帳號:guest(18.118.119.89)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:劉彥緯
作者(英文):Yen-Wei Liu
論文名稱:最小像素差的漢明碼之部分可逆式資料隱藏機制
論文名稱(英文):Partial Reversible Data Hiding by Minimum-Pixel-Difference Hamming Code
指導教授:楊慶隆
指導教授(英文):Ching-Nung Yang
口試委員:郭文中
張道顧
口試委員(英文):Wen-Chung Kuo
Tao-Ku Chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:資訊工程學系
學號:610821227
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:58
關鍵詞:資料隱藏可逆式資料隱藏漢明碼部分可逆嵌入能力視覺質量最最低有效位位元
關鍵詞(英文):Data hidingreversible data hidingHamming codepartial reversibleembedding capacityvisual qualityLeast Significant Bit (LSB)
相關次數:
  • 推薦推薦:0
  • 點閱點閱:36
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:34
  • 收藏收藏:0
影像資料隱藏技術 (Data Hiding; DH) 是將秘密資訊隱藏於封面影像 (Cover Image) 中,隱藏秘密後的影像稱之為偽裝影像 (Stego Image)。隱藏所嵌入的信息容量、與不可察覺性是資料隱藏研究的重點。當解回隱藏信息時,若偽裝影像能復原回封面影像,我們稱之為可逆式資料隱藏 (Reversible DH; RDH)。但是,若只能回復至幾乎與原封面影像差異不大的影像,則稱之為部分可逆式資料隱藏 (Partial RDH; PRDH)。
漢明碼是經常使用於資料隱藏的的一種技術。傳統植基於漢明碼的資隱藏,通常是將 k 個秘密位元嵌入於 (2^k − 1) 像素的最低有效位位元(LSB)中。以最常使用的(7, 4)漢明碼為例,就是將每3個秘密位元嵌入7個像素的LSB。然而,這樣的信息嵌入率並不令人滿意。本論文"最小像素差的漢明碼之部分可逆式資料隱藏機制",是研究部分可逆式資料隱藏機制。為了大幅提高嵌入的信息容量,我們不再是像傳統的(7, 4)漢明碼在每7個像素的LSB嵌入秘密。我們提出了一種基於漢明碼的利用像素差異的隱藏方法。本論文討論兩種方式的隱藏機制,第一種方法是每次從2個像素分別取出4個LSB與3個LSB建構成(7, 4)漢明碼。在這個漢明碼中,嵌入3個秘密位元。此時,與傳統(7, 4)漢明碼不同,我們不在指考慮更動最多一個位置來嵌入信息 (註: 因為現在這個漢明碼不再是7個像素的LSB,而是兩個像素中的4個LSB與3個LSB)。所以我們採用最小像素差的條件來進行信息嵌入。我們的第二個方法是將2個像素擴張至m個像素的通式架構,其中m可以是1 ~ 7。當m=2時,此通式架構則為第一個方法,m=7則此通式架構則為傳統(7, 4)漢明碼的嵌入方法。若是m值愈小,信息嵌入容量愈大但是偽裝影像的PSNR差。反之,m值愈大,嵌入容量小但是偽裝影像的PSNR好。第二個方法的通式架構可在嵌入量與PSNR之間取得平衡與妥協。實驗和理論結果證明了這兩種方法的可行性和其各別優勢。
The image data hiding (DH) hides the secret data into the cover image, and the embedded image is called as the stego image. Embedding capacity and imperceptibility are the main research issues about DH. When the secret data is extracted, the stego image can be recovered to the cover image, we call the DH as the reversible DH (RDH). However, the recover image cannot be recovered to the original image, and can only recovered to an image that is almost the same as original image, this RDH is referred to as partial RDH (PRDH).
Hamming code approach is often adopted to embed secret data in DH. In general, Hamming code based DH may embed k secret bits into the least significant bit (LSB) of (2^k−1) pixels. Consider using (7, 4) Hamming code as an example. We may embed 3 secret bits into the LSB of 7 pixels. However, such message embedding rate is not very high. In the thesis "Partial Reversible Data Hiding by Minimum-Pixel-Difference Hamming Code" is dedicated on studying PRDH. To enhance embedding capacity, we do not use the conventional approach like the (7, 4) Hamming code based DH. Here, we use the notion of pixel difference to use Hamming code for embedding secret data. Two approaches are prosed n this thesis. The first approach deals with every two pixels each time. We first use 4 LSBs and 3 LSBs from 2 pixels, respectively, to form as a (7, 4) Hamming code, and then embed 3 secret bits into the (7, 4) Hamming code based on the condition that these two pixels have the minimum pixel difference. Therefore, we do not modify at most one bit in (7, 4) Hamming code like the traditional (7, 4) Hamming code based DH. In the second approach, using 2 pixels is extended to using m=1~7 pixels to design a general framework of PRDH. When using m=2, the general framework is reduce as the first approach, and using m=7, the general framework is the same as the traditional (7, 4) Hamming code. It is observed that the smaller m may have the higher embedding capacity, is degrades the PSNR of stego image. On the other hand, if the larger m is adopted, we have the less embedding capacity and the better PSNR of stego image. There is a trade-off between embedding capacity and PSNR for the general framework. Experimental and theoretical results demonstrate the effectiveness of these two approaches, and their respective advantages.
Chapter 1 Introduction 1
1.1 Background 1
1.2 Contribution of the Thesis 3
1.3 Organization of the Thesis 4
Chapter 2 Hamming Code 6
Chapter 3 The proposed scheme 8
3.1 Image transformation phase 9
3.2 Data hiding phase 13
3.3 Data extraction and image recovery phase 16
3.4 A general framework for PRDH 18
Chapter 4 Theoretical Investigation 25
4.1 Evaluation 25
4.2 Theoretical estimation 26
Chapter 5 Experimental Results 45
5.1 Visual examples 45
5.2 Embedding capacity and visual performance 47
Chapter 6 Conclusion and Future Work 50
References 53
[Bend96] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data hiding,” IBM systems journal, vol. 35, no. 3.4, pp. 313–336, 1996.
[Chan04] C.-K. Chan and L.-M. Cheng, “Hiding data in images by simple lsb substitution,” Pattern recognition, vol. 37, no. 3, pp. 469–474, 2004.
[Chen19] X. Chen, H. Zhong, and A. Qiu, “Reversible data hiding scheme in multiple encrypted images based on code division multiplexing,” Multimedia Tools and Applications, vol. 78, no. 6, pp. 7499–7516, 2019.
[Cran98] R. Crandall, “Some notes on steganography,” Posted on steganography mailing list, pp. 1–6, 1998.
[Frid06] J. Fridrich and D. Soukal, “Matrix embedding for large payloads,” IEEE Transactions on Information Forensics and Security, vol. 1, no. 3, pp. 390–395, 2006.
[Hong10] W. Hong, T.-S. Chen, Y.-P. Chang, and C.-W. Shiu, “A high capacity reversible data hiding scheme using orthogonal projection and prediction error modification,” Signal Processing, vol. 90, no. 11, pp. 2911–2922, 2010.
[Hong12] W. Hong, T.-S. Chen, H.-Y. Wu, An improved reversible data hiding in encrypted images using side match, IEEE Signal Processing Letters 19 (4) (2012) 199–202.
[Hu08A] Y. Hu, H.-K. Lee, and J. Li, “De-based reversible data hiding with improved overflow location map,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 19, no. 2, pp. 250–260, 2008.
[Hu08B] Y. Hu, H.-K. Lee, K. Chen, and J. Li, “Difference expansion based reversible data hiding using two embedding directions,” IEEE Transactions on Multimedia, vol. 10, no. 8, pp. 1500–1512, 2008.
[Hwan06] J. Hwang, J. Kim, and J. Choi, “A reversible watermarking based on histogram shifting,” in International Workshop on Digital Watermarking. Springer, 2006, pp. 348–361.
[Jana17] B. Jana, D. Giri, and S. K. Mondal, “Partial reversible data hiding scheme using (7, 4) hamming code,” Multimedia Tools and Applications, vol. 76, no. 20, pp. 21 691–21 706, 2017.
[Kim09] K.-S. Kim, M.-J. Lee, H.-Y. Lee, and H.-K. Lee, “Reversible data hiding exploiting spatial correlation between sub-sampled images,” Pattern Recognition, vol. 42, no. 11, pp. 3083–3096, 2009.
[Kim18] C. Kim, D. Shin, C.-N. Yang, and Y.-S. Chou, “Improving capacity of hamming (n, k)+ 1 stego-code by using optimized hamming+ k,” Digital Signal Processing, vol. 78, pp. 284–293, 2018.
[Ma13] K. Ma, W. Zhang, X. Zhao, N. Yu, F. Li, Reversible data hiding in encrypted images by reserving room before encryption, IEEE Transactions on information forensics and security 8 (3) (2013) 553–562.
[Ma16] B. Ma and Y. Q. Shi, “A reversible data hiding scheme based on code division multiplexing,” IEEE Transactions on Information Forensics and Security, vol. 11, no. 9, pp. 1914–1927, 2016.
[Miel06] J. Mielikainen, “Lsb matching revisited,” IEEE signal processing letters, vol. 13, no. 5, pp. 285–287, 2006.
[Ni06] Z. Ni, Y.-Q. Shi, N. Ansari, and W. Su, “Reversible data hiding,” IEEE Transactions on circuits and systems for video technology, vol. 16, no. 3, pp. 354–362, 2006.
[Ou13] B. Ou, X. Li, Y. Zhao, R. Ni, and Y.-Q. Shi, “Pairwise prediction-error expansion for efficient reversible data hiding,” IEEE Transactions on Image Processing, vol. 22, no. 12, pp. 5010–5021, 2013.
[Ou17] B. Ou, X. Li, J. Wang, and F. Peng, “High-fidelity reversible data hiding based on geodesic path and pairwise prediction-error expansion,” Neurocomputing, vol. 226, pp. 23–34, 2017.
[Tian03] J. Tian, “Reversible data embedding using a difference expansion,” IEEE transactions on circuits and systems for video technology, vol. 13, no. 8, pp. 890–896, 2003.
[Wang16] J. Wang, J. Ni, X. Zhang, and Y.-Q. Shi, “Rate and distortion optimization for reversible data hiding using multiple histogram shifting,” IEEE transactions on cybernetics, vol. 47, no. 2, pp. 315–326, 2016.
[Wang17] W. Wang, J. Ye, T. Wang, and W. Wang, “Reversible data hiding scheme based on significant-bit-difference expansion,” IET image processing, vol. 11, no. 11, pp. 1002–1014, 2017.
[West01] A. Westfeld, “F5ła steganographic algorithm,” in International workshop on information hiding. Springer, 2001, pp. 289–302.
[Wu14] X. Wu, W. Sun, High-capacity reversible data hiding in encrypted images by prediction error, Signal Processing 104 (2014) 387–400.
[Wu19] H.-T. Wu, Y.-m. Cheung, Z. Yang, S. Tang, A high-capacity reversible data hiding method for homomorphic encrypted images, Journal of Visual Communication and Image Representation 62 (2019) 87–96
[Yang17] C.-N. Yang, S.-C. Hsu, and C. Kim, “Improving stego image quality in image interpolation based data hiding,” Computer Standards & Interfaces, vol. 50, pp. 209–215, 2017.
[Yang19] C.-N. Yang, S.-Y. Wu, Y.-S. Chou, and C. Kim, “Enhanced stego-image quality and embedding capacity for the partial reversible data hiding scheme,” Multimedia Tools and Applications, pp. 1–22, 2019.
[Zhan07A] X. Zhang, W. Zhang, and S. Wang, “Efficient double-layered steganographic embedding,” Electronics letters, vol. 43, no. 8, pp. 482–483, 2007.
[Zhan07B] W. Zhang, S. Wang, and X. Zhang, “Improving embedding efficiency of covering codes for applications in steganography,” IEEE Communications Letters, vol. 11, no. 8, pp. 680–682, 2007.
[Zhan11] X. Zhang, Reversible data hiding in encrypted image, IEEE signal processing letters 18 (4) (2011) 255–258.
[Zhan12] R. Zhang, V. Sachnev, M. B. Botnan, H. J. Kim, and J. Heo, “An efficient embedder for bch coding for steganography,” IEEE Transactions on Information Theory, vol. 58, no. 12, pp. 7272–7279, 2012.
[Zhan15] C. Qin, X. Zhang, Effective reversible data hiding in encrypted image with privacy protection for image content, Journal of Visual Communication and Image Representation 31 (2015) 154–164.
[Zhan16] C. Kim and C.-N. Yang, “Data hiding based on overlapped pixels using hamming code,” Multimedia Tools and Applications, vol. 75, no. 23, pp. 15 651–15 663, 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *