帳號:guest(3.144.92.54)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Justin Benedict A. Agcaoili
作者(英文):Justin Benedict A. Agcaoili
論文名稱:Detection and analysis of synthetic polymer MALDI ions with charge detection LIT mass spectrometry
論文名稱(英文):Detection and analysis of synthetic polymer MALDI ions with charge detection LIT mass spectrometry
指導教授:彭文平
指導教授(英文):Wen-Ping Peng
口試委員:鄭俊彥
謝建台
口試委員(英文):Jun-Yan Zheng
Jian-Tai Xie
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610814302
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:66
關鍵詞(英文):Linear Ion TrapMALDI-ToFSynthetic polymers
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
It is quite easy to overlook the substantial impact of polymers in our daily lives. Synthetic polymers, fabricated and enhanced through years of research and development, comprise most of the materials we use today. Different characterization techniques have been undertaken to identify the composition and properties of synthetic polymers. The most viable method so far is mass spectrometry. The development of different mass spectrometric techniques such as MALD-ToF paved the way to a more accurate identification of synthetic polymers. There are other mass spectrometric techniques that can be used for synthetic polymers analysis. However, little to no studies have been done with the linear ion trap (LIT) technique for synthetic polymer detection analysis. LIT mass analyzers are flexible enough to be coupled with other mass analyzers for MS/MS. Also its small size fits for the development of benchtop mass spectrometers. In this study, an extensive analysis into the the optimization of LIT in synthetic polymer ion analysis and detection was carried out. The findings reveal that the LIT can exceed its known limits by finding the optimal conditions for pressure, collision cooling, scanning methods, ejection methods etc. The information and data obtained through this study can contribute to the development of LIT instruments, especially in the detection and analysis of synthetic polymers.
CHAPTER 1 INTRODUCTION 1
1.1. GENERAL INTRODUCTION TO POLYMERS 1
1.2. ANALYSIS OF POLYMER IONS USING MALDI-TOF MS 2
1.3. QUADRUPOLE ION TRAP MASS SPECTROMETRY 5
1.3.1 Quadrupole Mass Filters 5
1.3.2 Quadrupole Ion Trap 6
1.4 TWO-DIMENSIONAL LINEAR ION TRAP 6
1.4.1 Theory of ion motion in 2D quadrupole fields 7
1.4.2 The pseudopotential well model for quadrupole 2D ion traps 15
1.4.3 Collision gas cooling 15
1.4.4 Ion Ejection Methods 18
1.4.4.1 Amplitude/Voltage scan with boundary ejection 19
1.4.4.2 Amplitude/Voltage scan with resonant excitation/ejection 19
1.4.4.3 RF frequency scan 20
1.4.4.4 RF frequency scan with AC frequency scan 21
1.4.5 Frequency-Dependent Stability Diagram 21
1.5. DETECTORS 23
1.5.1 Charge sensing particle detector 23
1.8. OBJECTIVE OF THE STUDY 26
CHAPTER 2 EXPERIMENTAL SECTION 27
2.1. INSTRUMENTATION 27
2.1.1 Electronics and circuitry 29
2.1.2 VACUUM SYSTEM 31
2.1.3. Charge detector 31
2.2. SAMPLE PREPARATIONS 31
2.2.1 Polystyrene 31
2.2.2 Matrix preparation 32
2.2.3 Doping salt preparation 32
2.2.4 Polystyrene- Matrix – Salt mixture 32
2.3. EXPERIMENTAL CONDITIONS 32
2.3.1 MALDI-ToF mass analysis 32
2.3.2 LIT mass analysis 33
2.3.2.1 Polystyrene 3700 34
2.3.2.1 Polystyrene 13,000 34
2.3.2.1 Polystyrene 50,000 35
2.3.2.1 Polystyrene 200,000 35
CHAPTER 3 RESULTS AND DISCUSSION 37
3.1. MALDI- TOF ANALYSIS OF POLYSTYRENE 37
3.2. LIT ANALYSIS OF POLYSTYRENE SAMPLES 41
3.2.1. LIT MS scanning and ion ejection methods comparison of polystyrene 3,700 41
3.2.2. LIT Mass analysis of Polystyrene 13,000 and the effects of cooling time 46
3.2.3. LIT mass analysis of polystyrene 50, 000 and Collision cooling gas effects 49
3.2.4. Effects of changing trapping time and scanning time 53
3.2.5. Detection of polystyrene 50, 000’s multimer ions in LIT 55
3.2.6 Detection of polystyrene 200,000 ions in LIT 57
CHAPTER 4 CONCLUSION 59
REFERENCES 61

[1] Exploring the importance of polymer analysis. Jordi Labs. (2018, September 6). https://jordilabs.com/blog/exploring-the-importance-of-polymer-analysis/.
[2] De Bruycker, K., Welle, A., Hirth, S., Blanksby, S. J., & Barner-Kowollik, C. (2020). Mass spectrometry as a tool to advance polymer science. Nature Reviews Chemistry, 4(5), 257–268. https://doi.org/10.1038/s41570-020-0168-1
[3] Brinson HF, Brinson LC. 2008. Polymer Engineering Science and Viscoelasticity. http://dx.doi.org/10.1007/978-0-387-73861-1
[4] Lutz J, Börner HG. 2008. Modern trends in polymer bioconjugates design. Progress in Polymer Science. 33(1):1-39. http://dx.doi.org/10.1016/j.progpolymsci.2007.07.005
[5] Plate N, Valuyev L, Chupov V. 1985. Synthesis and polymerization of macromonomers based on physiologically active compounds. Review. Polymer Science U.S.S.R.. 27(10):2265-2282. http://dx.doi.org/10.1016/0032-3950(85)90302-8
[6] Green JJ, Elisseeff JH. 2016. Mimicking biological functionality with polymers for biomedical applications. Nature. 540(7633):386-394. http://dx.doi.org/10.1038/nature21005
[7] Weidner, Steffen M.; Trimpin, Sarah (2008). Mass Spectrometry of Synthetic Polymers. Analytical Chemistry, 80(12), 4349–4361. doi:10.1021/ac8006413
[8] Jordi Labs. (2020, November 10). The Importance of Molecular Weight Testing in an Industrial Environment. AZoM. Retrieved on July 31, 2021 from https://www.azom.com/article.aspx?ArticleID=16827.
[9] Marie, A., Fournier, F., & Tabet, J. C. (2000). Characterization of Synthetic Polymers by MALDI-TOF/MS: Investigation into New Methods of Sample Target Preparation and Consequence on Mass Spectrum Finger Print. Analytical Chemistry, 72(20), 5106–5114. doi:10.1021/ac000124u
[10] Tanaka, K. et al. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2, 151–153 (1988).
[11] Karas, M. & Hillenkamp, F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal. Chem. 60, 2299–2301 (1988).
[12] . Liu, J., Loewe, R. S., & McCullough, R. D. Employing MALDI-MS on poly(alkylthiophenes): analysis of molecular weights, molecular weight
distributions, end-group structures, and end-group modifications. Macromolecules. 32, 5777-5785 (1999).
[13] Zhang, B. et al. Determination of polyethylene glycol end group functionalities by combination of selective reactions and characterization by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Anal. Chim. Acta. 816, 28-40 (2014).
[14] Payne, M. E., & Grayson, S. M. (2018). Characterization of Synthetic Polymers via Matrix Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) Mass Spectrometry. Journal of Visualized Experiments, (136). doi:10.3791/57174.
[15] Wang, Z., Zhang, Q., Shen, H., Yang, P., & Zhou, X. (2021). Optimized MALDI-TOF ms strategy for CHARACTERIZING POLYMERS. Frontiers in Chemistry, 9. https://doi.org/10.3389/fchem.2021.698297
[16] Courant, Ernest D.; Livingston, M. Stanley; Snyder, Hartland S. (1952). The Strong-Focusing Synchroton—A New High Energy Accelerator. Physical Review, 88(5), 1190–1196. doi:10.1103/PhysRev.88.1190
[17] Paul, W., Raether, M. Das elektrische Massenfilter. Z. Physik 140, 262–273 (1955). https://doi.org/10.1007/BF01328923
[18] Paul, W., & Steinwedel, H. (1953). Notizen: Ein Neues Massenspektrometer ohne Magnetfeld. Zeitschrift Für Naturforschung A, 8(7), 448–450. https://doi.org/10.1515/zna-1953-0710
[19] Hu, Q., Noll, R. J., Li, H., Makarov, A., Hardman, M., & Graham Cooks, R. (2005). The orbitrap: A new mass spectrometer. Journal of Mass Spectrometry, 40(4), 430–443. https://doi.org/10.1002/jms.856
[20] March, R. E., & James, T. J. F. (2005). Quadrupole ion trap mass spectrometry. J. Wiley.
[21] Willitsch, S., Bell, M. T., Gingell, A. D., Procter, S. R., & Softley, T. P. (2008). Cold reactive collisions between LASER-COOLED ions AND VELOCITY-SELECTED neutral molecules. Physical Review Letters, 100(4). https://doi.org/10.1103/physrevlett.100.043203
[22] Jiang, G., Luo, C., Konenkov, N. V., & Ding, C.-F. (2009). Tandem RF-only quadrupole Mass filter With Quadrupolar excitation. International Journal of Mass Spectrometry, 286(2-3), 89–94. https://doi.org/10.1016/j.ijms.2009.07.001
[23] Stafford G. Ion trap mass spectrometry: A personal perspective. J Am Soc Mass Spectrom. 2002;13(6):589-596. doi:10.1016/S1044-0305(02)00385-9.
[24] Fischer, E. (1959). Die dreidimensionale Stabilisierung von Die dreidimensionale Stabilisierung von Ladungsträgern in einem Vierpolfeld. Zeitschrift für Physik, 156(1), 1–26. https://doi.org/10.1007/bf01332512
[25] Wuerker, R. F., Shelton, H., & Langmuir, R. V. (1959). Electrodynamic containment of charged particles. Journal of Applied Physics, 30(3), 342–349. https://doi.org/10.1063/1.1735165
[26] Patil, A. A., Chou, S.-W., Chang, P.-Y., Lee, C.-W., Cheng, C.-Y., Chu, M.-L., & Peng, W.-P. (2016). High mass ion detection with charge detector coupled to rectilinear ion trap mass spectrometer. Journal of The American Society for Mass Spectrometry, 28(6), 1066–1078. https://doi.org/10.1007/s13361-016-1548-0
[27] Fornelli, L., Parra, J., Hartmer, R., Stoermer, C., Lubeck, M., & Tsybin, Y. O. (2013). Top-down analysis of 30–80 KDA proteins by electron TRANSFER Dissociation TIME-OF-FLIGHT mass spectrometry. Analytical and Bioanalytical Chemistry, 405(26), 8505–8514. https://doi.org/10.1007/s00216-013-7267-5
[28] Sampson, J. S., Murray, K. K., & Muddiman, D. C. (2009). Intact and top-down characterization of biomolecules and direct analysis using infrared matrix-assisted laser desorption electrospray ionization coupled to ft-icr mass spectrometry. Journal of the American Society for Mass Spectrometry, 20(4), 667–673. https://doi.org/10.1016/j.jasms.2008.12.003
[30] Church, D. A. (1969). Storage‐Ring ion Trap derived from the Linear Quadrupole Radio‐Frequency Mass filter. Journal of Applied Physics, 40(8), 3127–3134. https://doi.org/10.1063/1.1658153
[31] Schwartz, J. C., Schey, K. L., & Cooks, R. G. (1990). A penta-quadrupole instrument for reaction INTERMEDIATE scans and Other MS-MS-MS experiments. International Journal of Mass Spectrometry and Ion Processes, 101(1), 1–20. https://doi.org/10.1016/0168-1176(90)80017-w
[32] Dolnikowski, G. G., Kristo, M. J., Enke, C. G., & Watson, J. T. (1988). Ion-trapping technique for ion/molecule reaction studies in the center quadrupole of a triple quadrupole mass spectrometer. International Journal of Mass Spectrometry and Ion Processes, 82(1-2), 1–15. https://doi.org/10.1016/0168-1176(88)80001-6
[33] J.E.P Syka, W.J Fies Jr Fourier Transform Quadrupole Mass Spectrometer and Method (1988) US Patent 4,755,670
[34] Hager, J. W. (2002). A new linear ion trap mass spectrometer. Rapid Communications in Mass Spectrometry, 16(6), 512–526. https://doi.org/10.1002/rcm.607
[35] Hager, J. W., & Yves Le Blanc, J. C. (2003). Product ion scanning using a q-q-qlinear ion trap (q traptm) mass spectrometer. Rapid Communications in Mass Spectrometry, 17(10), 1056–1064. https://doi.org/10.1002/rcm.1020
[36] Londry, F. A., & Hager, J. W. (2003). Mass selective axial ion ejection from a linear quadrupole ion trap. Journal of the American Society for Mass Spectrometry, 14(10), 1130–1147. https://doi.org/10.1016/s1044-0305(03)00446-x
[37] March, R. E., & Hughes, R. J. (1989). Quadrupole storage mass spectrometry. John Wiley.
[38] Major, F. G., & Dehmelt, H. G. (1968). Exchange-collision technique for the rf spectroscopy of stored ions. Physical Review, 170(1), 91–107. https://doi.org/10.1103/physrev.170.91
[39] Dawson, P. H., & Whetten, N. R. (1968). Ion storage In Three-Dimensional, rotationally Symmetric, QUADRUPOLE Fields. I. theoretical treatment. Journal of Vacuum Science and Technology, 5(1), 1–10. https://doi.org/10.1116/1.1492569
[40] Dawson, P. H., & Whetten, N. R. (1968). Ion storage In Three-Dimensional, rotationally Symmetric, QUADRUPOLE FIELDS. II. a Sensitive mass spectrometer. Journal of Vacuum Science and Technology, 5(1), 11–18. https://doi.org/10.1116/1.1492570
[41] Douglas, D. J., & French, J. B. (1992). Collisional focusing effects in radio FREQUENCY quadrupoles. Journal of the American Society for Mass Spectrometry, 3(4), 398–408. https://doi.org/10.1016/1044-0305(92)87067-9
[42] Chernushevich, I. V., & Thomson, B. A. (2004). Collisional cooling of LARGE ions IN Electrospray mass spectrometry. Analytical Chemistry, 76(6), 1754–1760. https://doi.org/10.1021/ac035406j
[43] Sobott, F., Hernández, H., McCammon, M. G., Tito, M. A., & Robinson, C. V. (2002). A tandem mass spectrometer for improved transmission and analysis of large macromolecular assemblies. Analytical Chemistry, 74(6), 1402–1407. https://doi.org/10.1021/ac0110552
[44] Douglas, D. J., Frank, A. J., & Mao, D. (2004). Linear ion traps in mass spectrometry. Mass Spectrometry Reviews, 24(1), 1–29. https://doi.org/10.1002/mas.20004
[45] Chen, C.-H., Lin, J.-L., Chu, M.-L., & Chen, C.-H. (2010). MALDI ion Trap mass spectrometer with Charge detector for Large Biomolecule Detection. Analytical Chemistry, 82(24), 10125–10128. https://doi.org/10.1021/ac102217e
[46] Lu, I.-C., Lin, J. L., Lai, S.-H., & Chen, C.-H. (2011). Frequency-scanning maldi linear ion trap mass spectrometer for large biomolecular ion detection. Analytical Chemistry, 83(21), 8273–8277. https://doi.org/10.1021/ac202083c
[47] Stafford, G. C., Kelley, P. E., Syka, J. E. P., Reynolds, W. E., & Todd, J. F. J. (1984). Recent improvements in and analytical applications of advanced ion trap technology. International Journal of Mass Spectrometry and Ion Processes, 60(1), 85–98. https://doi.org/10.1016/0168-1176(84)80077-4
[48] Louris, J. N., Amy, J. W., Ridley, T. Y., & Cooks, R. G. (1989). Injection of ions into a quadrupole ion trap mass spectrometer. International Journal of Mass Spectrometry and Ion Processes, 88(2-3), 97–111. https://doi.org/10.1016/0168-1176(89)85010-4
[49] Xia, Y., Wu, J., McLuckey, S. A., Londry, F. A., & Hager, J. W. (2005). Mutual storage mode ion/ion reactions in a hybrid linear ion trap. Journal of the American Society for Mass Spectrometry, 16(1), 71–81. https://doi.org/10.1016/j.jasms.2004.09.017
[50] Xia, Y., & McLuckey, S. A. (2008). Evolution of instrumentation for the study of gas-phase ion/ion chemistry via mass spectrometry. Journal of the American Society for Mass Spectrometry, 19(2), 173–189. https://doi.org/10.1016/j.jasms.2007.10.018
[51] Xu, W., Song, Q., Smith, S. A., Chappell, W. J., & Ouyang, Z. (2009). Ion trap mass analysis at high pressure: A theoretical view. Journal of the American Society for Mass Spectrometry, 20(11), 2144–2153. https://doi.org/10.1016/j.jasms.2009.06.019
[52] Jiang, T., Zhang, H., Tang, Y., Zhai, Y., Xu, W., Xu, H., Zhao, X., Li, D., & Xu, W. (2017). A “brick mass spectrometer” driven by a sinusoidal frequency scanning technique. Analytical Chemistry, 89(10), 5578–5584. https://doi.org/10.1021/acs.analchem.7b00719
[53] Huang, G.; Gao, L.; Duncan, J.; Harper, J. D.; Sanders, N. L.; Ouyang, Z.; Cooks, R. G. J. Am. Soc. Mass Spectrom. 2010, 21, 132− 135.
[54] Snyder, D. T.; Pulliam, C. J.; Cooks, R. G. Rapid Commun. Mass Spectrom. 2016, 30, 2369−2378.
[55] Snyder, D. T.; Pulliam, C. J.; Cooks, R. G. Rapid Commun. Mass Spectrom. 2016, 30, 800−804.
[56] Snyder, D. T.; Pulliam, C. J.; Wiley, J. S.; Duncan, J.; Cooks, R. G. J. Am. Soc. Mass Spectrom. 2016, 27, 1243−1255.
[57] March, R. E.; Todd, J. F. Quadrupole Ion Trap MassSpectrometry; 2nd ed.; Wiley: Hoboken, NJ, 2005.
[58] Dawson, P. H. Quadrupole Mass Spectrometry and Its Applications; American Institute of Physics: College Park, MD, 1995.
[59] Whitten, W. B.; Reilly, P. T.; Ramsey, J. M. Rapid Commun. Mass Spectrom. 2004, 18, 1749−1752.

[60] Konenkov, N.; Sudakov, M.; Douglas, D. J. Am. Soc. Mass Spectrom. 2002, 13, 597−613.

[61] Bahr, U., Röhling, U., Lautz, C., Strupat, K., Schürenberg, M., & Hillenkamp, F. (1996). A charge detector For TIME-OF-FLIGHT mass analysis of high Mass Ions produced by matrix-assisted laser desorption/ionization (MALDI). International Journal of Mass Spectrometry and Ion Processes, 153(1), 9–21. https://doi.org/10.1016/0168-1176(95)04351-9

[62] Lin, H.-C., Lin, H.-H., Kao, C.-Y., Yu, A. L., Peng, W.-P., & Chen, C.-H. (2010). Quantitative measurement of Nano-/Microparticle Endocytosis by CELL mass spectrometry. Angewandte Chemie, 122(20), 3538–3542. https://doi.org/10.1002/ange.201000891

[63] Peng, W.-P., Lin, H.-C., Chu, M.-L., Chang, H.-C., Lin, H.-H., Yu, A. L., & Chen, C.-H. (2008). Charge monitoring cell mass spectrometry. Analytical Chemistry, 80(7), 2524–2530. https://doi.org/10.1021/ac7024392

[64] Schriemer, D. C., & Li, L. (1996). Detection of high molecular Weight Narrow Polydisperse Polymers up to 1.5 Million Daltons by MALDI mass spectrometry. Analytical Chemistry, 68(17), 2721–2725. https://doi.org/10.1021/ac960442m

[65] Aksenov, A. A., & Bier, M. E. (2008). The analysis of polystyrene and polystyrene aggregates into the mega dalton mass range BY CRYODETECTION maldi TOF MS. Journal of the American Society for Mass Spectrometry, 19(2), 219–230. https://doi.org/10.1016/j.jasms.2007.10.019

[66] Dai, Y., Whittal, R. M., & Li, L. (1999). Two-Layer Sample Preparation: A Method for MALDI-MS Analysis of Complex Peptide and Protein Mixtures. Analytical Chemistry, 71(5), 1087–1091. doi:10.1021/ac980684h
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *