帳號:guest(3.140.196.241)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:許鈞喬
作者(英文):Chun-Chiao Hsu
論文名稱:含二氧化鈦複合材料散射膜之製備與應用
論文名稱(英文):Preparation and Application of Composite Material Scattering Film Containing Titanium Dioxide
指導教授:魏茂國
指導教授(英文):Mao-Kuo Wei
口試委員:唐政宏
陳素華
魏茂國
口試委員(英文):Cheng-Hung Tung
Su-Hua Chen
Mao-Kuo Wei
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610822115
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:105
關鍵詞:二氧化鈦有機發光二極體散射膜穿透度霧度效率
關鍵詞(英文):titanium dioxideorganic light-emitting diodescattering filmpenetrationhazeefficiency
相關次數:
  • 推薦推薦:0
  • 點閱點閱:14
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏收藏:0
在本研究中,我們使用球磨法將粒徑200 nm的TiO2奈米粒子、矽樹脂、丙二醇甲醚醋酸酯進行混合,並在玻璃基板上形成複合材料散射膜,探討TiO2濃度和膜厚對於複合材料散射膜表面形貌、粗糙度、穿透度、霧度的影響。此外,我們將複合材料散射膜應用於有機發光二極體,探討複合材料散射膜中TiO2濃度和膜厚對於有機發光二極體效率和光學性質的影響。
實驗結果顯示,當TiO2濃度上升時,複合材料散射膜的厚度隨之增加,奈米粒子團聚之尺寸和數量也隨之增加,導致複合材料散射膜表面粗糙度的上升。當複合材料散射膜厚度超過一微米時,雖然可以有效地穩定有機發光二極體於不同視角間的CIE色座標,但卻會造成有機發光二極體效率的下降;而當複合材料散射膜厚度小於一微米時,隨著TiO2濃度或膜厚的增加,有機發光二極體的效率會先增加而後下降,而元件在不同視角間的最大色座標差異量(CIE-x和CIE-y)則會隨之下降,顯示奈米粒子的散射作用可以有效地壓抑有機發光二極體的CIE-x和CIE-y。
In this thesis, 200 nm TiO2 nanopowders, silicone resin, and propylene glycol methyl ether acetate (PGMEA) were mixing by using ball milling process. The mixing solution was spin coated on glass substrates to form composite scattering films. The influences of titania concentration and film thickness on surface morphology, roughness, transmittance, and haze of the composite scattering films were studied. In addition, the composite scattering films were attached on a white-light organic light-emitting diode (OLED). The influences of titania concentration and film thickness on efficiency and optical properties of the OLED were also investigated.
Experimental results showed that the thickness and surface roughness of composite scattering film increases with increasing the titania concentration. The increase of surface roughness of composite scattering film is due to the raise of the size and amount of titania aggregate. Composite scattering films can stabilize CIE coordinates of the OLED at different viewing angles, but decrease its efficiency when the thickness of composite scattering film is greater 1 m. The efficiency of the OLED increases initially to a maxima, and decreases with further increasing either the titania concentration or the thickness of attached composite scattering film if its thickness is less than 1 m. The maximum variation of CIE coordinates (CIE-x、CIE-y) at the range of viewing angle between 0 and 60 decrease with increasing the TiO2 concentration of composite scattering film. This indicates that the scattering of TiO2 nanopowders can effectively depress CIE-x and CIE-y of the OLED.
致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 XI
表目錄 XXI
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 理論基礎與文獻回顧 3
2.1 理論基礎 3
2.1.1 Snell’s law 3
2.1.2 OLED原理與波導現象 3
2.1.3 奈米粒子散射膜 4
2.1.4 效率增益 5
2.1.5 穿透率與霧度 6
2.1.6 粗糙度 7
2.1.7 CIE色座標 8
2.1.8 機械均質 9
2.1.9 球磨法 10
2.2 文獻回顧 11
第三章 實驗步驟與量測方法 19
3.1 TiO2混合溶液的配置 19
3.1.1 機械均質製程 19
3.1.2 臥式球磨製程 20
3.1.3 矽樹脂的濃度調整 20
3.1.4 矽樹脂與TiO2濃度的調整 21
3.2 基板預處理與散射膜塗佈 23
3.2.1 基板的預處理 23
3.2.2 散射膜塗佈 24
3.3 性質分析與設備儀器 24
3.3.1 性質分析 24
3.3.1.1 輝度計 24
3.3.1.2 紫外光/可見光光譜儀 25
3.3.1.3 掃描式電子顯微鏡 26
3.3.1.4 三維表面輪廓儀 27
3.3.2 設備儀器 27
3.3.2.1 加熱板 28
3.3.2.2 旋轉塗佈機 29
3.3.2.3 機械均質機 29
3.3.2.4 磁石攪拌機 30
3.3.2.5 臥式球磨機 30
3.4 實驗藥品與耗材 30
第四章 實驗結果與討論 33
4.1 TiO2奈米粉末 33
4.2 機械均質與球磨製程的比較 34
4.3 以球磨製程製作複合材質散射膜 36
4.3.1 TiO2濃度的影響 36
4.3.2 鋯珠尺寸的影響 42
4.4 以稀釋的散射膜母溶液製作複合材質散射膜 49
4.4.1 PGMEA濃度的影響 50
4.4.2 TiO2濃度的影響 55
4.4.3 第三段球磨的影響 60
4.5 貼附複合材質散射膜的OLED 64
4.5.1 以球磨製程製作的複合材質散射膜 65
4.5.2 以稀釋散射膜母溶液製作的複合材質散射膜 68
第五章 結論 75
第六章 未來工作 79
第七章 參考文獻 81
第八章 三維列印半水硫酸鈣粉末之製備 83
8.1 前言 85
8.2 研究動機 86
8.3 實驗原理與文獻回顧 87
8.3.1 3D列印 87
8.3.2 粉末噴射黏著劑技術(binding jetting 3D print, BJ) 88
8.3.3 半水硫酸鈣 89
8.3.4 文獻回顧 90
8.4 實驗步驟與方法 91
8.5 實驗結果與討論 94
8.6 結論 103
8.7 參考文獻 105


[1] https://semiengineering.com/oleds-shine-in-phones-tvs-lights/
[2] C. H. Chang, K. Y. Chang, Y. J. Lo, S. J. Chang, H. H. Chang, “Fourfold power efficiency improvement in organic light-emitting devices using an embedded nanocomposite scattering layer,” Organic Electronics, Vol. 13 (2012), pp.1073-1080
[3] http://www.fsvs.ks.edu.tw/ezfiles/1/1001/img/62/175363261.pdf
[4] https://www.researchgate.net/figure/CIE-1931-xy-chromaticity-diagram-2-which-is-a-hyper-plane-of-the-XYZ-color-space-for-a_fig2_342746139
[5] https://www.millercarbide.com/6-little-known-factors-that-could-affect-your-choice-of-grinding-jars-for-planetary-ball-mill/
[6] https://www.researchgate.net/figure/Scheme-of-the-all-dimensional-planetary-ball-mill_fig1_320679078
[7] D. Cheneler, M. Vervaeke, H. Thienpont, “Light-modulating pressure sensor with integrated flexible organic light-emitting diode,” Applied Optics, Vol. 53(2014), pp.2766-2772
[8] J. B. Bellam, G. Kandikunta, B. Manupati, S. Debabrata, P. P. George, S. V. Vedanayakam, V. K. Verma, “DC sputter deposited TiO2 thin film on ITO/glass substrate for perovskite based solar cell application,” Materials Today: Proceedings, Vol. 45 (2021), pp.3886-3890
[9] J. Frischeisen, B. J. Scholz, B. J. Arndt, T. D. Schmidt, R. Gehlhaar, C. Adachi, W. Brutting, “Strategies for light extraction from surface plasmons in organic light-emitting diodes,” JOURNAL OF PHOTONICS FOR ENERGY, Vol. 1, Article Number.011004
[10] Z. F. Zheng, Z. B. Deng, C. J. Liang, M. X. Zhang, D. H. Xu, “Organic light-emitting diodes with a nanostructured TiO2 layer at the interface between ITO and NPB layers,” Displays, Vol. 24 (2003), pp.231-234
[11] M. K. Wei, J. H. Lee, H. Y. Lin, Y. H. Ho, K. Y. Chen, C. C. Lin, C. F. Wu, H. Y. Lin, J. H. Tsai, T. C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” Journal of Optics A-pure and Applied Optics,” Vol. 10 (2008), Article Number.055302
[12] B. J. Matterson, J. M. Lupton, A. F. Safonov, M. G. Salt, W. L. Barnes, I. D. W. Samuel, “Increased Efficiency and Controlled Light Output from a Microstructured Light-Emitting Diode,” Advanced Materials, Vol. 13 (2001), pp.123-127
[13] B. A. Al-Asbahi, M. H. H. Jumali, M. S. AlSalhi, “Enhanced Optoelectronic Properties of PFO/Fluorol 7GA Hybrid Light Emitting Diodes via Additions of TiO2 Nanoparticles,” Polymers, Vol. 8 (2016), Article Number.334
[14] K. Anand, S. Varghese, T. Kurian, “Preparation of ultra-fine dispersions of zinc oxide by simple ball-milling: Optimization of process parameters,” Powder Technology, Vol. 271 (2015), pp.187-192
[15] V. N. Sheemol, P. Mohamed, S. Ananthakumar, “Optically Transparent Polymer Coating Embedded with IR Reflective Rare Earth Yellow Pigment: - Innovative Strategy for Cool Windows,” Materials Today: Proceedings, Vol. 9 (2019), pp.32-37
[16] A.N. Safonov, M. Jory, B.J. Matterson, J.M. Lupton, M.G. Salt, J.A.E. Wasey, W.L. Barnes, I.D.W. Samuel, “Modification of polymer light emission by lateral microstructure,” Synthetic Metals, Vol. 116(2001), 145-148
[17] L. W. Chen, H. C. Lin, “Application of Polymer Composites Containing NIR-Shielding Inorganic and Organic Powder,” National Chiao Tung University (2020)
[18] C.S. Tzuo, D.J. Tian, D.P. Deng, C.S. Lin, C.J. Jung, “Test and analyze UV absorbance of TiO2 nanofluid with novel process,” National Taipei University of Technology
[19] https://ee.ntu.edu.tw/upload/hischool/doc/2013.07.pdf
[20] F. Huang, H. Liu, X. Li, S. Wang, “Highly efficient hole injection/transport layer-free OLEDs based on self-assembled monolayer modified ITO by solution-process,” Nano Energy, Vol. 78 (2020), Article Number.105399
[1] N.B. Singh, B. Middendorf, “Calcium sulphate hemihydrate hydration leading to gypsum crystallization,” Progress in Crystal Growth and Characterization of Materials, Vol.53(2007), pp.57-77
[2] M. Kamalipour, S. A. M. Dehghani, A. Naseri, S. Abbasi, “Role of Agitation and Temperature on Calcium Sulfate Crystallization in Water Injection Process,” Journal of Petroleum Science and Engineering, Vol.151(2017), pp.362-372
[3] F. Li, J. l. Liu, G. y. Yang, Z. y. Pan, X. Ni, H. Xu, Q. Huang, “Effect of pH and Succinic Acid on the Morphology of α-Calcium Sulfate Hemihydrate Synthesized by a Salt Solution Method,” Journal of Crystal Growth, Vol.374(2013), pp.31-36
[4] J. W. Mao, G. M. Jiang, Q. S. Chen, B. H. Guan, “Influences of citric acid on the metastability of α-calcium sulfate hemihydrate in CaCl2 solution,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol.443, pp.265-271
[5] C. Y. Jia, L. C. Wu a , Q. S. Chen, J. M. Lin, L. Yang, Z. R. Song, B. H. Guan, “Distribution behavior of arsenate into a-calcium sulfate hemihydrate transformed from gypsum in solution,” Chemosphere, Vol.255(2020)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *