帳號:guest(3.133.111.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李昀容
作者(英文):Yun-Rong Lee
論文名稱:氣相傳輸法合成與鑑定二維二硫化鈦奈米片
論文名稱(英文):Vapor transport synthesis and characterization of two-dimensional TiS2 nanoplates
指導教授:田禮嘉
指導教授(英文):Li-Chia Tien
口試委員:林育賢
陳瑞山
田禮嘉
口試委員(英文):Yu-Shyan Lin
Ruei-San Chen
Li-Chia Tien
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610822101
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:79
關鍵詞:二硫化鈦TiS2過渡金屬二硫化物(TMDCs)物理氣相傳輸法二維材料硫缺陷層數相依
關鍵詞(英文):titanium disulfidetransition metal dichalcogenides (TMDCs)physical vapor transporttwo-dimensional materialssulfur vacanciesthickness dependence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏收藏:0
本研究以物理氣相傳輸法藉由VS (vapor-solid)成長機制,於高真空密封的石英管內以鈦片作為基板合成鈦硫化合物,並藉由控制成長溫度以及硫供給量探討不同合成條件下樣品之間的差異性。透過多樣材料分析儀器:FE-SEM、XRD、TEM、AFM、Raman光譜,分別對樣品進行表面形貌、晶體結構成分鑑定、表面氧化態、厚度量測與光學性質分析。從實驗分析結果得知所合成的鈦硫化合物為過渡金屬二二硫化鈦TiS2,而鈦基板表面僅合成出單一相的六方單晶片狀結構,此片狀結構的尺寸與厚度隨硫供給量與成長溫度的增加而增加。透過XRD分析,在成長溫度550 ˚C時,當硫供給量越豐富TiS2傾向於以(001)面做為為堆疊的優選取向,而在成長溫度600˚C時,過量的硫供給則是更傾向於以(101)出平面方向堆疊。而經由XPS分析可得知TiS2的Ti 2p主要存在兩種不同組成形式的鍵結,一為Ti-S鍵結所產生的峰,另一則是因TiS2樣品與大氣中的氧接觸所生的Ti-O峰,而在S 2p核層能譜中有發現代表硫缺陷(sulfur vacancies)的分峰,而TiS2樣品硫缺陷所佔比例會受到成長條件的不同而產生變化。最後在Raman光譜中確認以不同合成條件下所合成的二維結構皆為1T相的TiS2,並透過分析Raman震動模式觀察到TiS2樣品的層數相依性以及樣品之間硫缺陷的差異性,結果顯示隨TiS2的層數與A1g峰強度和A1g與Eg峰位置之間的差異呈負相關;TiS2奈米片的硫缺陷程度則是隨硫供給量增加而下降,與XPS分析結果相符。
In this study, the physical vapor transport method and the VS (vapor-solid) growth mechanism were used to synthesize titanium-sulfur compounds in a high-vacuum-sealed quartz tube using a titanium sheet as a substrate. The samples were obtained under different synthesis conditions by adjusting the growth temperature and the amount of sulfur supplied during growth. The surface morphology, structural properties, composition, surface oxidation state, thickness and optical property of the samples were characterized through a variety of characterization method such as: FE-SEM, EDS, XRD, TEM, AFM and Raman spectroscopy. According to the experimental results, the as-synthesized samples consisted of titanium disulfide (TiS2) nanoplates. Furthermore, only single crystal hexagonal TiS2 nanoplates were obtained. Moreover it was found that the size and the thickness of TiS2 nanoplates increases with the increasing supplements of sulfur vapor and growth temperature. The samples with excess supplements of sulfur grew under 550 ˚C, exhibit a (001) preferred stacking orientation. On the country, for the samples grew with excess supplements of sulfur at a higher growth temperature of 600 ˚C, shows a (101) stacking orientation. The XPS results show that sample is present in the form of two different components, one is the Ti-S bond, and another is Ti-O bond which due to TiS2 sample contact with an oxygen environment. The sulfur vacancy peak was also observed in the S 2p core-level spectrum. The quantity of sulfur vacancies in TiS2 samples will vary depending on the growth conditions. The Raman spectroscopy was utilized to verify the vibrational properties of TiS2 samples, the results confirmed that all the as-synthesized samples are 1T TiS2 structure. We also observe the thickness dependence of TiS2 samples and the different amount of sulfur vacancies between samples through the analysis of Raman vibration modes. The results confirm that the thickness dependence of TiS2 is negatively correlated with the intensity of the A1g peak and the difference between the peak position of A1g and Eg. The amount of sulfur vacancies of TiS2 nanoplates decreases as the amount of supplements of sulfur increases. The results are in consist with the XPS analysis results.
致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 XI
表目錄 XVII
第1章 緒論 1
1.1 前言 1
1.2 研究目標 2
第2章 文獻回顧 5
2.1 二維材料的特性與發展 5
2.2 二硫化鈦TiS2 5
2.3 TiS2合成 6
2.3.1 化學氣相傳輸法合成TiS2 6
2.3.2 氣相傳輸法合成鈦硫化物 7
2.3.3 熱溶劑法 8
2.3.4 球磨法 8
2.4 成長機制 9
2.5 二硫化鈦TiS2特性與應用 10
2.5.1 層數相依姓 10
2.5.2 電學特性 11
第3章 實驗步驟與分析儀器 23
3.1 實驗設計 23
3.2 實驗材料 23
3.2.1 使用儀器 23
3.2.2 材料 23
3.2.3 清潔溶液 24
3.3 實驗步驟 24
3.3.1 基板清洗及表面處理 24
3.3.2 以傳統氣相傳輸法合成Ti-S材料 24
3.3.3 石英管前處理及封管 25
3.3.4 以封管方式合成Ti-S材料 26
3.4 實驗分析儀器 26
3.4.1 場發射掃描式電子顯微鏡 (FE-SEM) 26
3.4.2 X光繞射分析儀 (XRD) 27
3.4.3 X射線光電子能譜儀 (XPS) 27
3.4.4 穿透式電子顯微鏡 (TEM) 28
3.4.5 拉曼光譜儀(Raman Spectroscopy) 28
3.4.6 原子力顯微鏡(AFM) 29
第4章 結果與討論 33
4.1 嘗試以氣相傳輸法成長TiS2 33
4.1.1 EDS定性分析 33
4.1.2 XRD鑑定分析與表面形貌分析 33
4.2 於高真空封管條件下合成Ti-S化合物 35
4.2.1 EDS定性分析 35
4.2.2 表面形貌分析 36
4.3 晶體結構與相鑑定 37
4.3.1 XRD分析 37
4.3.2 TEM分析與鑑定 40
4.4 XPS分析 42
4.4.1 XPS定性分析 42
4.4.2 定量分析 43
4.4.3 成長溫度與硫供給量變化對電子能譜的影響 44
4.4.4 XPS分析小結論 46
4.5 AFM厚度量測 46
4.6 Raman光譜 47
第5章 結論 73
第6章 參考文獻 77
[1] G. Giovannetti, P.A. Khomyakov, G. Brocks, P.J. Kelly, J. van den Brink, Substrate-induced band gap in graphene on hexagonal boron nitride:Ab initiodensity functional calculations, Physical Review B 76(7) (2007).
[2] Z. Liu, L. Ma, G. Shi, W. Zhou, Y. Gong, S. Lei, X. Yang, J. Zhang, J. Yu, K.P. Hackenberg, A. Babakhani, J.C. Idrobo, R. Vajtai, J. Lou, P.M. Ajayan, In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes, Nat Nanotechnol 8(2) (2013) 119-24.
[3] P. Huang, L.G. Yuan, K.C. Zhang, Q.Y. Chen, Y. Zhou, B. Song, Y.F. Li, Room-Temperature and Aqueous Solution-Processed Two-Dimensional TiS2 as an Electron Transport Layer for Highly Efficient and Stable Planar n-i-p Perovskite Solar Cells, Acs Appl Mater Inter 10(17) (2018) 14796-14802.
[4] W. Liao, Y. Huang, H. Wang, H. Zhang, Van der Waals heterostructures for optoelectronics: Progress and prospects, Applied Materials Today 16 (2019) 435-455.
[5] K. Shavanova, Y. Bakakina, I. Burkova, I. Shtepliuk, R. Viter, A. Ubelis, V. Beni, N. Starodub, R. Yakimova, V. Khranovskyy, Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology, Sensors (Basel) 16(2) (2016) 223.
[6] M.S. Whittingham, Lithium batteries and cathode materials, Chem Rev 104(10) (2004) 4271-301.N. Pereira, G.G. Amatucci, M.S. Whittingham, R. Hamlen, Lithium-titanium disulfide rechargeable cell performance after 35 years of storage, J Power Sources 280 (2015) 18-22.
[8] C.Y. Xu, P.A. Brown, K.L. Shuford, Strain-induced semimetal-to-semiconductor transition and indirect-to-direct band gap transition in monolayer 1T-TiS2, Rsc Adv 5(102) (2015) 83876-83879.
[9] K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically Thin MoS2: A New Direct-Gap Semiconductor, Phys Rev Lett 105(13) (2010).
[10] R. Aksoy, E. Selvi, R. Knudson, Y. Ma, A high pressure x-ray diffraction study of titanium disulfide, J Phys Condens Matter 21(2) (2009) 025403.
[11] C.S. Cucinotta, K. Dolui, H. Pettersson, Q.M. Ramasse, E. Long, S.E. O'Brian, V. Nicolosi, S. Sanvito, Electronic Properties and Chemical Reactivity of TiS2 Nanoflakes, J Phys Chem C 119(27) (2015) 15707-15715.
[12] H. Wang, Z. Qiu, W. Xia, C. Ming, Y. Han, L. Cao, J. Lu, P. Zhang, S. Zhang, H. Xu, Y.Y. Sun, Semimetal or Semiconductor: The Nature of High Intrinsic Electrical Conductivity in TiS2, J Phys Chem Lett 10(22) (2019) 6996-7001.
[13] Z. Gao, Q. Ji, P.C. Shen, Y. Han, W.S. Leong, N. Mao, L. Zhou, C. Su, J. Niu, X. Ji, M.M. Goulamaly, D.A. Muller, Y. Li, J. Kong, In Situ-Generated Volatile Precursor for CVD Growth of a Semimetallic 2D Dichalcogenide, ACS Appl Mater Interfaces 10(40) (2018) 34401-34408.
[14] M. Talib, R. Tabassum, S.S. Islam, P. Mishra, Influence of growth temperature on titanium sulphide nanostructures: from trisulphide nanosheets and nanoribbons to disulphide nanodiscs, Rsc Adv 9(2) (2019) 645-657.
[15] J. Cantu, J. Valle, K. Flores, D. Gonzalez, C. Valdes, J. Lopez, V. Padilla, M. Alcoutlabi, J. Parsons, Investigation into the thermodynamics and kinetics of the binding of Cu2+ and Pb2+ to TiS2 nanoparticles synthesized using a solvothermal process, J Environ Chem Eng 7(6) (2019).
[16] X.T. Meng, C. Yu, B. Lu, J. Yang, J.S. Qiu, Dual integration system endowing two-dimensional titanium disulfide with enhanced triiodide reduction performance in dye-sensitized solar cells, Nano Energy 22 (2016) 59-69.
[17] P.C. Sherrell, K. Sharda, C. Grotta, J. Ranalli, M.S. Sokolikova, F.M. Pesci, P. Palczynski, V.L. Bemmer, C. Mattevi, Thickness-Dependent Characterization of Chemically Exfoliated TiS2 Nanosheets, ACS Omega 3(8) (2018) 8655-8662.
[18] S.A. M. Parvaz, Mohd Bilal Khan, Rahul, Sultan Ahmad, and Zishan H. Khan, Synthesis of TiS2 nanodiscs for supercapacitor application, AIP Conference Proceedings 1953(1):030121 (2018).
[19] C. Lin, X. Zhu, J. Feng, C. Wu, S. Hu, J. Peng, Y. Guo, L. Peng, J. Zhao, J. Huang, J. Yang, Y. Xie, Hydrogen-incorporated TiS2 ultrathin nanosheets with ultrahigh conductivity for stamp-transferrable electrodes, J Am Chem Soc 135(13) (2013) 5144-51.
[20] L. Yuwen, H. Yu, X. Yang, J. Zhou, Q. Zhang, Y. Zhang, Z. Luo, S. Su, L. Wang, Rapid preparation of single-layer transition metal dichalcogenide nanosheets via ultrasonication enhanced lithium intercalation, Chem Commun (Camb) 52(3) (2016) 529-32.
[21] R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun, T.E. Mallouk, M. Terrones, Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets, Acc Chem Res 48(1) (2015) 56-64.
[22] A. Duzynska, J. Judek, K. Wilczynski, K. Zberecki, A. Lapinska, A. Wroblewska, M. Zdrojek, Temperature-induced phonon behavior in titanium disulfide (TiS2) nanosheets, J Raman Spectrosc 50(8) (2019) 1114-1119.
[23] C.F. Holder, R.E. Schaak, Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials, Acs Nano 13(7) (2019) 7359-7365.
[24] Double diffraction - Diffraction and imaging_ Dynamical effects (II) _ Coursera.
[25] H. Martinez, C. Auriel, D. Gonbeau, M. Loudet, G. PfisterGuillouzo, Studies of 1T TIS2 by STM, AFM and XPS: The mechanism of hydrolysis in air, Appl Surf Sci 93(3) (1996) 231-235.
[26] C.G. Hawkins, L. Whittaker-Brooks, Controlling Sulfur Vacancies in TiS2-x Cathode Insertion Hosts via the Conversion of TiS3 Nanobelts for Energy-Storage Applications, Acs Appl Nano Mater 1(2) (2018) 851-859.
[27] J.H. Lu, F. Lian, Y.X. Zhang, N. Chen, Y. Li, F. Ding, X.J. Liu, Sulfide cluster vacancies inducing an electrochemical reversibility improvement of titanium disulfide electrode material, J Mater Chem A 8(14) (2020) 6532-6538.
[28] 林楹璋 (2005)。有機分子官能化的 Si(111)表面化學 (碩博士論文)。國立交通大學,新竹縣。
[29] 王帥 (2011)。利用同步輻射軟X光還原氧化石墨烯 (碩博士論文)。東海大學,台中市。
[30] L. Liang, V. Meunier, First-principles Raman spectra of MoS2, WS2 and their heterostructures, Nanoscale 6(10) (2014) 5394-401.
[31] R. Shahzad, T. Kim, S.-W. Kang, Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for MoS2 synthesis, Thin Solid Films 641 (2017) 79-86.
[32] W. Fu, Y. Chen, J. Lin, X. Wang, Q. Zeng, J. Zhou, L. Zheng, H. Wang, Y. He, H. He, Q. Fu, K. Suenaga, T. Yu, Z. Liu, Controlled Synthesis of Atomically Thin 1T-TaS2 for Tunable Charge Density Wave Phase Transitions, Chemistry of Materials 28(21) (2016) 7613-7618.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *