帳號:guest(3.137.222.231)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李宥德
作者(英文):YO-DA LEE
論文名稱:氣相傳輸法合成、鑑定錫硫化合物奈米結構應用於超級電容器元件
論文名稱(英文):Vapor transport synthesis and characterization of tin sulfide nanostructures for supercapacatiors applications
指導教授:田禮嘉
指導教授(英文):Li-Chia Tien
口試委員:陳瑞山
林育賢
田禮嘉
口試委員(英文):Ruei-San Chen
Yu-Shyan Lin
Li-Chia Tien
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610822112
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:105
關鍵詞:硫化錫二硫化錫三硫化二錫氣相傳輸法奈米塊狀奈米片狀奈米線狀光學性質非對稱超級電容器對稱超級電容器
關鍵詞(英文):Tin SulfideTin disulfideTin trisulfidevapor transportnanobulknanoflakenanowireoptical propertiesasymmetric upercapacitorsymmetric supercapacitor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:38
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
錫硫化物(SnxSy)是一種地球含量高且對環境友善的材料,其中硫化錫(SnS)與二硫化錫(SnS2)有著優越的光電學性質,硫化錫(SnS)為層狀斜方晶結構的 p 型半導體,其位於可見光間接能隙的特性使其多用於光伏元件的光吸收層應用。
二硫化錫(SnS2),為六方晶結構的 n 型半導體,其間接能隙位於可見光,具有可見光光觸媒及鋰離子電池電極的應用。
本實驗利用氣相傳輸法(vapor transport)在FTO基板上控制成長三種不同錫硫奈米結構樣品,分別為奈米塊狀SnS、奈米片狀SnS2 及奈米線狀Sn2S3,並藉由控制不同成長溫度、成長時間、硫蒸鍍溫度,來確認其成長機制。
研究顯示樣品成分與表面形貌的差異受到硫的蒸鍍量多寡及基板成長溫度的高低所影響。當成長溫度介於 400–430 °C 時生成片狀 SnS2,成長溫度介於460–480 °C 時生成線狀 Sn2S3,成長溫度介於 490–500 °C 時形成塊狀 SnS。
同時我們也探討基板對樣品成長的影響,我們分別在藍寶石基板(c-plane)、矽基板(SiO2/Si)等不同基板上成長樣品,發現在不同基板因不同結晶結構及成核速率,進而影響錫及硫蒸氣在基板上表面吸附及成長。
另外透過改變載流氣體的流速(20、50 和 100 sccm)來觀察對樣品形貌及厚度的變化。我們利用 X 光繞射儀(XRD)鑑定得知 SnS2 為六方晶結構,Sn2S3 和 SnS 為斜方晶結構,部分樣品出現混相的結晶鋒,包括(片混線)、(線混塊)。並藉由 X 射線光電子能譜儀(XPS)鑑定得知 SnS2 中Sn 的氧化態為 Sn4+,SnS 中 Sn 的氧化態為 Sn2+,而 Sn2S3 擁有兩種 Sn 的氧化態,包括 Sn4+和 Sn2+,不同的氧化態影響 Sn 跟 S 鍵結量,進而產生不同缺陷包括 S 空缺和 Sn 空缺,並影響其半導體電特性。
光學性質方面分別使用光致激光譜儀(PL)和顯微拉曼光譜儀(Raman)進行分析,PL 鑑定出 SnS2 能隙約為 2.18 eV,SnS 能隙約為 1.73 eV 與文獻相符。SnS2、Sn2S3 和 SnS 樣品皆符合文獻報導Raman 的振動模式,並從中觀察到 SnS2 與 Sn2S3 的峰值隨著厚度減少而造成結構差異,因而造成拉曼訊號出現訊號偏移。
電化學量測方面,分別利用循環伏安法(CV)、恆電流充放電法(GCD)和電化學阻抗頻譜法(EIS)針對 SnS2、Sn2S3 和SnS 樣品進行量測,藉由 CV 和 GCD 量測結果得知,SnS2 和 Sn2S3其儲能型態為偽電容器,而 SnS 的儲能型態為電雙層電容器。SnS2 和 Sn2S3 充放電性質穩定其比電容值於水系電解質(2M KOH)中在電流密度 1 A/g 下分別為 401.86 和 33.3 F/g,而 SnS 其充放電性質於水系電解質(0.5M Na2SO4)中在電流密度 1 A/g 下為 16.18 F/g。且三個材料在電流密度 3 A/g 的連續充放電 250 次下都保有初始電量的近 89 %。
為了驗證 SnS2 應用於超級電容器元件,分別組裝成非對稱超級電容器(SnS2 // Carbon)和對稱超級電容器(SnS2 // SnS2),並在掃描速率 5 mV/s,分別展現 217.26 和 175.28 F/g 的比電容值,並得知非對稱超級電容器在功率密度為 1200 W kg−1,能提供最大能量密度 10.5 W h kg−1,並在電流密度 3 A/g 下經 250 次的充放電,還保有近 103 %比電容值。
Tin sulfides (SnxSy) are earth abundant and environmentally friendly materials. Tin sulfide (SnS) and tin disulfide (SnS2) exhibit excellent optical and electrical properties.
SnS is a p-type semiconductor with orthorhombic structure and visible light optical bandgap, which has been reported for photovaltaics applications. SnS2 is an n-type semiconductor with a layered hexagonal structure and visible light band gap, can be used for photocatalysis and energy storage applications.
In this study, we use vapor transport to synthesize three different tin sulfur nanostructures (SnS nanobulk, SnS2 nanoflake and Sn2S3 nanowire) on FTO substrate by controlling the growth temperature, growth time,and the sulfur evaporation temperature. The characterization results suggest that the phase
compostions and morphologies of samples are affected significantly by the supply of sulfur vapor and the growth temperature during the growth. When the growth temperature is controlled between 400 to 430 °C, 460 to 480 °C, and 490 to 500 °C SnS2 nanoflakes,
Sn2S3 nanowires, and SnS nanobulks were obtained, respectively. The growth on different substrates (FTO, c-sapphire and silicon) may also affect the growth and phase compostion of samples. It is found that the surface absorption rates of tin and sulfur vapor are different on different substrates.
The XRD results show that SnS2 nanoflakes exhibit hexagonal crystal structure, while Sn2S3 nanowires and SnS nanobulks both exhibit orthorhombic crystal structure. The XPS results show that the valence state of SnS2 nanoflakes is Sn4+, the valence state of tin in SnS nanobluks is Sn2+, both valence states of Sn4+ and Sn2+ were found in Sn2S3 nanowires. Different valence states affect the amount of bonding between Sn and S, and different defects are generated including Sn vacancy and S vacancy, and change their semiconductor properties.
The optical properties of the samples were analyzed by PL and Raman. The PL results show the band to band emission of SnS2
centered at 2.18 eV and of SnS centered at 1.73 eV, which is consistent with reported band gap in the literatures. The Raman spectra of sample show that all three samples exhibit vibration modes in consistent with reported modes in the literatures. The Raman peak shifts as the sample thickness decreases in SnS2 and S2S3 samples.
The electrochemical measurements of samples were characterized by CV, GCD and EIS. According to the electrochemical measurement results, the charge storage of SnS2 and Sn2S3 behave as pseudocapacitors, while the charge storage of SnS behave as electrostatic double-layer capacitors. The specific capacitance of SnS2 and Sn2S3 electode in 2M KOH are 401.86 and 333.3 F/g, respectively at a current density of 1 A/g. The specific
capacitance of SnS electrodes in 0.5M Na2SO4 are 16.18 F/g at a current density of 1 A/g. The SnS2, Sn2S3 and SnS electrodes retain nearly 89 % of its initial capacitance after a
consecutive 250 cycles of charge-discharge at a current density of 3 A/g.
Two types of supercapacitor devices, were fabricated to examine their energy storage properties:asymmetric supercapacitor (SnS2 // Carbon) and symmetric supercapacitor (SnS2 // SnS2).The specific capacitance of 217.26 F/g for the asymmetric supercapacitor and 175.28 F/g for the symmetric supercapacitor are demonstrated at a scan rate of 5 mV/s. The asymmetric supercapacitor delivers a maximun energy density of 10.5 W h kg−1 at a power density of 1200 W kg−1. It still retain 103 % of the specific capacitance after 250 times of charge-discharge at a current density of 3 A/g.
第一章 緒論 1
1.1前言 1
1.2研究目標 2
第二章 文獻回顧 3
2.1超級電容器 3
2.2錫硫化物基本性質 4
2.2.1錫硫化物合成 5
2.3錫硫化物的元件應用 10
第三章 實驗步驟與分析儀器 25
3.1實驗設計 25
3.2實驗材料 25
3.2.1使用儀器 25
3.2.2基板 25
3.2.3清洗基板使用溶液 25
3.2.4氣相傳輸成長源 25
3.2.5電化學實驗材料 26
3.2.6負極活性碳製備材料 26
3.3實驗步驟 26
3.3.1清洗機板 26
3.3.2合成錫硫化合物奈米結構樣品 26
3.3.3電解液配置 27
3.3.4負極活性碳電極製作 27
3.4實驗參數 28
3.4.1改變成長溫度 28
3.4.2改變硫蒸鍍溫度 28
3.4.3改變載流氣體流速 28
3.4.4改變成長基板 28
3.4.5改變成長時間 28
3.5材料鑑定分析儀器 29
3.5.1 X光繞射儀(XRD) 29
3.5.2場發射掃描式電子顯微鏡(FE-SEM) 29
3.5.3 X射線光電子能譜儀(XPS) 30
3.6光學性質分析儀器 30
3.6.1顯微拉曼光譜儀(micro Raman) 30
3.6.2光致激發光譜儀(PL) 31
3.7電化學性質分析儀器 31
3.7.1循環伏安法(CV) 32
3.7.2恆電流充放電(GCD) 33
3.7.3電化學阻抗(EIS) 33
第四章 結果與討論 41
4.1研究不同成長溫度的影響 41
4.1.1表面形貌 41
4.1.2晶體結構分析 42
4.1.3成長條件確認 43
4.2研究不同硫蒸鍍溫度對樣品的影響 43
4.2.1表面形貌 44
4.2.2晶體結構分析 45
4.3研究不同載流氣體流速對樣品影響 45
4.3.1表面形貌 46
4.4研究不同基板對樣品影響 47
4.4.1表面形貌 47
4.5研究不同成長時間對樣品的影響 48
4.5.1表面形貌 48
4.6 XPS分析 48
4.7樣品光學性質分析 50
4.7.1 Raman 50
4.7.2 PL 52
4.8樣品電化學性質分析 52
4.8.1循環伏安分析 53
4.8.2恆電流充放電分析 56
4.8.3交流阻抗分析 58
4.9超級電容器元件性質量測 60
4.9.1負極材料 61
4.9.2超級電容器循環伏安分析 61
4.9.3非對稱超級電容器恆電流充放電分析 63
第五章 結論 97
第六章 參考文獻 99
[1] J. Bhagwan, S. Khaja Hussain, B.N.V. Krishna, J.S. Yu, β-NiS 3D micro-flower-based electrode for aqueous asymmetric supercapacitors, Sustain Energ Fuels 4(11) (2020) 5550-5559.
[2] X. Yang, J. Li, C. Hou, Q. Zhang, Y. Li, H. Wang, Skeleton-Structure WS2@CNT Thin-Film Hybrid Electrodes for High-Performance Quasi-Solid-State Flexible Supercapacitors, Front Chem 8 (2020) 442.
[3] Y. Tian, J. Liu, X. Song, L. Zhao, P. Zhang, L. Gao, Interface guide: In-situ integrating MoS2 nanosheets into highly ordered polypyrrole film for high performance flexible supercapacitor electrodes, Composites Science and Technology 197 (2020).
[4] J.M. Skelton, L.A. Burton, A.J. Jackson, F. Oba, S.C. Parker, A. Walsh, Lattice dynamics of the tin sulphides SnS2, SnS and Sn2S3: vibrational spectra and thermal transport, Phys Chem Chem Phys 19(19) (2017) 12452-12465.
[5] G.B. Liu, Z.H. Li, T. Hasan, X.S. Chen, W. Zheng, W. Feng, D.C. Jia, Y. Zhou, P.A. Hu, Vertically aligned two-dimensional SnS2 nanosheets with a strong photon capturing capability for efficient photoelectrochemical water splitting, J Mater Chem A 5(5) (2017) 1989-1995.
[6] L.D. Chen, E.Z. Liu, F. Teng, T.X. Zhang, J. Feng, Y.M. Kou, Q. Sun, J. Fan, X.Y. Hu, H. Miao, Two-dimensional SnS2 nanosheets arrays as photoelectrode by low temperature CVD method for efficient photoelectrochemical water splitting, Appl Surf Sci 467 (2019) 698-707.
[7] Synthesis, Characterization, and Electronic Structure of SingleCrystal SnS, Sn2S3, and SnS2.
[8] N. Parveen, S.A. Ansari, H.R. Alamri, M.O. Ansari, Z. Khan, M.H. Cho, Facile Synthesis of SnS2 Nanostructures with Different Morphologies for High-Performance Supercapacitor Applications, ACS Omega 3(2) (2018) 1581-1588.
[9] B. Wang, R. Hu, J. Zhang, Z.Y. Huang, H. Qiao, L.J. Gong, X. Qi, 2D/2D SnS2/MoS2 layered heterojunction for enhanced supercapacitor performance, J Am Ceram Soc 103(2) (2020) 1088-1096.
[10] Y. Jiang, J. Liu, Definitions of Pseudocapacitive Materials: A Brief Review, Energy & Environmental Materials 2(1) (2019) 30-37.
[11] T.S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon, Y. Gogotsi, Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems, Advanced Energy Materials 9(39) (2019).
[12] T.J. Whittles, L.A. Burton, J.M. Skelton, A. Walsh, T.D. Veal, V.R. Dhanak, Band Alignments, Valence Bands, and Core Levels in the Tin Sulfides SnS, SnS2, and Sn2S3: Experiment and Theory, Chem Mater 28(11) (2016) 3718-3726.
[13] J. Kois, S. Bereznev, J. Maricheva, N. Revathi, Electrochemical and photoelectrochemical characterization of SnS photoabsorber films, Mat Sci Semicon Proc 58 (2017) 76-81.
[14] Phase Stability of the Earth-Abundant Tin Sulfides SnS, SnS2, and Sn2S3.
[15] H. Chauhan, M.K. Singh, S.A. Hashmi, S. Deka, Synthesis of surfactant-free SnS nanorods by a solvothermal route with better electrochemical properties towards supercapacitor applications, Rsc Adv 5(22) (2015) 17228-17235.
[16] A. Voznyi, V. Kosyak, L. Grase, J. Vecstaudza, P. Onufrijevs, Y. Yeromenko, A. Medvid', A. Opanasyuk, Formation of SnS phase obtained by thermal vacuum annealing of SnS2 thin films and its application in solar cells, Mat Sci Semicon Proc 79 (2018) 32-39.
[17] A. Voznyi, V. Kosyak, A. Opanasyuk, N. Tirkusova, L. Grase, A. Medvids, G. Mezinskis, Structural and electrical properties of SnS2 thin films, Materials Chemistry and Physics 173 (2016) 52-61.
[18] G. Liu, Z. Li, X. Chen, W. Zheng, W. Feng, M. Dai, D. Jia, Y. Zhou, P. Hu, Non-planar vertical photodetectors based on free standing two-dimensional SnS2 nanosheets, Nanoscale 9(26) (2017) 9167-9174.
[19] W.J. Liu, M.L. Liu, X.T. Wang, T. Shen, G.Q. Chang, M. Lei, H.X. Deng, Z.M. Wei, Z.Y. Wei, Thickness-Dependent Ultrafast Photonics of SnS2 Nanolayers for Optimizing Fiber Lasers, Acs Appl Nano Mater 2(5) (2019) 2697-2705.
[20] R.N. Mohan, M.T.S. Nair, P.K. Nair, Thin film Sn2S3 via chemical deposition and controlled heating – Its prospects as a solar cell absorber, Appl Surf Sci 504 (2020).
[21] S.H. Kwon, B.H. Kim, D.W. Kim, H. Yoon, Y.J. Yoon, Vastly enhanced photoresponsivities of phase-controlled tin sulfide thin films, Nanotechnology 31(37) (2020) 375702.
[22] R. Yera, N. Rossi, C.G. Méndez, A.E. Huespe, Topology design of 2D and 3D elastic material microarchitectures with crystal symmetries displaying isotropic properties close to their theoretical limits, Applied Materials Today 18 (2020).
[23] Q. Li, A.X. Wei, Z.L. Guo, J. Liu, Y. Zhao, Z.M. Xiao, Chemical vapor deposition of two-dimensional SnS2 nanoflakes and flower-shaped SnS2, J Mater Sci-Mater El 29(18) (2018) 16057-16063.
[24] T.S. Reddy, M.C.S. Kumar, Effect of substrate temperature on the physical properties of co-evaporated Sn2S3 thin films, Ceramics International 42(10) (2016) 12262-12269.
[25] G. Ham, S. Shin, J. Park, J. Lee, H. Choi, S. Lee, H. Jeon, Engineering the crystallinity of tin disulfide deposited at low temperatures, Rsc Adv 6(59) (2016) 54069-54075.
[26] M.Z. Ansari, N. Parveen, D.K. Nandi, R. Ramesh, S.A. Ansari, T. Cheon, S.H. Kim, Enhanced activity of highly conformal and layered tin sulfide (SnSx) prepared by atomic layer deposition (ALD) on 3D metal scaffold towards high performance supercapacitor electrode, Sci Rep 9(1) (2019) 10225.
[27] R.E. Banai, J.C. Cordell, G. Lindwall, N.J. Tanen, S.L. Shang, J.R. Nasr, Z.K. Liu, J.R.S. Brownson, M.W. Horn, Control of Phase in Tin Sulfide Thin Films Produced via RF-Sputtering of SnS2 Target with Post-deposition Annealing, Journal of Electronic Materials 45(1) (2015) 499-508.
[28] B. Pant, G.P. Ojha, M. Park, One-pot synthesis, characterization, and electrochemical studies of tin-nickel sulfide hybrid structures on nickel foam for supercapacitor applications, J Energy Storage 32 (2020).
[29] B.J. Rani, S. Keerthana, G. Ravi, R. Yuvakkumar, D. Velauthapillai, M. Thambidurai, C. Dang, In situ hydrothermal growth of SnS/Ni foam for electrochemical energy storage and conversion, Mater Lett 273 (2020).
[30] J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, X.-M. Meng, Large-Scale Growth of Two-Dimensional SnS2 Crystals Driven by Screw Dislocations and Application to Photodetectors, Advanced Functional Materials 25(27) (2015) 4255-4261.
[31] A.J. Clayton, C.M.E. Charbonneau, W.C. Tsoi, P.J. Siderfin, S.J.C. Irvine, One-step growth of thin film SnS with large grains using MOCVD, Sci Technol Adv Mat 19(1) (2018) 153-159.
[32] S. Gedi, V.R. Minnam Reddy, S. Alhammadi, D. Moon, Y. Seo, T.R.R. Kotte, C. Park, W.K. Kim, Effect of Thioacetamide Concentration on the Preparation of Single-Phase SnS and SnS2 Thin Films for Optoelectronic Applications, Coatings 9(10) (2019).
[33] Y.B. Yang, J.K. Dash, Y. Xiang, Y. Wang, J. Shi, P.H. Dinolfo, T.M. Lu, G.C. Wang, Tuning the Phase and Optical Properties of Ultrathin SnSx Films, The Journal of Physical Chemistry C 120(24) (2016) 13199-13214.
[34] P.-C. Huang, Y.-M. Shen, S. Brahma, M.O. Shaikh, J.-L. Huang, S.-C. Wang, SnSx (x = 1, 2) Nanocrystals as Effective Catalysts for Photoelectrochemical Water Splitting, Catalysts 7(9) (2017).
[35] L. Ma, L.M. Xu, X.P. Zhou, X.Y. Xu, L.L. Zhang, Molybdenum-doped few-layered SnS2 architectures with enhanced electrochemical supercapacitive performance, Rsc Adv 5(128) (2015) 105862-105868.
[36] W.J. Yan, D.Y. Chen, H.R. Fuh, Y.L. Li, D. Zhang, H.J. Liu, G. Wu, L. Zhang, X.K. Ren, J. Cho, M. Choi, B.S. Chun, C.O. Coileain, H.J. Xu, Z. Wang, Z.T. Jiang, C.R. Chang, H.C. Wu, Photo-enhanced gas sensing of SnS2 with nanoscale defects, Rsc Adv 9(2) (2019) 626-635.
[37] C.C. Huang, Y.J. Lin, C.Y. Chuang, C.J. Liu, Y.W. Yang, Conduction-type control of SnSx films prepared by the sol-gel method for different sulfur contents, J Alloy Compd 553 (2013) 208-211.
[38] J. Vidal, S. Lany, M. d'Avezac, A. Zunger, A. Zakutayev, J. Francis, J. Tate, Band-structure, optical properties, and defect physics of the photovoltaic semiconductor SnS, Appl Phys Lett 100(3) (2012).
[39] Raman scattering studies of SnS2 and SnSe2.
[40] H. Wang, Y. Gao, G. Liu, Anisotropic phonon transport and lattice thermal conductivities in tin dichalcogenides SnS2 and SnSe2, Rsc Adv 7(14) (2017) 8098-8105.
[41] D. Wang, L. Guan, J.D. Yao, X.Y. Yan, X.Y. Niu, Y. Yu, B.R. Xing, S.C. Zhang, Y.W. Wang, Single crystal growth of bulk SnS2 and high yield preparation of few-layer SnS2, J Cryst Growth 535 (2020).
[42] Infrared and Raman spectra of the IV-VI compounds SnS and SnSe.
[43] M. Li, Y. Wu, T. Li, Y. Chen, H. Ding, Y. Lin, N. Pan, X. Wang, Revealing anisotropy and thickness dependence of Raman spectra for SnS flakes, RSC Adv. 7(77) (2017) 48759-48765.
[44] L.S. Price, I.P. Parkin, A.M.E. Hardy, R.J.H. Clark, T.G. Hibbert, K.C. Molloy, Atmospheric pressure chemical vapor deposition of tin sulfides (SnS, Sn2S3, and SnS2) on glass, Chem Mater 11(7) (1999) 1792-1799.
[45] The Electronic Structures of SnS, SnS2, and Sn2S3 for Use in PV.
[46] T. Duangchuen, A. Karaphun, L. Wannasen, I. Kotutha, E. Swatsitang, Effect of SnS2 concentrations on electrochemical properties of SnS2/RGO nanocomposites synthesized by a one-pot hydrothermal method, Appl Surf Sci 487 (2019) 634-646.
[47] P. Asen, M. Haghighi, S. Shahrokhian, N. Taghavinia, One step synthesis of SnS2-SnO2 nano-heterostructured as an electrode material for supercapacitor applications, J Alloy Compd 782 (2019) 38-50.
[48] R.K. Mishra, G.W. Baek, K. Kim, H.-I. Kwon, S.H. Jin, One-step solvothermal synthesis of carnation flower-like SnS2 as superior electrodes for supercapacitor applications, Appl Surf Sci 425 (2017) 923-931.
[49] L.N. Wang, Y. Ma, M. Yang, Y.X. Qi, One-pot synthesis of 3D flower-like heterostructured SnS2/MoS2 for enhanced supercapacitor behavior, Rsc Adv 5(108) (2015) 89059-89065.
[50] H. Chauhan, M.K. Singh, P. Kumar, S.A. Hashmi, S. Deka, Development of SnS2/RGO nanosheet composite for cost-effective aqueous hybrid supercapacitors, Nanotechnology 28(2) (2017) 025401.
[51] H. Wang, D. Chao, J. Liu, J. Lin, Z.X. Shen, Nanoengineering of 2D tin sulfide nanoflake arrays incorporated on polyaniline nanofibers with boosted capacitive behavior, 2D Materials 5(3) (2018).
(此全文20260802後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *