帳號:guest(3.17.110.132)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:魏本傑
作者(英文):Pen-Chieh Wei
論文名稱:以水熱法合成二硫化鎳作為對電極於染料敏化太陽能電池之特性研究
論文名稱(英文):Hydrothermal Synthesis of Nickel disulfide as Counter Electrode in Dye-sensitized Solar Cells
指導教授:林育賢
指導教授(英文):Yu-Shyan Lin
口試委員:許渭州
田禮嘉
林育賢
口試委員(英文):Wei-Chou Hsu
Li-Chia Tien
Yu-Shyan Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610822124
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:95
關鍵詞:染料敏化太陽能電池二硫化鎳對電極
關鍵詞(英文):dye-sensitized solar cellnickel disulfidecounter electrode
相關次數:
  • 推薦推薦:0
  • 點閱點閱:14
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏收藏:0
本研究使用網版印刷法製作工作電極與散射層。工作電極使用P25-TiO2,散射層使用P200-TiO2與P25以重量比例為3:7混合。首先以單用P25-TiO2作為工作電極,得到最佳層數之工作電極參數後,再加上散射層及經過四氯化鈦後處理,其光電轉換效率由4.49 %提升至5.32 %。
之後再以不同含量及不同熱處理條件之二硫化鎳對電極與白金對電極進行比較,以水熱法合成二硫化鎳化合物,並研究二硫化鎳對電極的顯微結構、物理及化學性質、催化活性及電荷轉移電阻的差異。
使用二硫化鎳作為對電極的光電轉換效率達到5.42 %,與原白金對電極轉換效率(5.32 %)比較,約提升1.9 %。而二硫化鎳的奈米結構,可提供更多活性位置,並增強催化能力及加速催化反應。
In this study, the screen printing method was used to make the working electrode and the scattering layer. The working electrode uses P25-TiO2, and the scattering layer uses P200-TiO2 mixed with P25 in a weight ratio of 3:7. First, using P25-TiO2 as the working electrode alone, after obtaining the working electrode parameters of the optimal number of layers, adding the scattering layer and post-treatment with titanium tetrachloride, the photoelectric conversion efficiency increased from 4.49% to 5.32%.
After that, the nickel disulfide counter electrode with different content and different heat treatment conditions was compared with the platinum counter electrode, and the nickel disulfide compound was synthesized by hydrothermal method, and the microstructure, physical and chemical properties and catalysis of the nickel disulfide counter electrode were studied. The difference in activity and charge transfer resistance.
The photoelectric conversion efficiency of using nickel disulfide as the counter electrode reaches 5.42%, which is about 1.9% higher than the conversion efficiency of the original platinum counter electrode (5.32%). The nano structure of nickel disulfide can provide more active sites, enhance the catalytic ability and accelerate the catalytic reaction.
第1章 緒論 1
1.1 前言 1
1.2 研究動機 2
第2章 文獻回顧 5
2.1 太陽能電池發展簡介 5
2.2 太陽能電池的種類 6
2.2.1 矽基太陽能電池 6
2.2.2 化合物太陽能電池 8
2.2.3 染料敏化太陽能電池 8
2.3 染料敏化太陽能電池的基本結構 9
2.3.1 透明導電玻璃 9
2.3.2 工作電極 10
2.3.3 散射層 11
2.3.4 染料 12
2.3.5 電解質 13
2.3.6 對電極 14
2.4 染料敏化太陽能電池的工作原理 14
2.5 二硫化鎳與染料敏化太陽能電池 15
2.6 水熱合成法 16
2.6.1 亞臨界水熱合成法 17
2.6.2 超臨界水熱合成法 17
第3章 實驗設備與步驟 19
3.1 實驗儀器設備 19
3.1.1 超純水系統 19
3.1.2 加熱磁石攪拌器 19
3.1.3 超音波震盪器 20
3.1.4 網印版 21
3.1.5 烘箱 21
3.1.6 高溫爐管 22
3.1.7 鑽孔機 23
3.1.8 熱壓機 24
3.1.9 電子秤量機 24
3.1.10 水熱罐 25
3.1.11 微量滴管 26
3.1.12 離心機 26
3.2 測量儀器設備 27
3.2.1 X光繞射儀 27
3.2.2 場發射掃描式電子顯微鏡 29
3.2.3 掃描式電子顯微鏡 30
3.2.4 三維表面輪廓分析儀 31
3.2.5 太陽電池I-V測量系統 32
3.2.6 X射線光電子能譜儀 34
3.2.7 電化學阻抗頻譜 35
3.3 實驗藥品與耗材 38
3.4 實驗流程 39
3.4.1 工作電極漿料製備 39
3.4.2 散射層漿料製備 39
3.4.3 四氯化鈦前處理製備 40
3.4.4 工作電極製備 41
3.4.5 四氯化鈦後處理製備 42
3.4.6 N719染料製備方法 43
3.4.7 對電極製備 43
3.4.8 電池封裝 44
3.5 二硫化鎳對電極製備 45
3.5.1 二硫化鎳合成 45
3.5.2 對電極製備 46
第4章 結果與討論 47
4.1 微結構分析 47
4.1.1 工作電極和散射層 47
4.1.2 二硫化鎳(NiS2)對電極 49
4.2 表面形貌與膜厚分析 52
4.2.1 二氧化鈦奈米粉末的表面形貌 52
4.2.2 工作電極的膜厚及表面粗糙度 53
4.2.3 單層散射層的膜厚及表面粗糙度 57
4.2.4 多層散射層的膜厚及表面粗糙度 61
4.2.5 二硫化鎳(NiS2)對電極的表面形貌 63
4.2.6 二硫化鎳(NiS2)對電極的膜厚及表面粗糙度 65
4.3 二硫化鎳的性質 68
4.3.1 成份分析 68
4.3.2 阻抗分析 69
4.3.3 塔佛極化分析 72
4.4 染料敏化電池的效率 74
4.4.1 工作電極層數的影響 74
4.4.2 散射層的影響 76
4.4.3 對電極熱處理的影響 79
4.4.4 工作電極結構及對電極材料的影響 82
4.4.5 對電極材料濃度的影響 86
第5章 結論 89
參考文獻 93

[1] J. L. Zheng, W. Zhou, Y. R. Ma, W. Cao, C. B. Wanga, L. Guo, Facet-dependent NiS2 polyhedrons on counter electrodes for dye-sensitized solar cells, Chem. Commun. 51 (64), (2015), pp. 12863-12866.
[2] S. Ashok, S. J. Fonash, R. T. Fonash, Solar cell, Elec., (1999).
[3] 太陽能分類,國家能源科技人才培育計畫,(2011)。
[4] 太陽能電池的原理與種類,知識力,(2019)。
[5] A. S. Mohamed, H. A. Mohamed, Modelling of high-efficiency substrate CIGS solar cells with ultra-thin absorber layer, Indian J. Phys. 94 (11), (2020), pp. 1725-1732.
[6] Y. S. Peng, S. F. Gong, Light-trapping structure based on ultra-thin GaAs solar cell, J. Phys. D: Appl. Phys. 53 (49), (2020).
[7] K. Portillo-Cortez, A. Martínez, A. Dutt, G. Santana, N719 Derivatives for Application in a Dye-Sensitized Solar Cell (DSSC): A Theoretical Study, J. Phys. Chem. A 123 (51), (2019), pp. 10930-10939.
[8] K. Sharma1, V. Sharma, S. S. Sharma, Dye-Sensitized Solar Cells: Fundamentals and Current Status, Nanoscale Res. Lett. 13, (2018).
[9] 胥景涵,石墨烯/二氧化鈦光陽極於染料敏化太陽能電池特性研究,國立東華大學材料科學與工程學系碩士論文,(2017)。
[10] M. K. Son, H. W. Seo, S. K. Kim, N. Y. Hong, B. M. Kim, S. Y. Park, K. Prabakar, H. J. Kim, Analysis on the Light-Scattering Effect in Dye-Sensitized Solar Cell according to the TiO2 Structural Differences, Int. J. Photoenergy 2012, (2012).
[11] A. Büttner, S. Y. Brauchli, E. C. Constable, C. E. Housecroft, Effects of Introducing Methoxy Groups into the Ancillary Ligands in Bis(diimine) Copper(I) Dyes for Dye-Sensitized Solar Cells, Inorg. 6 (2), (2018).
[12] M. K. Wang, C. Grätzel, S. M. Zakeeruddin, M. Grätzel, Recent developments in redox electrolytes for dye-sensitized solar cells, Energy Environ. Sci. 5 (11), (2012), pp. 9394-9405.
[13] 崔孟晉,染料敏化太陽能電池電解質概述,工業材料雜誌,(2008)。
[14] Z. Q. Wan, C. Y. Jia, Y. Wanga, In situ growth of hierarchical NiS2 hollow microspheres as efficient counter electrode for dye-sensitized solar cell, Nanoscale 7 (29), (2015), pp. 12737-12742.
[15] J. Spooren, A. Rumplecker, F. Millange, R. I. Walton, Subcritical hydrothermal synthesis of perovskite manganites: A direct and rapid route to complex transition-metal oxides, Chem. Mater. 15 (7), (2003), pp. 1401-1403.
[16] M. Taguchi, S. Takami, T. Adschiri, T. Nakane, K. Satoa, T. Nakaa, Supercritical hydrothermal synthesis of hydrophilic polymer-modified water-dispersible CeO2 nanoparticles, Cryst. Eng. Comm. 13 (8), (2011), pp. 2841-2848.
[17] E. Garrison, X-Ray Diffraction (XRD): Applications in Archaeology, (2014).
[18] D. Sinha, D. De, A. Ayaz, Photo sensitizing and electrochemical performance analysis of mixed natural dye and nanostructured ZnO based DSSC, Sadhana-Acad. P. Eng. S. 45 (1), (2020).
[19] A. Argast, C. F. Tennis III, A web resource for the study of alkali feldspars and perthitic textures using light microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, J. Geosci. Educ. 52 (3), (2004), pp. 213-217.
[20] P. S. Priambodo, D. Sukoco, W. Purnomo, H. Sudibyo, D. Hartanto, Electric Energy Management and Engineering in Solar Cell System, (2013).
[21] X-ray Photoelectron Spectroscopy (XPS Spectroscopy) or Electron Spectroscopy for Chemical Analysis (ESCA), (2015).
[22] H. H. Hernández, A. M. R. Reynoso, J. C. T. González, C. O. G. Morán, J. G. M. Hernández, A. M. Ruiz, J. M. Hernández, R. O. Cruz, Electrochemical Impedance Spectroscopy (EIS): A Review Study of Basic Aspects of the Corrosion Mechanism Applied to Steels, (2020).
[23] D. V. Ribeiro, C. A. C. Souza, J. C. C. Abrantes, Use of Electrochemical Impedance Spectroscopy (EIS) to monitoring the corrosion of reinforced concrete, Ibracon Struct. Mater. J. 8 (4), (2015), pp. 529-546.
[24] Y. H. Wei, M. C. Tsai, C. C. M. Ma, H. C. Wu, F. G. Tseng, C. H. Tsai, C. K. Hsieh, Enhanced Electrochemical Catalytic Efficiencies of Electrochemically Deposited Platinum Nanocubes as a Counter Electrode for Dye-Sensitized Solar Cells, Nanoscale Res. Lett. 10, (2015).
[25] S. Ito, P. Chen, P. Comte, M. K. Nazeeruddin, P. Liska, P. Pe’chy,
M. Gra“tzel, Fabrication of screen-printing pastes from TiO2 powders
for dye-sensitised solar cells, Prog. Photovolt. 15 (7), (2007), pp. 603-612.
[26] K. Kim, G. W. Lee, K. Yoo, D. Y. Kim, J. K. Kim, N. G. Park,
Improvement of electron transport by low-temperature chemically
assisted sintering in dye-sensitized solar cell, J. Photochem. Photobiol. A: Chem. 204 (2-3), (2009), pp. 144-147.
[27] N. G. Park, J. V. D. Lagemaat, A. J. Frank, Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells, J. Phys. Chem. B 104 (38), (2000), pp. 8989-8994.
[28] P. Y. Kuang, M. Hea, H. Y. Zou, J. G. Yu, K. Fan, 0D/3D MoS2-NiS2/N-doped graphene foam composite for efficient overall water splitting, Appl. Catal. B: Environ. 254, (2019), pp. 15-25.
[29] H. J. Liu, Q. He, H. L. Jiang, Y. X. Lin, Y. K. Zhang, M. H. M. Habib, S. M. Chen, L. Song, Electronic structure reconfiguration toward pyrite NiS2 via engineered heteroatom defect boosting overall water splitting, ACS Nano 11 (11), (2017), pp. 11574-11583.
[30] M. M. Rahman, J. Ahmed, A. M. Asiri, I. A. Siddiquey, M. A. Hasnat, Development of 4-methoxyphenol chemical sensor based on NiS2-CNT nanocomposites, J. Taiwan Inst. Chem. Eng. 64, (2016), pp. 157-165.
[31] J. L. Zheng, W. Zhou, Y. R. Ma, W. Cao, C. B. Wang, L. Guo, Facet-dependent NiS2 polyhedrons on counter electrodes for dye-sensitized solar cells, Chem. Commun. 51 (64), (2015), pp. 12863–12866.
[32] P. Agarwala, P. Makkar, S. Sharma, R. Garg, The Effect of Heat Treatment of TiO2 Nanoparticles on Photovoltaic Performance of Fabricated DSSCs, J. Mater. Eng. Perform. 23 (10), (2014), pp. 3703–3709.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *