曼光譜儀分析其晶格結構的兩種震動性質發現A1g振動模式會因為偏振角的改變,峰值會明顯受到抑制,並改變樣品方向取樣角度發現拉曼訊號會因為晶格結構的關係產生偏振,並發現偏振對於樣品的取向可能是光同向性的。選擇量測特定角度低溫下的A1g偏振拉曼峰值會向右偏移且強度會降低。
Chromium tribromide (CrBr3) is a two-dimensional ferromagnetic semiconductor material that has great potential in spintronic devices. The flakes of 2D CrBr3 are observed and characterized using various analytical proficiencies. The 2D layered nature of the flakes is confirmed using optical and electron microscopy. The chemical purity and stoichiometry of the CrBr3 flakes is confirmed qualitatively and quantitatively using an energy dispersive X-ray spectrometer and X-ray photoelectron spectrometer, respectively. The hexagonal crystal structure having space group P3 of the CrBr3 flakes is confirmed using the X-ray diffractometry and transmission electron microscope. The phonons involved in CrBr3 flakes is studied using polarized-Raman spectroscopy. The 2D CrBr3 consists of Eg and A1g vibration modes. The crystal orientation-dependent lattice vibrations and degree of polarization are observed using the A1g vibration modes. We find that the polarization is isotropic to the orientation of the samples, however, the degree of polarization is anisotropic property of 2D CrBr3 single crystal. The lattice vibrations of A1g at 80 K show a significant reduction in the degree of polarization at the polarization angle.
摘要
Abstract
目錄
圖目錄
第一章 文獻回顧與導論   1
1.1 二維材料   1
1.2 三鹵化鉻   2
1.3 二維材料的光偏振性質   3
1.4 研究動機   6
第二章 製備與分析儀器技術   7
2.1 實驗用儀器與樣品材料   7
2.1.1 樣品製備與保存環境   7
2.1.2 實驗材料   8
2.2 場發射掃描式電子顯微鏡 (FESEM)   8
2.3 能量散射X射線光譜儀 (EDS)   10
2.4 X射線光電子能譜儀 (XPS)   10
2.5 X射線繞射儀 (XRD)   12
2.6 穿透式電子顯微鏡 (TEM)   13
2.7 拉曼光譜 (Raman spectroscopy)   14
2.7.1 偏振拉曼光譜 (polarized Raman spectroscopy)   15
第三章 實驗結果與分析   17
3.1 光學顯微鏡和場發射電子顯微鏡   17
3.2 能量散射X射線光譜儀分析   18
3.3 X射線光電子能譜數據分析   19
3.4 X射線繞射數據與分析   20
3.5 穿透式電子顯微鏡數據分析   21
3.6 拉曼光譜數據分析   22
3.6.1 偏振拉曼光譜數據分析   23
3.6.2 低溫偏振拉曼光譜數據分析   28
第四章 結論   31
參考文獻   33
[1]Feng, S. Q., Yu, D. P., Zhang, H. Z., Bai, Z. G., & Ding, Y. The growth mechanism of silicon nanowires and their quantum confinement effect. J. Cryst. Growth, 209, 513-517 (2000). https://doi.org/10.1016/S0022-0248(99)00608-9
[2]Ponomareva, I., Srivastava, D.,& Menon, M. Thermal conductivity in thin silicon nanowires: phonon confinement effect. Nano Lett., 7, 1155-1159 (2007). https://doi.org/10.1021/nl062823d
[3]馬遠榮,奈米科技,城邦文化,台北,108頁,(2002).
[4]Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films. Science, 306, 666-669 (2004). https://doi.org/10.1126/science.1102896
[5]Neupane, G. P., Zhou, K., Chen, S., Yildirim, T., Zhang, P., & Lu, Y. In‐Plane Isotropic/Anisotropic 2D van der Waals Heterostructures for Future Devices. Small, 15, 1804733 (2019).
https://doi.org/10.1002/smll.201804733
[6]Li, H., Wang, X., Zhu, X., Duan, X.,&Pan, A.Composition modulation in one-dimensional and two-dimensional chalcogenide semiconductor nanostructures. Chem. Soc. Rev., 47, 7504-7521 (2018).
https://doi.org/10.1039/C8CS00418H
[7]S. Jit, S, Das,2D Nanoscale Heterostructured Materials Synthesis, Properties, and Applications A Volume in Micro and Nano Technologies. Elsevier, Varanasi, 13-54 (2020).
https://doi.org/10.1016/B978-0-12-817678-8.00006-3
[8]Kang, J., Cao, W., Xie, X., Sarkar, D., Liu, W., & Banerjee, K.Graphene and beyond-graphene 2D crystals for next-generation green electronics. Proc. SPIE 9083, Micro- and Nanotechnology Sensors, Systems, and Applications VI, 908305 (2014).
https://doi.org/10.1117/12.2051198
[9]Dillon, J. F. Jr, Kamimura, H., & Remeika, J. P. Magneto-optical properties of ferromagnetic chromium trihalides. J. Phys. Chem. Solids, 27, 1531-1549 (1966).
https://doi.org/10.1016/0022-3697(66)90148-X
[10]Huber, D. L., & Seehra, M. S. Contribution of the spin-phonon interaction to the paramagnetic resonance linewidth of CrBr3. J. Phys. Chem., 36, 723-725 (1975).
https://doi.org/10.1016/0022-3697(75)90094-3
[11]Zhang, W. B., Qu, Q., Zhu, P., & Lam, C. H. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C, 3, 12457-12468 (2015). https://doi.org/10.1039/C5TC02840J
[12]Molina-Sánchez, A, et al. Magneto-optical response of chromium trihalide monolayers: chemical trends. J. Mater. Chem. C, 8, 8856-8863 (2020).
https://doi.org/10.1039/D0TC01322F
[13]Grönke, M., Buschbeck, B., Schmidt, P., Valldor, M., Oswald, S., Hao, Q. & Hampel, S. Chromium Trihalides CrX3 (X= Cl, Br, I): Direct Deposition of Micro‐and Nanosheets on Substrates by Chemical Vapor Transport. Adv. Mater. Interfaces, 6, 1901410 (2019).
https://doi.org/10.1002/admi.201901410
[14]McGuire, M. A., Dixit, H., Cooper, V. R., & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater., 27, 612-620 (2015).
https://doi.org/10.1021/cm504242t
[15]Zhang, Z., Shang, J., Jiang, C., Rasmita, A., Gao, W., & Yu, T. Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano letters, 19, 3138-3142 (2019).
https://doi.org/10.1021/acs.nanolett.9b00553
[16]Gong, C., & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science, 363, 6428 (2019).
https://doi.org/10.1126/science.aav4450
[17]Webster, L., & Yan, J. A. Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys. Rev. B, 98, 144411 (2018).https://link.aps.org/doi/10.1103/PhysRevB.98.144411
[18]Bower, D. I. Investigation of molecular orientation distributions by polarized Raman scattering and polarized fluorescence. J. Polym. Sci. Polymer, 10, 2135-2153 (1972).
https://doi.org/10.1002/pol.1972.180101103
[19]Jiang, J., Lin, X., & Zhang, B. Broadband negative refraction of highly squeezed hyperbolic polaritons in 2D materials. Research, 2018, Article ID 2532819 (2018).
https://doi.org/10.1155/2018/2532819
[20]Wang, X., Jones, A. M., Seyler, K. L., Tran, V., Jia, Y., Zhao, H., ... & Xia, F. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol., 10, 517-521 (2015).
https://doi.org/10.1038/nnano.2015.71
[21]Zhou, S., Wang, R., Han, J., Wang, D., Li, H., Gan, L., & Zhai, T. Ultrathin non‐van der Waals magnetic Rhombohedral Cr2S3: space‐confined chemical vapor deposition synthesis and raman scattering investigation. Adv. Funct. Mater., 29, 1805880 (2019).
https://doi.org/10.1002/adfm.201805880
[22]Ribeiro, H. B., Pimenta, M. A., De Matos, C. J., Moreira, R. L., Rodin, A. S., Zapata, J. D., & Castro Neto, A. H. Unusual angular dependence of the Raman response in black phosphorus. ACS Nano, 9, 4270-4276. (2015).
https://doi.org/10.1021/acsnano.5b00698
[23]Mao, N., Zhang, S., Wu, J. et al. Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy. Nano Res. 11, 3154-3163 (2018).
https://doi.org/10.1007/s12274-017-1690-4
[24]Cong, X., Lin, M., & Tan, P. H. Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure. J. Semicond., 40, 091001 (2019).
http://dx.doi.org/10.1088/1674-4926/40/9/091001
[25]Lin, M. L., Leng, Y. C., Cong, X., Meng, D., Wang, J., Li, X. L., & Tan, P. H. Understanding angle-resolved polarized Raman scattering from black phosphorus at normal and oblique laser incidences. Sci. Bull., 65, 1894-1900 (2020).
https://doi.org/10.1016/j.scib.2020.08.008
[26]Yuan, H., Liu, X., Afshinmanesh, F., Li, W., Xu, G., Sun, J., & Cui, Y. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol., 10, 707-713. (2015). https://doi.org/10.1038/nnano.2015.112
[27]Mondal, S., Kannan, M., Das, M., Govindaraj, L., Singha, R., Satpati, B & Mandal, P. Effect of hydrostatic pressure on ferromagnetism in two-dimensional CrI3. Phys. Rev. B, 99, 180407 (2019).
https://link.aps.org/doi/10.1103/PhysRevB.99.180407
[28]Mohiuddin, T. M. G., Lombardo, A., Nair, R. R., Bonetti, A., Savini, G., Jalil, R.,& Ferrari, A. C. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B, 79, 205433 (2009).
https://link.aps.org/doi/10.1103/PhysRevB.79.205433
[29]Conley, H. J., Wang, B., Ziegler, J. I., Haglund Jr, R. F., Pantelides, S. T., & Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett., 13, 3626-3630 (2013).
https://doi.org/10.1021/nl4014748
[30]Lee, J. U., Woo, S., Park, J., Park, H. C., Son, Y. W., & Cheong, H. Strain-shear coupling in bilayer MoS2. Nat. Commun., 8, 1-7 (2017).
https://doi.org/10.1038/s41467-017-01487-3
[31]Cho, Y., Jegal, S., Lee, J. U., Yoon, D., Choi, S. M., Son, Y. W., & Cheong, H. Anisotropic phonon softening of uniaxially strained bilayer graphene. Carbon, 103, 473-479 (2016).
https://doi.org/10.1016/j.carbon.2016.03.047
[32]Klein, D. R., MacNeill, D., Song, Q., Larson, D. T., Fang, S., Xu, M., & Jarillo-Herrero, P. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat. Phys., 15, 1255-1260 (2019).
https://doi.org/10.1038/s41567-019-0651-0
[33]Huang, B., Cenker, J., Zhang, X., Ray, E. L., Song, T., Taniguchi, T & Xu, X. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3. Nat. Nanotechnol., 15, 212-216 (2020).
https://doi.org/10.1038/s41565-019-0598-4
[34]Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J., & Ryu, S. Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano, 4, 2695-2700 (2010).https://doi.org/10.1021/nn1003937
[35]Patil, R. A., Tu, H. W., Jen, M. H., Lin, J. J., Wu, C. C., Yang, C. C., & Ma, Y. R. Intriguing field-effect-transistor performance of two-dimensional layered and crystalline CrI3. Mater. Today Phys., 12, 100174 (2020).
https://doi.org/10.1016/j.mtphys.2019.100174
[36]Hübschen, G., Altpeter, I., Tschuncky, R., & Herrmann, H. G. Materials characterization using nondestructive evaluation (NDE) methods. Woodhead publishing, Cambridge, 17-43 (2016).
https://doi.org/10.1016/B978-0-08-100040-3.00002-X
[37]Gupta, V., Ganegoda, H., Engelhard, M. H., Terry, J., & Linford, M. R. Assigning oxidation states to organic compounds via predictions from X-ray photoelectron spectroscopy: a discussion of approaches and recommended improvements. J. Chem. Educ., 91, 232-238 (2014).
https://doi.org/10.1021/ed400401c
[38]Baskaran, S. Structure and regulation of yeast glycogen synthase, (Doctoral dissertation). Indiana University-Purdue University Indianapolis, 28 (2010).
http://hdl.handle.net/1805/2278
[39]Kundu S., Synthesis and characterizations of some nanocrystalline metal oxide semiconductors and composites with different morphologies (Doctoral dissertation). The university of burdwan west bengal, 62 (2018).
[40]Bermudez, V. M. Unit-cell vibrational spectra of chromium trichoride and chromium tribromide. Solid State Commun., 19, 693-697 (1976).
https://doi.org/10.1016/0038-1098(76)90899-1
[41]Borghesi, A., Guizzetti, G., Marabelli, F., Nosenzo, L., & Reguzzoni, E. Far-infrared optical properties of CrCl3 and CrBr3. Solid State Commun., 52, 463-465. (1984).
https://doi.org/10.1016/0038-1098(84)90036-X
[42]Zhang, Y., Li, G., Pei, S., Lyu, B., Huang, Q., Wang, X., & Huang, M. Self-modulated photoluminescence of CrBr3 flake. Micro Nano Lett., 15, 788-792. (2020).
https://doi.org/10.1049/mnl.2020.0260
[43]Mulliken, R. S. Report on notation for the spectra of polyatomic molecules. J. Chem. Phys., 23, 1997-2011 (1955).
https://doi.org/10.1063/1.1740655
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *