帳號:guest(18.219.41.208)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:許淮原
作者(英文):Huai-Yuan Hsu
論文名稱:以電鍍方式成長氧化釩薄膜之退火觀察與電性探討
論文名稱(英文):Electrical Properties of Vanadium Oxide Thin Film Growth by Electroplating with Thermal Annealing
指導教授:曾賢德
指導教授(英文):Shien-Der Tzeng
口試委員:簡世森
黃玉林
口試委員(英文):Shih-Sen Chien
Yue-Lin Huang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610814213
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:63
關鍵詞:氧化釩薄膜電阻溫度係數電鍍
關鍵詞(英文):Vanadium oxideThin filmTemperature coefficient of resistanceElectroplating
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
氧化釩於光學、電學領域都有其應用價值,其中VOx薄膜為現今紅外線熱像儀主要採用的溫度感測元件之一,因為其擁有優良的電阻溫度係數(−2~ −3 %/K)及較低的熱退火溫度(~300℃)。
然而過往文獻中,主要製備VOx薄膜的方法為濺鍍法,成長時需要控制腔體中氣體組成及氣壓,且沉積過後需要約300 ℃的退火製程,造成較高的製備成本。本篇論文將著重於利用電鍍方式成長VOx薄膜,並於157 ℃ (430 K)進行熱退火處理,最後量測其電阻隨溫度之變化,觀察其能隙及電阻溫度係數。
本篇論文觀察到若於無奈米金顆粒之電極基板進行電鍍,則大部分的氧化釩都將沉積於白金電極上,而電極對間沒有成長氧化釩薄膜。而利用奈米金顆粒成功使氧化釩擴散至電極對間形成VOx薄膜。而電鍍完成之VOx薄膜於157 ℃ (430 K)進行熱退火時,在真空環境下退火對於氧化釩薄膜的電性無明顯變化,而氧氣環境的退火速率較大氣環境快,退火時間常數τ分別約為 850 秒及7900 秒。研究中也表明氧化釩薄膜的電性會受到水氣影響導致電阻值上升。
退火過後之VOx薄膜量測得之能隙值分別為0.52 與 0.57 eV,於室溫下的電阻溫度係數分別為−3.34 (%/K)與 − 3.71 (%/K),該數值不亞於過往文獻中使用濺鍍法成長之VOx薄膜。
Vanadium oxide is widely used in electrical and optical application, especially VOx thin film, it’s a part of infrared hermographic camera which play role of microbolometer, because of its high temperature of resistance(−2~ − 3 %/K) and
relative lower annealing temperature(~300 ℃).
However, must popular method of growing VOx thin film is sputtering method, it need to control pressure and gas composition in chamber while deposition process, and the thin film also need to annealed at 300℃ after deposited, the gases used in deposition process caused higher cost. In this work, we study at growing VOx thin film by electroplating, and annealed at 157 ℃ (430 K), and measure the band gap energy and temperature coefficient of resistance.
The experiment result shows that we succeed deposited VOx thin film by electroplating with gold nanoparticle, and the thin film annealed at 157 ℃ (430 K) with vacuum is not effective, then the resistance change while annealing with oxygen is faster than with air, annealing time constant τ is about 850 s and 7900 s , respectively. Experiment result also shows that water vapor would raise resistance of VOx thin film.
In the end, these annealed VOx thin film have band gap energy is 0.52 eV and 0.57 eV, respectively. And the temperature oefficient of resistance is about -3.34 (%/K) and -3.71 (%/K), a good value as previous paper which growth VOx thin film by sputtering.
第一章 緒論 1
第一節 背景簡介 1
第二節 研究動機 2
第二章 實驗原理與文獻回顧 3
第一節 氧化釩特性 3
第二節 電阻式紅外線熱像儀簡介 5
第三節 不同溫度感測材料之文獻回顧 7
第四節 半導體的能隙與電阻的關係 11
第五節 電鍍模型 12
第三章 樣品製備與量測系統 15
第一節 奈米金顆粒溶液製備 16
第二節 電極基板製備 19
第三節 奈米金顆粒與基板的表面修飾 22
第四節 不連續奈米金顆粒基板製作 25
第五節 以電鍍方式成長氧化釩薄膜 26
第六節 量測系統 28
第四章 實驗結果與討論 37
第一節 電鍍過程分析 37
第二節 表面SEM影像分析 42
第三節 氧化釩薄膜的退火過程分析 45
第四節 氧化釩薄膜於不同氣體環境之電阻變化 53
第五節 氧化釩薄膜之能隙與TCR值分析 54
第六節 本篇論文與過往文獻數據比較 58
第五章 結論 59
第一節 未來展望 59
[1] Issam Mjejri, Aline Rougier, and Manuel Gaudon., “Low-Cost and Facile Synthesis of the Vanadium Oxides V2O3 , VO2 , and V2O5 and Their Magnetic, Thermochromic and Electrochromic Properties”, Inorganic Chemistry. 56, 1734-1741 (2017).
[2] B. E. Cole, R. E. Higashi, and R. A. Wood, “Monolithic Two-Dimensional Arrays of Micromachined Microstructures for Infrared Applications”, Proceedings of The IEEE, vol. 86, no. 8, 1679-1686 (1998).
[3] Gibson, Chris, “Nimrod's Genesis”, Hikoki Publications (2015).
[4] Yong-Hee Han et al., “Fabrication of vanadium oxide thin film with hightemperature coefficient of resistance using V2O5 /V/ V2O5 multi-layers for uncooled microbolometers”, Thin Solid Films 425, 260-264 (2003).
[5] Hongchen Wang, Xinjian Yi, Guang Huang, Jing Xiao, Xiongwei Li, and Sihai Chen, “IR microbolometer with self-supporting structure operating at room temperature”, Infrared Physics and Technology 45, 53-57 (2004).
[6] Nicholas Fieldhouse, Sean M Pursel, Mark W Horn, and S. S. N. Bharadwaja, “Electrical properties of vanadium oxide thin films for bolometer applications: processed by pulse dc sputtering”, J. Phys. D: Appl. Phys. 42, 055408 (2009).
[7] Mohamed Abdel-Rahman , Muhammad Zia, and Mohammad Alduraibi,
“Temperature-Dependent Resistive Properties of Vanadium Pentoxide/Vanadium Multi-Layer Thin Films for Microbolometer & Antenna-Coupled Microbolometer Applications”, Sensors 19, 1320 (2019).
[8] Liyang Chen, Panpan Zhou, Yoav Kalcheim, Ivan K. Schuller, and Douglas Natelson, “Percolation and nanosecond fluctuators in V2O3 films within the metal–insulator transition”, APL Mater. 8, 101103 (2020).
[9] A. S. McLeod et al., “Nano-textured phase coexistence in the correlated insulator V2O3”, Nature Physics volume 13, P.80–86 (2017).
[10] Yoav Kalcheim et al., “Structural Manipulation of Phase Transitions by SelfInduced Strain in Geometrically Confined Thin Films”, Adv. Funct. Mater, 2005930 (2020).
[11] Shinbuhm Lee, Ilia N. Ivanov, Jong K. Keum and Ho Nyung Lee, “Epitaxial stabilization and phase instability of VO2 polymorphs”, Scientific Reports,6:19621 (2016).
[12] W. W. Li et al., “Intrinsic evolutions of optical functions, band gap, and higherenergy electronic transitions in VO2 film near the metal-insulator transition region”, Applied Physics Letters, 99, 241903 (2011).
[13] Sangwook Lee et al., “Anomalously low electronic thermal conductivity in metallic vanadium dioxide”, Science, 355, 371-374 (2017).
[14] Le Yu , Yaozu Guo, Haoyu Zhu, Mingcheng Luo, Ping Han and Xiaoli Ji, “LowCost Microbolometer Type Infrared Detectors”, Micromachines, 11, 800 (2020).
[15] R.A. Wood, “Infrared Detectors and Emitters: Materials and Devices” ch.6 (2001).
[16] A. J. Syllaios, T. R. Schimert, R. W. Gooch, W. L. McCardel, B. A. Ritchey, J. H. Tregilgas, “Amorphous Silicon Microbolometer Technology”, Mat. Res. Soc. Symp. Proc. Vol. 609, A14.4 (2000).
[17] Giancoli, Douglas C., Physics 4th Ed (1995)
[18] Jian Lv, Longcheng Que, Linhai Wei, Yun Zhou, Baobin Liao, and Yadong Jiang, “Uncooled Microbolometer Infrared Focal Plane Array Without Substrate Temperature Stabilization”, IEEE Sensors Journal, vol. 14, no. 5 (2014).
[19] M. Abdel-Rahman et al., “Temperature coefficient of resistance and thermal conductivity of Vanadium oxide ‘Big Mac’ sandwich structure”, Infrared Physics & Technology 71, 127-130 (2015)
[20] M.F. Zia, M. Abdel-Rahman, M. Alduraibi, B. Ilahi and A. Alasaad, “Synthesis and electrical characterisation of vanadium oxide thin film thermometer for microbolometer applications”, Electronics Letters, Vol. 52, No.10, 827-828(2016).
[21] Muhammad Fakhar Zia, Mohamed Abdel-Rahman, Mohammad Alduraibi,
Bouraoui Ilahi, Ehab Awad, and Sohaib Majzoub, “Electrical and Infrared Optical Properties of Vanadium Oxide Semiconducting Thin-Film Thermometers”, Journal of Electronic Materials, Vol. 46, No. 10 (2017).
[22] Jean-Luc Tissot, Sebastien Tinnes, Alain Durand, Christophe Minassian, Patrick Robert, and Michel Vilain, “High-performance uncooled amorphous silicon video graphics array and extended graphics array infrared focal plane arrays with 17-μm pixel pitch”, Optical Engineering 50, 061006 (2011).
[23] J. C. Garcia and T. D. Burleigh, “The Beginnings of Gold Electroplating”, The Electrochemical Society Interface, 36-38 (2013).
[24] Allen J. Bard and Larry R. Faulkner, “Electrochemical Methods Fundamentals and Applications 2nd edition”, FL: Wiley (2001).
[25] 郭清癸、黃俊傑、牟中原,金屬奈米粒子的製造,物理雙月刊,廿三卷六
期,614-624 頁 (2001).
[26] J. W. Solt, and H. J. Geuze, “A New Method of Preparing Gold Probesfor Multiple-labeling Cytochemistry”. European Journal of Cell Biology, 38, 87-93 (1985).
[27] Nak Heon Choi, Soon-kwan Kwon, and Hansung Kim, “Analysis of the Oxidation of the V(II) by Dissolved Oxygen Using UV-Visible Spectrophotometry in a Vanadium Redox Flow Battery”, Journal of The Electrochemical Society, 160 (6) A973-A979 (2013).
[28] Steven S. Zumdahl, and Susan A.Zumdahl, Chemistry 8th ed, P.829 (2008).
[29] Wenjun Wang, Xinzhuang Fan, Jianguo Liu, Chuanwei Yan and Chaoliu Zeng, “Unusual phenomena in the reduction processof vanadium(V) on a graphite electrode at high overpotentials”, Phys. Chem. Chem. Phys, 16, 19848-19851(2014).
[30] P. Blanc, C. Madic, and J. P. Launay, “Spectrophotometric Identification of a Mixed-Valence Cation-Cation Complex between Aquadioxovanadium(V) and Aquaoxovanadium(IV) Ions in Perchloric, Sulfuric, and Hydrochloric Acid Media”, Inorganic Chemistry, vol. 21, no. 8, 2923-2928 (1982).
[31] S. Suga, M et al., “Vacuum-ultraviolet reflectance and photoemission study of the metal-insulator phase transitions in VO2, V6O13, and V2O3”, Physical Review B, vol. 41, 4993-5009 (1990)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *