帳號:guest(3.147.73.180)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:楊紫玲
作者(英文):Zih-Ling Yang
論文名稱:氧化亞銅應用於無偏壓光電化學分解水產氫之研究
論文名稱(英文):Unassisted Solar Water Splitting with Cu2O Photoelectrode for Hydrogen Generation
指導教授:徐裕奎
指導教授(英文):Yu-Kuei Hsu
口試委員:徐裕奎
黃俊元
蔡志宏
陳盈竹
口試委員(英文):Yu-Kuei Hsu
Chun-Yuan Huang
Chih-Hung Tsai
Ying-Zhu Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610825002
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:73
關鍵詞:氧化亞銅二氧化鈦光電化學產氫無偏壓
關鍵詞(英文):Cuprous OxideTitanium DioxidePhotoelectrochemistryHydrogen GenerationUnassisted Bias
相關次數:
  • 推薦推薦:0
  • 點閱點閱:38
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏收藏:0
光電化學分解水產氫的結構有多種組成方式,例如通過光伏電池與光電極串聯,可以獲得較高的太陽能轉化效率,但結構成本也相對較高;而通過 P 型光陰極和 N 型光陽極組成的無偏壓光電化學產氫系統,成本相對較低也是理想的結構組成。本研究使用的光陽極與光陰極皆為氧化亞銅,實驗設計藉由改變 P 型氧化銅的平帶電位,使 N 型及 P 型氧化亞銅在同電位下擁有相同的光電流,讓其在無施加偏壓下可達到理想的光電流值。
N 型氧化亞銅透過簡單的浸泡法製成,將銅片泡入 70°C 濃度為 0.5 mM 的鹽酸中五天,使其自發形成 N 型氧化亞銅,以此做為系統的光電陽極。而作為 P 型氧化亞銅的光電陰極,以電化學氧化法成長氫氧化銅後藉由熱處理使其轉化為氧化亞銅,為了近一步提升 P 型氧化亞銅在低電位下的光電流,使用浸泡法將二氧化鈦沉積在氧化亞銅表面,因為二氧化鈦的能帶位置比氧化亞銅更正,因此氧化亞銅/二氧化鈦的平帶電位會變正,藉此提升光電陽極與光電陰極在相同電位下交會而得到的光電流值。
氧化亞銅之無偏壓光電化學產氫系統擁有最高的太陽能轉換效率為 1.3 %,但隨著量測的時間增加,氧化亞銅的光致腐蝕造成系統的光電轉換效率降低。在無偏壓光電化學產氫以氧化亞銅作為光電極的系統中,以最大太陽能轉換效率而言,本研究擁有良好的表現。
The hydrogen production by photoelectrochemical decomposition of water has various methods. For example, photovoltaic cells and photoelectrodes can be connected in series to achieve higher solar energy conversion efficiency, but the structural cost is also relatively high. The unassisted photoelectrochemical hydrogen production system composed of P-type photocathode and N-type photoanode is low cost and is also an ideal structural composition. The photoanode and photocathode used in this study are cuprous oxide. The experimental design is to change the flat-band potential of P-type cuprous oxide, so that N-type and P-type cuprous oxide can achieve higher photocurrent at the same potential without any bias assistance.
N-type cuprous oxide is made by a simple immersion route to soak the copper sheet in hydrochloric acid with a concentration of 0.5 mM at 70°C for five days. The N-type cuprous oxide spontaneously grows on copper sheet and is used as the photoanode of the system. In the case of P-type cuprous oxide photocathode, copper hydroxide is firstly grown by electrochemical oxidation, and then converted to cuprous oxide by the thermal treatment. In order to further improve the photocurrent of P-type cuprous oxide at low potential, titanium dioxide is deposited on the surface of cuprous oxide by using the immersion method. Because the energy band position of titanium dioxide is more positive than cuprous oxide, so the flat-band potential of cuprous oxide/titanium dioxide will be shifted to more positive position. Therefore, the higher photocurrent value is obtained by crossing the photoanode and photocathode at the same potential.
The unassisted photoelectrochemical hydrogen production system of cuprous oxide has the highest solar energy conversion efficiency of 1.1%. But as the measurement time increases, the photocorrosion of cuprous oxide causes the photoelectric conversion efficiency of the system to decrease. In an unassisted photoelectrochemical hydrogen production system using cuprous oxide as a photoelectrode, this study has good performance in terms of maximum solar energy conversion efficiency.
致謝 I
摘要 II
Abstract III
圖目錄 VIII
表目錄 X
第一章 緒論 1
1-1能源概述 1
1-2太陽能 3
1-2-1太陽輻射能 3
1-2-2空氣質量 4
1-3氫能 5
第二章 理論基礎與研究動機 7
2-1太陽能光電化學轉換 7
2-1-1光電化學 7
2-1-2光電化學分解水產氫 7
2-2研究動機 9
2-2-1無偏壓光電化學產氫 9
2-2-2氧化亞銅 10
第三章 實驗方法與步驟 13
3-1 N型氧化亞銅薄膜製備流程 13
3-1-1電極基材之前置處理 13
3-1-2自發形成N型氧化亞銅 13
3-1-3在N型氧化亞銅上形成非結晶態氧化銅 14
3-2 P型氧化亞銅/二氧化鈦薄膜製備流程 14
3-2-1電極基材之前置處理 15
3-2-2成長氫氧化銅奈米線-電化學氧化法 15
3-2-3 氧化亞銅奈米線-熱處理 16
3-2-4 氧化亞銅/二氧化鈦薄膜-浸泡法 16
3-3雙電極式光電化學產氫 17
3-4材料特性分析 18
3-4-1場發射式電子顯微鏡 (SEM) 18
3-4-2 X-ray繞射儀 (XRD) 19
3-4-3 拉曼光譜 (Raman) 20
3-4-4 X射線光電子能譜儀 (XPS) 21
3-5電化學特性分析 22
3-5-1線性掃描伏安法 (LSV) 22
3-5-2光電轉換效率 (IPCE) 23
3-5-3莫特-蕭特基分析 23
3-5-4 電化學交流阻抗頻譜 (EIS) 24
3-5-5光強度調制光電流分析 (IMPS) 24
第四章 實驗結果與討論 27
4-1 自發成長N型氧化亞銅薄膜應用於光電化學產氫 27
4-1-1氧化亞銅之SEM分析 31
4-1-2氧化亞銅之XRD分析 33
4-1-3氧化亞銅之Raman分析 34
4-1-4氧化亞銅之XPS分析 35
4-1-5氧化亞銅之線性掃描伏安法量測 (PEC量測) 37
4-1-6氧化亞銅之光電轉換效率 (IPCE量測) 39
4-1-7氧化亞銅之莫特-蕭特基分析 40
4-1-8氧化亞銅之電化學阻抗分析 (EIS分析) 42
4-1-9氧化亞銅之光強度調製光電流分析 (IMPS分析) 43
4-2-1氧化亞銅/二氧化鈦之SEM分析 46
4-2-2 P型氧化亞銅/二氧化鈦之XRD分析 48
4-2-3 P型氧化亞銅/二氧化鈦之Raman分析 50
4-2-4 P型氧化亞銅/二氧化鈦之XPS分析 52
4-2-5 P型氧化亞銅/二氧化鈦之吸收光譜 55
4-2-5 P型氧化亞銅/二氧化鈦之線性掃描伏安法量測 (PEC量測) 56
4-2-6 P型氧化亞銅/二氧化鈦之光電轉換效率 (IPCE量測) 58
4-2-7 P型氧化亞銅/二氧化鈦之莫特-蕭特基分析 59
4-2-8 P型氧化亞銅/二氧化鈦之電化學阻抗分析 (EIS分析) 60
4-2-9 P型氧化亞銅/二氧化鈦之光強度調製光電流分析 61
4-2-10 氧化亞銅/二氧化鈦之文獻比對 62
4-3氧化亞銅之無偏壓雙電極式光電化學產氫 63
4-3-1氧化亞銅之無偏壓光電化學產氫之分析 64
4-3-2氧化亞銅之無偏壓光電化學產氫之太陽能轉換效率 66
4-2-3氧化亞銅之無偏壓光電化學產氫之文獻比較 67
第五章 結論與未來展望 69
第六章 參考文獻 71
[1]姜唯、林大利,“2018年全球能源報告分析:碳排增加但速度趨緩”
[2]Global Energy & CO2 Status Report 2019, from
https://www.iea.org/reports/global-energy-co2-status-report-2019
[3] File:Global Map of Global Horizontal Radiation.png
https://zh.wikipedia.org/wiki/File:Global_Map_of_Global_Horizontal_Radiation.png
[4]葉宣佑,“氧化亞銅/氧化鋅/二氧化鈦/白金奈米線結構應用於光電化學分解水產氫”,國立東華大學光電工程研究所,2019
[5] Xu, C., Wu, J., Desai, U. V., & Gao, D. (2011). Multilayer assembly of nanowire arrays for dye-sensitized solar cells. Journal of the American chemical society, 133(21), 8122-8125.
[6] Solar Radiation & Photosynthetically Active Radiation
https://www.fondriest.com/environmental-measurements/parameters/weather/photosynthetically-active-radiation/
[7] G2V SOLAR SIMULATION TECHNOLOGY
https://g2voptics.com/solar-simulation/
[8] FUEL CELL & HYDROGEN ENERGY ASSOCIATIO, Hydrogen: The Energy Carrier of the Future
[9]科技大觀園,取之不盡的太陽能–光電化學反應
[10] Artificial photosynthesis: Electrochemical-solar energy conversion, PEC devices and measurements (II)
[11] Copper(I) oxide. Retrieved July 17,2018, from https://en.wikipedia.org/wiki/Copper(I)_oxide
[12]光電催化太陽能分解水,光電極性能提高方法頂刊案例大盤點
[13]羅聖全,科學基礎研究之重要利器-掃描式電子顯微鏡(SEM)
[14] 張育唐、陳藹然,X-光繞射與布拉格定律
[15]維基百科-拉曼光譜學
[16]維基百科-X射線光子能譜學
[17]俞姿宇,科學Online X射線光子能譜儀
[18] Torres, I. Z., Bueno, J. D. J. P., López, C. Y. T., Rojas, L. L., López, M. L. M., & Vong, Y. M. (2016). Nanotubes with anatase nanoparticulate walls obtained from NH 4 TiOF 3 nanotubes prepared by anodizing Ti. RSC advances, 6(47), 41637-41643.
[19] Martin, L., Martinez, H., Poinot, D., Pecquenard, B., & Le Cras, F. (2013). Comprehensive X-ray photoelectron spectroscopy study of the conversion reaction mechanism of CuO in lithiated thin film electrodes. The Journal of Physical Chemistry C, 117(9), 4421-4430.
[20]Gamry instruments, 太陽能電池–第三部分:IMPS/IMVS測試
https://cn.gamry.com/application-notes-3/physechem/dye-solar-cells-imps-imvs/
[21] Toe, C. Y., Zheng, Z., Wu, H., Scott, J., Amal, R., & Ng, Y. H. (2018). Photocorrosion of cuprous oxide in hydrogen production: rationalising self‐oxidation or self‐reduction. Angewandte Chemie International Edition, 57(41), 13613-13617.
[22]金屬所光催化「記憶」效應研究獲進展
https://kknews.cc/science/rlvel4.html
[23] Hua, Q., Shang, D., Zhang, W., Chen, K., Chang, S., Ma, Y., ... & Huang, W. (2011). Morphological evolution of Cu2O nanocrystals in an acid solution: stability of different crystal planes. Langmuir, 27(2), 665-671.
[25] Siripala, W., Ivanovskaya, A., Jaramillo, T. F., Baeck, S. H., & McFarland, E. W. (2003). A Cu2O/TiO2 heterojunction thin film cathode for photoelectrocatalysis. Solar Energy Materials and Solar Cells, 77(3), 229-237.
[27] Choi, J., Song, J. T., Jang, H. S., Choi, M. J., Sim, D. M., Yim, S., ... & Oh, J. (2017). Interfacial band-edge engineered TiO 2 protection layer on Cu 2 O photocathodes for efficient water reduction reaction. Electronic Materials Letters, 13(1), 57-65.
[28] Kargar, A., Partokia, S. S., Niu, M. T., Allameh, P., Yang, M., May, S., ... & Wang, D. (2014). Solution-grown 3D Cu2O networks for efficient solar water splitting. Nanotechnology, 25(20), 205401.
[29] Azevedo, J., Steier, L., Dias, P., Stefik, M., Sousa, C. T., Araújo, J. P., ... & Tilley, S. D. (2014). On the stability enhancement of cuprous oxide water splitting photocathodes by low temperature steam annealing. Energy & Environmental Science, 7(12), 4044-4052.
[30] Paracchino, A., Laporte, V., Sivula, K., Grätzel, M., & Thimsen, E. (2011). Highly active oxide photocathode for photoelectrochemical water reduction. Nature materials, 10(6), 456-461.
[32] Tilley, S. D., Schreier, M., Azevedo, J., Stefik, M., & Graetzel, M. (2014). Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water‐splitting photocathodes. Advanced Functional Materials, 24(3), 303-311.
[33] Wang, Y. C., Qin, C., Lou, Z. R., Lu, Y. F., & Zhu, L. P. (2019). Cu2O photocathodes for unassisted solar water-splitting devices enabled by noble-metal cocatalysts simultaneously as hydrogen evolution catalysts and protection layers. Nanotechnology, 30(49), 495407.
[34] Bai, Z., & Zhang, Y. (2017). A Cu2O/Cu2S-ZnO/CdS tandem photoelectrochemical cell for self-driven solar water splitting. Journal of Alloys and Compounds, 698, 133-140.
[35] Kim, H., Bae, S., Jeon, D., & Ryu, J. (2018). Fully solution-processable Cu 2 O–BiVO 4 photoelectrochemical cells for bias-free solar water splitting. Green Chemistry, 20(16), 3732-3742.
[36] Liu, J., Zhang, Y., Bai, Z., Huang, Z., Gao, Y., & Yao, Y. (2019). A Three-Dimensional ZnO/CdS/NiFe Layered Double Hydroxide Photoanode Coupled with a Cu2O Photocathode in a Tandem Cell for Overall Solar Water Splitting. Nano, 14(11), 1950146.
[37] Bai, Z., Liu, J., Zhang, Y., Huang, Z., Gao, Y., Li, X., & Du, Y. (2020). Unassisted solar water splitting using a Cu 2 O/Ni (OH) 2-ZnO/Au tandem photoelectrochemical cell. Journal of Solid State Electrochemistry, 24(2), 321-328.
[38] Yin, X., Liu, Q., Yang, Y., Liu, Y., Wang, K., Li, Y., ... & Li, J. (2019). An efficient tandem photoelectrochemical cell composed of FeOOH/TiO2/BiVO4 and Cu2O for self-driven solar water splitting. International Journal of Hydrogen Energy, 44(2), 594-604.
[38] Gan, J., Hoye, R. L., Ievskaya, Y., Vines, L., Marin, A. T., MacManus-Driscoll, J. L., & Monakhov, E. V. (2020). Elucidating the origin of external quantum efficiency losses in cuprous oxide solar cells through defect analysis. Solar Energy Materials and Solar Cells, 209, 110418.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *