帳號:guest(3.16.67.112)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:姜博瀚
作者(英文):Po-Han Chiang
論文名稱:應用蜂群演算法於燃料電池公車運輸系統之建置及營運成本最小化
論文名稱(英文):Minimization of Construction and Operation Costs of the Fuel Cell Bus Transportation System Using Artificial Bee Colony Algorithm
指導教授:顏士淨
柯博仁
指導教授(英文):Shi-Jim Yen
Bwo-Ren Ke
口試委員:柯博仁
陳志昌
口試委員(英文):Bwo-Ren Ke
J-Chang Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:資訊工程學系
學號:610821220
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:76
關鍵詞:蜂群演算法燃料電池公車氫能運輸系統
關鍵詞(英文):Artificial Bee Colony AlgorithmFuel Cell BusHydrogen EnergyTransportation System
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
近年來,因氣候變遷及全球暖化加劇,氫能被認為是減少運輸部門產生溫室氣體和空氣汙染的有效能源之一,各國政府逐漸推動燃料電池公車,以降低道路運輸產生的二氧化碳。本論文以台南公車運輸系統為對象,模擬系統營運狀態,將原運輸系統所有公車替換成燃料電池公車,並採用電解方式製氫,完成既有時刻表與路線。研究中以製氫站及儲氫站數量、公車最大儲氫量、公車補充氫氣容量、儲氫站啟動製氫容量為最佳化調整參數,使用蜂群演算法對十年總建置成本進行最小化。
  研究中分別以分散製氫與集中製氫兩種氫氣供應方式進行分析,分散製氫方式在各轉運站設置製氫站,各轉運站的氫氣供應獨立運作。集中製氫方式將台南市劃分數個區域,在各區域選定製氫轉運站,以氫氣運送車載運至其餘轉運站。最佳化結果顯示,分散製氫未使用日間製氫,但建置更多的製氫站、儲氫站和公車,設備成本較高。集中製氫使用日間製氫且增加氫氣運輸車成本,但劃分數個區域且在各區域設置製氫站後,有效減少設備成本及日間電費,最佳案例比分散製氫的成本下降14.5%。結果顯示,採用集中製氫方式,並分區設置製氫轉運站,確實可降低燃料電池公車運輸系統的建置成本。
In recent years, due to climate change and global warming, hydrogen energy is considered to be one of the effective energy sources to reduce greenhouse gas and air pollution in the transportation sector. Governments have begun to promote fuel cell buses to reduce carbon dioxide generated by road transportation. In this study, the bus transportation system of the Tainan city in Taiwan was selected as the study target and simulates the operating status of the system. Replace all buses in the original transportation system with fuel cell buses, use electrolysis to produce hydrogen, and complete the bus schedules and routes. In this study, the optimization parameters are the number of hydrogen production stations and hydrogen storage stations, the maximum hydrogen storage capacity of buses, the condition for the bus to refuel hydrogen, the condition for hydrogen production station to produce hydrogen, and minimize construction and operation costs of fuel cell bus transportation systems by using artificial bee colony algorithm.
The study is divided into two cases for analysis, decentralized hydrogen production and centralized hydrogen production. Decentralized hydrogen production means hydrogen production stations are constructed in each transfer station and the hydrogen supply of each transfer station is independent. Centralized hydrogen production means Tainan city is divided into several areas, each area will select one transfer station to construct a hydrogen production station, and deliver hydrogen to other transfer station by tube trailers. The results show that in the case of decentralized hydrogen production, the daytime electricity price was not used for hydrogen production, but needed more hydrogen production stations, hydrogen storage stations, and buses, the cost of hardware equipment is higher, and in the case of centralized hydrogen production, the proportion of hydrogen product using daytime electricity price is higher and the cost of tube trailers is added. However, dividing several areas and setting up hydrogen production stations in each area can effectively reduce the cost of hardware equipment and the price of daytime electricity. In the best case, the cost can be reduced by 14.5%. The results show that using centralized hydrogen production and setting up hydrogen production stations in the right transfer station can reduce the cost of the fuel cell bus transportation system.
摘要 i
ABSTRACT iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 章節介紹 3
第二章 公車運輸系統與氫燃料公車介紹 5
2.1 台南市公車運輸系統介紹 5
2.2 燃料電池公車簡介 16
2.3 國內外氫燃料公車發展現況 17
第三章 燃料電池公車運輸系統運行模擬 19
3.1 運行模擬及時刻表建置 19
3.2 分散製氫 21
3.3 集中製氫 23
第四章 最佳化方法與應用 27
4.1 蜂群演算法介紹 27
4.2 蜂群演算法應用於FCBTS建置成本最小化 28
第五章 模擬結果與分析 33
5.1 燃料電池公車運輸系統相關設備數據 33
5.2 案例1:分散製氫 34
5.3 案例2A:集中製氫(單一製氫轉運站) 37
5.4 案例2B:集中製氫(兩個製氫轉運站) 40
5.5 案例2C:集中製氫(三個製氫轉運站) 45
5.6 分析與討論 51
第六章 結論 55
參考文獻 57
[1]United Nations Convention on climate change Paris agreement (2015).https://unfccc.int/sites/default/files/english_paris_agreement.pdf
[2]Iannuzzi L., Hilbert J.A., Lora E.E.S., 2021. Life Cycle Assessment (LCA) for use on renewable sourced hydrogen fuel cell buses vas diesel engines buses in the city of Rosario, Argentina. International Journal of Hydrogen Energy, available online 16 Feb 2021.
[3]IEA CO2 emissions from fuel combustion highlights 2017.http://www.indiaenvironmentportal.org.in/files/file/CO2EmissionsfromFuelCombustionHighlights2017.pdf
[4]Liu F., Zhao F., Liu Z., Hao H., 2018. The impact of fuel cell vehicle deployment on road transport greenhouse gas emissions: The China case. International Journal of Hydrogen Energy, 43(50), 22604-22621.
[5]Xu X., Xu B., Dong J., Liu X., 2017. Near-term analysis of a roll-out strategy to introduce fuel cell vehicles and hydrogen stations in Shenzhen China. Applied Energy, 196, 229-237.
[6]Ramea K., 2019. An integrated quantitative-qualitative study to monitor the utilization and assess the perception of hydrogen fueling stations. International Journal of Hydrogen Energy, 44(33), 18225-18239.
[7]Hua T., Ahluwalia R., Eudy L., Singer G., Jermer B., Asselin-Miller N., Wessel S., Patterson T., Marcinkoski J., 2014. Status of hydrogen fuel cell electric buses worldwide. Journal of Power Sources, 269, 975-993.
[8]Tanc B., Arat H.T., Baltacioglu E., Aydin K., 2019. Overview of the next quarter century vision of hydrogen fuel cell electric vehicles. International Journal of Hydrogen Energy, 44(20), 10120-10128.
[9]Chang C.C., Liao Y.T., Chang Y.W., 2019. Life cycle assessment of alternative energy types – including hydrogen – for public city buses in Taiwan. International Journal of Hydrogen Energy, 44(33), 18472-18482.
[10]Rosero F., Fonseca N., Lopex J.M., Casanova J., 2021. Effects of passenger load, road grade, and congestion level n real-world fuel consumption and emissions from compressed natural gas and diesel urban buses. Applied Energy, 282, Part B, 116195.
[11]Pourahmandiyan A., Ahmadi P., Kjeang E., 2021. Dynamic simulation and life cycle greenhouse gas impact assessment of CNG, LNG, and diesel-powered transit buses in British Columbia, Canada. Transportation Research Part D: Transport and Environment, 92, 102724.
[12]Zhang X., Nie S., He M., Wang J., 2021. Charging system analysis, energy consumption, and carbon dioxide emissions of battery electric buses in Beijing. Case Studies in Thermal Engineering, 26, 101197.
[13]Ke B.-R., Lin Y.-H., Chen H.-Z., Fang S.-C., 2020. Battery charging and discharging scheduling with demand response for an electric bus public transportation system. Sustainable Energy Technologies and Assessment, 40, 100741.
[14]Noel L., McCormack R., 2014. A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus. Applied Energy, 126, 246-255.
[15]Comello S., Glenk G., Reichelstein S., 2021. Transitioning to clean energy transportation services: Life-cycle cost analysis for vehicle fleets. Applied Energy, 285, 116408.
[16]Chang C.-C., Liao Y.-T., Chang Y.-W., 2019. Life Cycle Assessment of Carbon Footprint in Public Transportation - A Case Study of Bus Route NO. 2 in Tainan City, Taiwan. Procedia Manufacturing, 30, 388-395.
[17]Fan Z., Weng W., Zhou J., Gu D., Xiao W., 2021. Catalytic decomposition of methane to produce hydrogen: A review. Journal of Energy Chemistry, 58, 415-430.
[18]Yu M., Wang K., Vredenburg H., 2021. Insights into low-carbon hydrogen production methods: Green blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41), 21261-21273.
[19]Im-orb K., Visitdemrongkul N., Saebea D., Patcharavorachot Y., Arpornwichanop A., 2018. Flowsheet-based model and exergy analysis of solid oxide electrolysis cells for clean hydrogen production. Journal of Cleaner Production, 170, 1-13.
[20]Nadaleti W.C., Lourenco V., Americo G., 2021. Green hydrogen-based pathways and alternatives: Towards the renewable energy transition in South America's regions – Part A. International Journal of Hydrogen Energy, 46(43), 22247-22255.
[21]Tarhan C., Cil M.A., 2021. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. Journal of Energy Storage, 40, 102676.
[22]Zheng J., Liu X., Xu P., Liu P., Zhao Y., Yang J., 2012. Development of high pressure gaseous hydrogen storage technologies. International Journal of Hydrogen Energy, 37(1), 1048-1057.
[23]Abe J.O., Popoola A.P.I., Ajenifuja E., Popoola O.M., 2019. Hydrogen energy, economy and storage: Review and recommendation. International Journal of Hydrogen Energy, 44(29), 15072-15086.
[24]Balat M., Balat M., 2009. Political, economic and environmental impacts of biomass-based hydrogen. International Journal of Hydrogen Energy, 34(9), 3589-3603.
[25]Lee Y., Lee U., Kim K., 2021. A comparative techno-economic and quantitative risk analysis of hydrogen delivery infrastructure options. International Journal of Hydrogen Energy, 46(27), 14857-14870.
[26]Cerniauskas S., Junco Chavez Jose A., Grube T., Robinius M., Stolten D., 2020. Options of natural gas pipeline reassignment for hydrogen: Cost assessment for a Germany case study. International Journal of Hydrogen Energy, 45(21), 12095-12107.
[27]Moradi R., Groth K.M., 2019. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. 44(23), 12254-12269.
[28]Demir M.E., Dincer I., 2018. Cost assessment and evaluation of various hydrogen delivery scenarios. International Journal of Hydrogen Energy, 43(22), 10420-10430.
[29]D. Karaboga, 2005. An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report, Technical report-tr06.
[30]Cui L., Li G., Wang Z., Lin Q., Chen J., Lu N., Jian L., 2017. A ranking-based adaptive artificial bee colony algorithm for global numerical optimization. Information Sciences. 417, 169-185.
[31]Dokeroglu T., Sevinc E., Cosar A., 2019. Artificial bee colony optimization for the quadratic assignment problem. Applied Soft Computing, 76, 595-606.
[32]Chen X., Tainfield H., Li K., 2019. Self-adaptive differential artificial bee colony algorithm for global optimization problems. Swarm and Evolutionary Computation, 45, 70-91.
[33]Kalayci C.B., Hanclilar A., Gungor A., Gupta S.M., 2015. Multi-objective fuzzy disassembly line balancing using a hybrid discrete artificial bee colony algorithm. Journal of Manufacturing Systems, 37, Part 3, 672-682.
[34]Zhang C., Ouyang D., Ning J., 2010. An artificial bee colony approach for clustering. Expert Systems with Applications, 37(7), 4761-4767
[35]Khan I., Maiti M.K., 2019. A swap sequence based Artificial Bee Colony algorithm for Traveling Salesman Problem. Swarm and Evolutionary Computation, 44, 428-438.
[36]Li H., Li X., Gao L., 2021. A discrete artificial bee colony algorithm for the distributed heterogeneous no-wait flowshop scheduling problem. Applied Soft Computing, 100, 106946.
[37]Contreras-Cruz M.A., Ayala-Ranirez V., Hernandez-Belmonte H., 2015.Mobile robot path planning using artificial bee colony and evolutionary programming. Applied Soft Computing, 30, 319-328.
[38]Wu W., Partridge J.S., Bucknall R.W.G., 2018. Stabilised control strategy for PEM fuel cell and supercapacitor propulsion system for a city bus. International Journal of Hydrogen Energy, 43(2), 12302-12313.
[39]Sagaria S., Costa Neto R., Baptista P., 2021. Assessing the performance of vehicles powered by battery, fuel cell and ultra-capacitor: Application to light-duty vehicles and buses. Energy Conversion and Management, 229, 113767.
[40]Mekhlief S., Saidur R., Safari A, 2012. Comparative study of different fuel cell technologies. Renewable and Sustainable Energy Reviews, 16(1), 981-989.
[41]Sarma U., Ganguly S., 2018. Determination of the component sizing for the PEM fuel cell-battery hybrid energy system for locomotive application using particle swarm optimization. Journal of Energy Storage, 19, 247-259.
[42]Yartys V.A., Lotoskyy M.V., Linkov V., Pasupathi S., Davids M.W., Tolj I., Radica G., Denys R.V., Eriksen J., Taube K., Bellosta von Colbe J., Capurso G., Dornheim M., Smith F., Mathebula D., Swanepoel D., Suwarno S., 2021. HYDRIDE4MOBILITY: An EU HORIZON 2020 project on hydrogen powered fuel cell utility vehicles using metal hydrides in hydrogen storage and refuelling systems. International Journal of Hydrogen Energy, available online 26 Feb 2021.
[43]Heiko, A., Yvonne, R., Simon, L., Dragos, F., Andre, M., 2015. Fuel cell electric buses potential for sustainable public transport in Europe. A study for the Fuel Cells and Hydrogen Joint Undertaking.
[44]Klaus S., Nicole W., Simon W., 2019. JIVE Best Practice and Commercialisation Report1.
[45]Klaus S., Nicole W., Simon W., 2020. JIVE2 Best Practice Information Bank Report1.
[46]Eudy L., Post M., Jeffers M., 2016. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Result: Fifth Report. National Renewable Energy Laboratory, Technical Report, NREL/TP-5400-75583.
[47]Eudy L., Post M., 2021. SunLine Transit Agency Fuel Cell Electric Bus Progress Report. National Renewable Energy Laboratory, Technical Report, NREL/PR-5400-78078.
[48]Khan U., Yamamoto T., Sato H., 2020. Consumer preferences for hydrogen fuel cell vehicles in Japan. Transportation Research Part D: Transport and Environment, 87, 102542.
[49]Khan U., Yamamoto T., Sato H., 2021. An insight into potential early adopters of hydrogen fuel-cell vehicles in Japan. International Journal of Hydrogen Energy.
[50]Trancher G., Taeihagh A., Yarime M., 2020. Overcoming barriers to developing and diffusing fuel-cell vehicles: Governance strategies and experiences in Japan. Energy Policy, 142, 111533.
[51]Harada M., Ichikawa T., Tagaki H., Uchida H., 2016. Building a hydrogen infrastructure in Japan. Compendium of Hydrogen Energy, 4, 321-335.
[52]Zhang G.Q., Zhang J.A., Xie T., 2020. A solution to renewable hydrogen economy for fuel cell buses – A case study for Zhangjiakou in North China. International Journal of Hydrogen Energy, 45(29), 14603-14613.
[53]台灣燃料電池資訊網 https://www.tfci.org.tw/news/newsDetail.asp?id=741
[54]Handwerker M., Wellnitz J., Marzbani H., 2021. Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy. Hydrogen, 2(1), 76-100.
[55]國家發展委員會,「全國性氫能發展之整體規劃」期末報告書。https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvNTY1Ny8yNzU1OC83NGEzZWVkYy0xNTgwLTQwYzktOGUxNy04Y2RiNzE0MDQ0OGMucGRm&n=5YWo5ZyL5oCn5rCr6IO955m85bGV5LmL5pW06auU6KaP5YqDLnBkZg%3D%3D&icon=.pdf, 2017.04.18.
[56]Spendelow J., Papageorgopoulos D., 2012. Fuel Cell Bus Target. United States Department of Energy, Fuel Cell Technologies Program Record, #12012.
[57]Ally J., Pryor T., 2016. Life cycle costing of diesel, natural gas, hybrid and hydrogen fuel cell bus system: An Australian case study. Energy Policy, 94, 285-294.
[58]Wang Y., Szero W.Y., 2021. An enhanced artificial bee colony algorithm for the green bike repositioning problem with broken bikes. Transportation Research Part C: Emerging Technologies, 125, 102895.
[59]龍義琳,「以整合整體訂單貢獻度在多廠區多目標 訂單指派與生產排程系統之研究 -運用改良式蜂群演算法」,民國101年。
[60]Afzal A., Mohammed Samee A.D., Jilte R.D., Tariqul Islam Md., Muthu Manokar A., Razak K.A., 2021. Battery thermal management: An optimization study of parallelized conjugate numerical analysis using Cuckoo search and Artificial bee colony algorithm. International Journal of Heat and Mass Transfer, 166(9), 120798.
[61]Ivy J., 2004. Summary of Electrolytic Hydrogen Production. Milestone Completion Report, NREL/MP-560-36734.
[62]Reddi K., Elgowainy A., Rustagi N., Gupta E,, 2018. Techno-economic analysis of conventional and advanced high-pressure tube trailer configurations for compressed hydrogen gas transportation and refueling. International Journal of Hydrogen Energy, 43(9), 4428-4438.
[63]台灣電力公司電價表,https://www.taipower.com.tw/upload/29/2018032719495918817.pdf,2018.03.27。
[64]台灣自來水公司,https://www.water.gov.tw/ch/Subject/Detail/2274?nodeId=813,2021.04.21。
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *