帳號:guest(3.138.116.241)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳映臻
作者(英文):Ying-Zhen Chen
論文名稱:銀奈米金屬應用於表面電漿增益電化學反應之研究
論文名稱(英文):Surface-Plasmon-Assisted Photoelectrochemical Reduction on Nanostructured Silver Electrodes
指導教授:徐裕奎
指導教授(英文):Yu-Kuei Hsu
口試委員:徐裕奎
黃俊元
蔡志宏
陳盈竹
口試委員(英文):Yu-Kuei Hsu
Chun-Yuan Huang
Chih-Hung Tsai
Ying-Zhu Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610825003
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:62
關鍵詞:奈米線奈米珊瑚過氧化氫還原析氫反應表面電漿共振光電化學熱電子
關鍵詞(英文):SilverNanowiresNanocoralsLocalized surface plasmon resonanceH2O2 reductionHydrogen evolution reactionPhotoelectrochemicalHot carrier
相關次數:
  • 推薦推薦:0
  • 點閱點閱:9
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏收藏:0
本研究第一部份以多元醇的方式合成銀奈米線,並且成功地利用簡便浸泡的製程吸附銀奈米線於碳纖維布表面上,在過氧化氫偵測量測上證明金屬銀的LSPR不需半導體輔助熱電子的傳遞,便可與溶液反應並增益過氧化氫感測。在LSPR激發後,觀察到 過氧化氫的還原電流增加取決於波長和照明強度,推測表面電漿誘發產生的熱電子是增強電催化性能的原因。此外,在過氧化氫的電化學偵測應用中,當LSPR激發時,Ag NWs/CC 電極的過氧化氫檢測度可以提高51%。
第二部分的研究利用金屬銀薄片作為工作電極,在碳酸氫鉀溶液中經過電化學氧化還原過程形成奈米金屬銀(Ag NCs-0),再將試片浸泡在硫酸中蝕刻十天(Ag NCs-10),增加金屬銀的表面積與多孔性。利用其 LSPR 效應增益氫還原反應表現。發現照光後過電位可降至 156 mV,塔菲爾斜率達到 79 mV dec-1,並與其他文獻相比後證明實驗中所獲得的 Ag NCs-10 電極在氫還原反應中可以有良好的表現。我們提出了珊瑚狀銀金屬做為電化學分解水產氫的電極,並發現照光後透過 LSPR 產生熱電子可以顯著增強氫還原反應性能。
兩部分的結果說明了單純使用奈米結構且具 LSPR 的金屬銀在電化學還原反應系統能有效地驅使熱電子注入溶液與反應物進行反應,同時產生光電流響應。
In the first part of this study, we successfully used a simple immersion process to adsorb silver nanowires and proved that the LSPR effect can provide hot electron to inject into H2O2 solution without the semiconductor-assistance. After LSPR excitation, it was observed that the reduction current of H2O2 increased depending on the wavelength and illumination intensity. The hot electrons, which were generated by the surface plasman effect, are the reasons for enhancing the electrocatalytic performance.In addition, in H2O2 sensing applications, when LSPR is excited, the H2O2 detection sensitivity of the Ag NWs/CC electrode can be increased by 51%.
The second part of the study used metallic silver foil as the working electrode, and formed nanosilver metal through electrochemical oxidation-reduction process in KHCO3 solution. The LSPR effect is expected to enhance HER performance. It was found that the overpotential could be reduced to 156 mV under illumination, and the Tafel slope reached 79 mV dec-1. In comparison with other literatures,our results were proved that the Ag NCs electrode obtained in the experiment can perform well in the HER reaction. We proposed coral-like silver metal as the electrode for electrochemical reduction of hydrogen in water, and found that the generation of hot electrons through LSPR under
illumination can significantly enhance HER performance.
The results of the two parts show that the bare nanostructured metal with LSPR effect can effectively drive the hot electron injected into solution to react with the reactant in the electrochemical reduction reaction system, while generating a photocurrent response.
第一章、序論 1
1.1 生物感測 1
1.2 電化學分析法 1
1.3 過氧化氫簡介 2
1.4 能源近況 3
1.5 氫能 4
1.5.1 氫能運用說明 4
1.5.2 氫能特色與未來 4
第二章、理論基礎與文獻回顧 5
2.1 電化學 5
2.1.1 電化學簡介 5
2.1.2 電化學系統 5
2.2 過氧化氫濃度檢測 6
2.2.1 循環伏安法(cyclic voltammetry) 6
2.3 析氫反應(Hydrogen evolution reaction,HER) 7
2.3.1 HER 熱力學 7
2.3.2 反應路徑 8
2.3.3 塔菲爾斜率(Tafel slope) 8
2.4 金屬粒子上的表面電漿子共振(LSPR) 9
2.5 材料介紹 10
2.5.1 銀奈米線 10
2.5.3 過氧化氫 10
2.6 研究動機 11
第三章、實驗步驟與方法 13
3.1 碳布吸附銀奈米線 13
3.1.1 銀奈米線製備 13
3.1.2 工作基板製備 14
3.2 電化學還原珊瑚狀奈米銀 15
3.2.1 工作基板製備 15
3.3 材料特性分析 16
3.3.1 紫外可見光光譜儀(UV-Visible Spectrophotometer) 16
3.3.2 掃描式場發射電子顯微鏡 17
3.3.3 X-ray繞射儀(XRD) 18
3.4 電化學特性分析 19
3.4.1 電化學分析 19
3.4.3 線性掃描伏安法 21
3.4.4 外部量子效率 21
3.4.5 電化學交流阻抗頻譜 22
第四章、結果與討論 25
4.1.1 前言-銀奈米線/碳布之侷域表面電漿共振 25
4.1.2 FE-SEM之形貌分析 26
4.1.3 XRD之結構分析 27
4.1.4 XPS之鍵結分析 28
4.1.5 吸收光譜分析 29
4.1.6 電化學分析 30
4.1.7 照光後的Cyclic Voltammetry (CV) 分析 31
4.1.8 照光後的Amperometric i-t分析 32
4.1.9 不同電壓的Amperometric i-t 分析 33
4.1.10 不同過氧化氫濃度的Amperometric i-t分析 35
4.1.11 不同光功率的Amperometric i-t分析 37
4.1.12 不同光波長之光電流密度與吸收光譜分析 39
4.1.13 穩定性的Amperometric i-t分析 40
4.1.14 阻抗頻譜分析 41
4.1.15 結論 42
4.2.1 前言-珊瑚狀金屬銀基板 43
4.2.2 FE-SEM之形貌分析 44
4.2.3 XRD之結晶結構分析 45
4.2.4 XPS之化學成分鍵結分析 46
4.2.5 吸收光譜分析 47
4.2.6 表面積分析 48
4.2.7 線性循環伏安 (LSV)分析 49
4.2.8 照光後的線性循環伏安曲線分析 50
4.2.9 參考文獻對比 51
4.2.10 不同光功率的Amperometric i-t分析 52
4.2.11 不同光波長之光電轉換效率與吸收光譜分析 53
4.2.12 穩定性的Amperometric i-t分析 54
4.2.13 照光後阻抗頻譜分析 55
4.2.14 結論 56
第五章、結論與未來展望 57
參考文獻 59

[1] Bourbonnais, R., Leech, D., & Paice, M. G. (1998). Electrochemical analysis of the interactions of laccase mediators with lignin model compounds. Biochimica et Biophysica Acta (BBA)-General Subjects, 1379(3), 381-390.
[2] Mattos, I. L. D., Shiraishi, K. A., Braz, A. D., & Fernandes, J. R. (2003). Peróxido de hidrogênio: importância e determinação. Química nova, 26(3), 373-380.
[3] 李怡靜(2015).葡萄糖修飾氧化鋅表面應用於染料敏化太陽能電池之研究.國立東華大學光電工程研究所碩士論文
[4] 經濟部再生能源展望-氫能https://www.re.org.tw/knowledge/more.aspx?cid=201&id=2158
[5] 張振昌(2009).甲烷蒸氣重組產氫.
[6] 陳忠伯(2017).磷化亞銅奈米結構之合成與其電化學應用.國立東華大學光電工程研究所碩士論文.
[7] Chen, J. H., Li, W. Z., Wang, D. Z., Yang, S. X., Wen, J. G., & Ren, Z. F. (2002). Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon, 40(8), 1193-1197.
[8] Duan, L., He, Q., Yan, X., Cui, Y., Wang, K., & Li, J. (2007). Hemoglobin protein hollow shells fabricated through covalent layer-by-layer technique. Biochemical and biophysical research communications, 354(2), 357-362.
[9] HER催化劑發展https://kknews.cc/zh-tw/science/ea3x8vn.html
[10] 你真的了解電催化產氫這些知識嗎? http://www.cailiaoniu.com/167466.html
[11] Tompkins, H.H., Ed.(Academic, New York, 1972), pp." Organometallics 10 (1991): 652.
[12] Linic, S., Aslam, U., Boerigter, C., & Morabito, M. (2015). Photochemical transformations on plasmonic metal nanoparticles. Nature materials, 14(6), 567-576.
[13] Johan, M. R., Aznan, N. A. K., Yee, S. T., Ho, I. H., Ooi, S. W., Darman Singho, N., & Aplop, F. (2014). Synthesis and growth mechanism of silver nanowires through different mediated agents (CuCl2 and NaCl) polyol process. Journal of Nanomaterials, 2014.
[14] Fang, J., Hahn, H., Krupke, R., Schramm, F., Scherer, T., Ding, B., & Song, X. (2009). Silver nanowires growth via branch fragmentation of electrochemically grown silver dendrites. Chemical communications, (9), 1130-1132.
[15] Jana, N. R., Gearheart, L., & Murphy, C. J. (2001). Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratioElectronic supplementary information (ESI) available: UV–VIS spectra of silver nanorods. See http://www. rsc. org/suppdata/cc/b1/b100521i. Chemical Communications, (7), 617-618.
[16] Sun, Y., Yin, Y., Mayers, B. T., Herricks, T., & Xia, Y. (2002). Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly (vinyl pyrrolidone). Chemistry of Materials, 14(11), 4736-4745.
[17] Sun, Y., Mayers, B., Herricks, T., & Xia, Y. (2003). Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence. Nano letters, 3(7), 955-960.
[18] 維基百科(過氧化氫)
[19] Robatjazi, H., Bahauddin, S. M., Doiron, C., & Thomann, I. (2015). Direct plasmon-driven photoelectrocatalysis. Nano letters, 15(9), 6155-6161.
[20] Yang, X., Bai, J., Wang, Y., Jiang, X., & He, X. (2012). Hydrogen peroxide and glucose biosensor based on silver nanowires synthesized by polyol process. Analyst, 137(18), 4362-4367.
[21] Huang, J. F., & Wu, Y. C. (2018). Making Ag present Pt-like activity for hydrogen evolution reaction. ACS Sustainable Chemistry & Engineering, 6(7), 8285-8290.
[22] Johan, M. R., Aznan, N. A. K., Yee, S. T., Ho, I. H., Ooi, S. W., Darman Singho, N., & Aplop, F. (2014). Synthesis and growth mechanism of silver nanowires through different mediated agents (CuCl2 and NaCl) polyol process. Journal of Nanomaterials, 2014.
[23] Ma, M., Liu, K., Shen, J., Kas, R., & Smith, W. A. (2018). In Situ fabrication and reactivation of highly selective and stable Ag catalysts for electrochemical CO2 conversion. ACS energy letters, 3(6), 1301-1306.
[24] 黃宏勝(2003). FE-SEM/CL/EBSD分析技術簡介,工業材料雜誌.
[25] Instruments, G. (2007). Basics of electrochemical impedance spectroscopy. G. Instruments, Complex impedance in Corrosion, 1-30.
[26] Zhang, H. X., Li, Y., Li, M. Y., Zhang, H., & Zhang, J. (2018). Boosting electrocatalytic hydrogen evolution by plasmon-driven hot-electron excitation. Nanoscale, 10(5), 2236-2241.
[27] Wei, Y., Chen, S., Lin, Y., Yuan, X., & Liu, L. (2016). Silver nanowires coated on cotton for flexible pressure sensors. Journal of Materials Chemistry C, 4(5), 935-943.
[28] Chen, L., Chabu, J. M., Jin, R., & Xiao, J. (2013). Single gold-nanoparticles-decorated silver/carbon nanowires as substrates for surface-enhanced Raman scattering detection. RSC Advances, 3(48), 26102-26109.
[29] Mahalingam, T., Chitra, J. S. P., Rajendran, S., Jayachandran, M., & Chockalingam, M. J. (2000). Galvanostatic deposition and characterization of cuprous oxide thin films. Journal of Crystal Growth, 216(1-4), 304-310.
[30] Marenco, A. J., Pedersen, D. B., Wang, S., Petryk, M. W., & Kraatz, H. B. (2009). Electrochemical properties of gas-generated silver nanoparticles in the presence of cyano-and chloride-containing compounds. Analyst, 134(10), 2021-2027.
[31] Faber, M. S., Dziedzic, R., Lukowski, M. A., Kaiser, N. S., Ding, Q., & Jin, S. (2014). High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro-and nanostructures. Journal of the American Chemical Society, 136(28), 10053-10061.
[32] Nazir, R., Fageria, P., Basu, M., & Pande, S. (2017). Decoration of carbon nitride surface with bimetallic nanoparticles (Ag/Pt, Ag/Pd, and Ag/Au) via galvanic exchange for hydrogen evolution reaction. The Journal of Physical Chemistry C, 121(36), 19548-19558.
[33] Basu, M., Nazir, R., Mahala, C., Fageria, P., Chaudhary, S., Gangopadhyay, S., & Pande, S. (2017). Ag2S/Ag heterostructure: a promising electrocatalyst for the hydrogen evolution reaction. Langmuir, 33(13), 3178-3186.
[34] Basu, M., Nazir, R., Fageria, P., & Pande, S. (2016). Construction of CuS/Au heterostructure through a simple photoreduction route for enhanced electrochemical hydrogen evolution and photocatalysis. Scientific reports, 6(1), 1-11.
[35] Xia, X., Zhao, X., Ye, W., & Wang, C. (2014). Highly porous Ag-Ag2S/MoS2 with additional active sites synthesized by chemical etching method for enhanced electrocatalytic hydrogen evolution. Electrochimica Acta, 142, 173-181.
[36] Ji, X., Liu, B., Ren, X., Shi, X., Asiri, A. M., & Sun, X. (2018). P-doped Ag nanoparticles embedded in N-doped carbon nanoflake: an efficient electrocatalyst for the hydrogen evolution reaction. ACS Sustainable Chemistry & Engineering, 6(4), 4499-4503.
[37] Yang, Y., Zhang, H., Wang, J., Yang, S., Liu, T., Tao, K., & Chang, H. (2019). A silver wire aerogel promotes hydrogen peroxide reduction for fuel cells and electrochemical sensors. Journal of Materials Chemistry A, 7(18), 11497-11505.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *