|
[1]United Nations Convention on climate change Paris agreement (2015).https://unfccc.int/sites/default/files/english_paris_agreement.pdf [2]Iannuzzi L., Hilbert J.A., Lora E.E.S., 2021. Life Cycle Assessment (LCA) for use on renewable sourced hydrogen fuel cell buses vas diesel engines buses in the city of Rosario, Argentina. International Journal of Hydrogen Energy, available online 16 Feb 2021. [3]IEA CO2 emissions from fuel combustion highlights 2017.http://www.indiaenvironmentportal.org.in/files/file/CO2EmissionsfromFuelCombustionHighlights2017.pdf [4]Liu F., Zhao F., Liu Z., Hao H., 2018. The impact of fuel cell vehicle deployment on road transport greenhouse gas emissions: The China case. International Journal of Hydrogen Energy, 43(50), 22604-22621. [5]Xu X., Xu B., Dong J., Liu X., 2017. Near-term analysis of a roll-out strategy to introduce fuel cell vehicles and hydrogen stations in Shenzhen China. Applied Energy, 196, 229-237. [6]Ramea K., 2019. An integrated quantitative-qualitative study to monitor the utilization and assess the perception of hydrogen fueling stations. International Journal of Hydrogen Energy, 44(33), 18225-18239. [7]Hua T., Ahluwalia R., Eudy L., Singer G., Jermer B., Asselin-Miller N., Wessel S., Patterson T., Marcinkoski J., 2014. Status of hydrogen fuel cell electric buses worldwide. Journal of Power Sources, 269, 975-993. [8]Tanc B., Arat H.T., Baltacioglu E., Aydin K., 2019. Overview of the next quarter century vision of hydrogen fuel cell electric vehicles. International Journal of Hydrogen Energy, 44(20), 10120-10128. [9]Chang C.C., Liao Y.T., Chang Y.W., 2019. Life cycle assessment of alternative energy types – including hydrogen – for public city buses in Taiwan. International Journal of Hydrogen Energy, 44(33), 18472-18482. [10]Rosero F., Fonseca N., Lopex J.M., Casanova J., 2021. Effects of passenger load, road grade, and congestion level n real-world fuel consumption and emissions from compressed natural gas and diesel urban buses. Applied Energy, 282, Part B, 116195. [11]Pourahmandiyan A., Ahmadi P., Kjeang E., 2021. Dynamic simulation and life cycle greenhouse gas impact assessment of CNG, LNG, and diesel-powered transit buses in British Columbia, Canada. Transportation Research Part D: Transport and Environment, 92, 102724. [12]Zhang X., Nie S., He M., Wang J., 2021. Charging system analysis, energy consumption, and carbon dioxide emissions of battery electric buses in Beijing. Case Studies in Thermal Engineering, 26, 101197. [13]Ke B.-R., Lin Y.-H., Chen H.-Z., Fang S.-C., 2020. Battery charging and discharging scheduling with demand response for an electric bus public transportation system. Sustainable Energy Technologies and Assessment, 40, 100741. [14]Noel L., McCormack R., 2014. A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus. Applied Energy, 126, 246-255. [15]Comello S., Glenk G., Reichelstein S., 2021. Transitioning to clean energy transportation services: Life-cycle cost analysis for vehicle fleets. Applied Energy, 285, 116408. [16]Chang C.-C., Liao Y.-T., Chang Y.-W., 2019. Life Cycle Assessment of Carbon Footprint in Public Transportation - A Case Study of Bus Route NO. 2 in Tainan City, Taiwan. Procedia Manufacturing, 30, 388-395. [17]Fan Z., Weng W., Zhou J., Gu D., Xiao W., 2021. Catalytic decomposition of methane to produce hydrogen: A review. Journal of Energy Chemistry, 58, 415-430. [18]Yu M., Wang K., Vredenburg H., 2021. Insights into low-carbon hydrogen production methods: Green blue and aqua hydrogen. International Journal of Hydrogen Energy, 46(41), 21261-21273. [19]Im-orb K., Visitdemrongkul N., Saebea D., Patcharavorachot Y., Arpornwichanop A., 2018. Flowsheet-based model and exergy analysis of solid oxide electrolysis cells for clean hydrogen production. Journal of Cleaner Production, 170, 1-13. [20]Nadaleti W.C., Lourenco V., Americo G., 2021. Green hydrogen-based pathways and alternatives: Towards the renewable energy transition in South America's regions – Part A. International Journal of Hydrogen Energy, 46(43), 22247-22255. [21]Tarhan C., Cil M.A., 2021. A study on hydrogen, the clean energy of the future: Hydrogen storage methods. Journal of Energy Storage, 40, 102676. [22]Zheng J., Liu X., Xu P., Liu P., Zhao Y., Yang J., 2012. Development of high pressure gaseous hydrogen storage technologies. International Journal of Hydrogen Energy, 37(1), 1048-1057. [23]Abe J.O., Popoola A.P.I., Ajenifuja E., Popoola O.M., 2019. Hydrogen energy, economy and storage: Review and recommendation. International Journal of Hydrogen Energy, 44(29), 15072-15086. [24]Balat M., Balat M., 2009. Political, economic and environmental impacts of biomass-based hydrogen. International Journal of Hydrogen Energy, 34(9), 3589-3603. [25]Lee Y., Lee U., Kim K., 2021. A comparative techno-economic and quantitative risk analysis of hydrogen delivery infrastructure options. International Journal of Hydrogen Energy, 46(27), 14857-14870. [26]Cerniauskas S., Junco Chavez Jose A., Grube T., Robinius M., Stolten D., 2020. Options of natural gas pipeline reassignment for hydrogen: Cost assessment for a Germany case study. International Journal of Hydrogen Energy, 45(21), 12095-12107. [27]Moradi R., Groth K.M., 2019. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. 44(23), 12254-12269. [28]Demir M.E., Dincer I., 2018. Cost assessment and evaluation of various hydrogen delivery scenarios. International Journal of Hydrogen Energy, 43(22), 10420-10430. [29]D. Karaboga, 2005. An Idea Based on Honey Bee Swarm for Numerical Optimization. Technical Report, Technical report-tr06. [30]Cui L., Li G., Wang Z., Lin Q., Chen J., Lu N., Jian L., 2017. A ranking-based adaptive artificial bee colony algorithm for global numerical optimization. Information Sciences. 417, 169-185. [31]Dokeroglu T., Sevinc E., Cosar A., 2019. Artificial bee colony optimization for the quadratic assignment problem. Applied Soft Computing, 76, 595-606. [32]Chen X., Tainfield H., Li K., 2019. Self-adaptive differential artificial bee colony algorithm for global optimization problems. Swarm and Evolutionary Computation, 45, 70-91. [33]Kalayci C.B., Hanclilar A., Gungor A., Gupta S.M., 2015. Multi-objective fuzzy disassembly line balancing using a hybrid discrete artificial bee colony algorithm. Journal of Manufacturing Systems, 37, Part 3, 672-682. [34]Zhang C., Ouyang D., Ning J., 2010. An artificial bee colony approach for clustering. Expert Systems with Applications, 37(7), 4761-4767 [35]Khan I., Maiti M.K., 2019. A swap sequence based Artificial Bee Colony algorithm for Traveling Salesman Problem. Swarm and Evolutionary Computation, 44, 428-438. [36]Li H., Li X., Gao L., 2021. A discrete artificial bee colony algorithm for the distributed heterogeneous no-wait flowshop scheduling problem. Applied Soft Computing, 100, 106946. [37]Contreras-Cruz M.A., Ayala-Ranirez V., Hernandez-Belmonte H., 2015.Mobile robot path planning using artificial bee colony and evolutionary programming. Applied Soft Computing, 30, 319-328. [38]Wu W., Partridge J.S., Bucknall R.W.G., 2018. Stabilised control strategy for PEM fuel cell and supercapacitor propulsion system for a city bus. International Journal of Hydrogen Energy, 43(2), 12302-12313. [39]Sagaria S., Costa Neto R., Baptista P., 2021. Assessing the performance of vehicles powered by battery, fuel cell and ultra-capacitor: Application to light-duty vehicles and buses. Energy Conversion and Management, 229, 113767. [40]Mekhlief S., Saidur R., Safari A, 2012. Comparative study of different fuel cell technologies. Renewable and Sustainable Energy Reviews, 16(1), 981-989. [41]Sarma U., Ganguly S., 2018. Determination of the component sizing for the PEM fuel cell-battery hybrid energy system for locomotive application using particle swarm optimization. Journal of Energy Storage, 19, 247-259. [42]Yartys V.A., Lotoskyy M.V., Linkov V., Pasupathi S., Davids M.W., Tolj I., Radica G., Denys R.V., Eriksen J., Taube K., Bellosta von Colbe J., Capurso G., Dornheim M., Smith F., Mathebula D., Swanepoel D., Suwarno S., 2021. HYDRIDE4MOBILITY: An EU HORIZON 2020 project on hydrogen powered fuel cell utility vehicles using metal hydrides in hydrogen storage and refuelling systems. International Journal of Hydrogen Energy, available online 26 Feb 2021. [43]Heiko, A., Yvonne, R., Simon, L., Dragos, F., Andre, M., 2015. Fuel cell electric buses potential for sustainable public transport in Europe. A study for the Fuel Cells and Hydrogen Joint Undertaking. [44]Klaus S., Nicole W., Simon W., 2019. JIVE Best Practice and Commercialisation Report1. [45]Klaus S., Nicole W., Simon W., 2020. JIVE2 Best Practice Information Bank Report1. [46]Eudy L., Post M., Jeffers M., 2016. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Result: Fifth Report. National Renewable Energy Laboratory, Technical Report, NREL/TP-5400-75583. [47]Eudy L., Post M., 2021. SunLine Transit Agency Fuel Cell Electric Bus Progress Report. National Renewable Energy Laboratory, Technical Report, NREL/PR-5400-78078. [48]Khan U., Yamamoto T., Sato H., 2020. Consumer preferences for hydrogen fuel cell vehicles in Japan. Transportation Research Part D: Transport and Environment, 87, 102542. [49]Khan U., Yamamoto T., Sato H., 2021. An insight into potential early adopters of hydrogen fuel-cell vehicles in Japan. International Journal of Hydrogen Energy. [50]Trancher G., Taeihagh A., Yarime M., 2020. Overcoming barriers to developing and diffusing fuel-cell vehicles: Governance strategies and experiences in Japan. Energy Policy, 142, 111533. [51]Harada M., Ichikawa T., Tagaki H., Uchida H., 2016. Building a hydrogen infrastructure in Japan. Compendium of Hydrogen Energy, 4, 321-335. [52]Zhang G.Q., Zhang J.A., Xie T., 2020. A solution to renewable hydrogen economy for fuel cell buses – A case study for Zhangjiakou in North China. International Journal of Hydrogen Energy, 45(29), 14603-14613. [53]台灣燃料電池資訊網 https://www.tfci.org.tw/news/newsDetail.asp?id=741 [54]Handwerker M., Wellnitz J., Marzbani H., 2021. Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy. Hydrogen, 2(1), 76-100. [55]國家發展委員會,「全國性氫能發展之整體規劃」期末報告書。https://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvNTY1Ny8yNzU1OC83NGEzZWVkYy0xNTgwLTQwYzktOGUxNy04Y2RiNzE0MDQ0OGMucGRm&n=5YWo5ZyL5oCn5rCr6IO955m85bGV5LmL5pW06auU6KaP5YqDLnBkZg%3D%3D&icon=.pdf, 2017.04.18. [56]Spendelow J., Papageorgopoulos D., 2012. Fuel Cell Bus Target. United States Department of Energy, Fuel Cell Technologies Program Record, #12012. [57]Ally J., Pryor T., 2016. Life cycle costing of diesel, natural gas, hybrid and hydrogen fuel cell bus system: An Australian case study. Energy Policy, 94, 285-294. [58]Wang Y., Szero W.Y., 2021. An enhanced artificial bee colony algorithm for the green bike repositioning problem with broken bikes. Transportation Research Part C: Emerging Technologies, 125, 102895. [59]龍義琳,「以整合整體訂單貢獻度在多廠區多目標 訂單指派與生產排程系統之研究 -運用改良式蜂群演算法」,民國101年。 [60]Afzal A., Mohammed Samee A.D., Jilte R.D., Tariqul Islam Md., Muthu Manokar A., Razak K.A., 2021. Battery thermal management: An optimization study of parallelized conjugate numerical analysis using Cuckoo search and Artificial bee colony algorithm. International Journal of Heat and Mass Transfer, 166(9), 120798. [61]Ivy J., 2004. Summary of Electrolytic Hydrogen Production. Milestone Completion Report, NREL/MP-560-36734. [62]Reddi K., Elgowainy A., Rustagi N., Gupta E,, 2018. Techno-economic analysis of conventional and advanced high-pressure tube trailer configurations for compressed hydrogen gas transportation and refueling. International Journal of Hydrogen Energy, 43(9), 4428-4438. [63]台灣電力公司電價表,https://www.taipower.com.tw/upload/29/2018032719495918817.pdf,2018.03.27。 [64]台灣自來水公司,https://www.water.gov.tw/ch/Subject/Detail/2274?nodeId=813,2021.04.21。
|