帳號:guest(3.138.67.95)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:楊紘安
作者(英文):Hung-An Yang
論文名稱:應用奈米複合材料於染料敏化太陽能電池電極之研究
論文名稱(英文):Research on Application of Nanocomposite Materials in Electrodes of Dye-sensitized Solar Cells
指導教授:蔡志宏
指導教授(英文):Chih-Hung Tsai
口試委員:游源祥
莊沁融
口試委員(英文):Yuan-Hsiang Yu
Chin-Jung Chuang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610825006
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:82
關鍵詞:染料敏化太陽能電池對電極聚苯胺四氧化三鐵氧化石墨烯鎳金屬鐵金屬
關鍵詞(英文):Dye-sensitized solar cellscounter electrodepolyanilineferric tetroxidegraphene oxidenickel metaliron metal
相關次數:
  • 推薦推薦:0
  • 點閱點閱:39
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:30
  • 收藏收藏:0
染料敏化太陽能電池是一種製程容易、具有可撓性、成本低廉的第三世代奈米薄膜太陽能電池。染料敏化太陽能電池結構主要由二氧化鈦工作電極、染料、電解質和白金對電極四個部分所組成,其中白金材料成本昂貴、稀有和容易溶解於電解液中,因此需要尋找白金的替代材料。
本研究分為三個部分,首先我們以聚苯胺材料作為染料敏化太陽能電池的對電極材料,並藉由摻雜不同比例的四氧化三鐵來提升對電極的催化特性。本研究以FE-SEM分析電極的表面形貌、以AFM分析薄膜表面粗糙度、以EDS了解元素組成、以XRD分析結晶相位、以CV探討電化學特性,並將其製作成元件,在PANI/Fe3O4 0.5%為對電極時,其轉換效率與Pt接近,可達到6.02%。
其次,本研究以不同比例鎳金屬錯合物去還原氧化石墨烯形成奈米複合材料作為對電極,分析其薄膜表面形貌、元素組成、以及電化學特性,製作成太陽能電池,在GO/Ni (1:3)做為對電極時,其轉換效率可高於Pt,達到7.27%。
最後,本研究以不同比例鐵金屬錯合物去還原氧化石墨烯形成奈米複合材料,製作染料敏化太陽能電池對電極,以FE-SEM分析電極的表面形貌、以EDS測量元素組成、以XPS觀察材料特性、以CV分析電化學特性,並將其製作成染料敏化太陽能電池元件,在GO/Fe (1:3)做為對電極時,其轉換效率與Pt的差異不大,可達到6.78%。

Dye-sensitized solar cell (DSSC) is a third-generation nanometer thin-film solar cell with the easy manufacturing process, flexibility, and low cost. The structure of the DSSC is mainly composed of four parts: titanium dioxide working electrode, dye, electrolyte, and platinum (Pt) counter electrode. Among them, the Pt material is expensive, rare, and easily soluble in the electrolyte, so it is necessary to find a substitute material for Pt.
This study is divided into three parts. First, we used polyaniline (PANI) material as the counter electrode materials for DSSCs and improved the catalytic characteristics of the counter electrode by doping with different proportions of ferric oxide (Fe3O4). In this study, the surface morphology of the electrode was analyzed by FE-SEM, the surface roughness of the film was measured by AFM, the elemental composition was studied by EDS, the crystal phase was analyzed by XRD, and the electrochemical characteristics were discussed by CV. When PANI/Fe3O4 0.5% was used as the counter electrode, the efficiency of the device reached 6.02%, which was close to that of the device with a Pt electrode.
Second, we used different ratios of nickel (Ni) metal complexes to reduce the graphene oxide (GO) to form nanocomposites, and the nanocomposites were used as the counter electrodes for DSSCs. This study further analyzed the film surface morphology, element composition, and electrochemical characteristics of the counter electrodes. When GO/Ni (1:3) was used as the counter electrode, the efficiency of the device reached 7.27%, which was higher than that of the device with a Pt electrode.
Finally, different ratios of iron (Fe) metal complexes were used to reduce the graphene oxide (GO) to form nanocomposites, and the nanocomposites were used as the counter electrodes for DSSCs. This study also analyzed the film surface morphology, element composition, and electrochemical characteristics of the counter electrodes. When GO/Fe (1:3) was used as the counter electrode, the power conversion efficiency of the device reached 6.78%, which was close to that of the device based on a Pt electrode.
第一章 序論 1
1.1前言 1
1.1.1能源近況 1
1.1.2太陽能 2
1.2太陽能電池 4
1.2.1太陽能電池種類發展 4
1.2.2染料敏化太陽能電池 6
1.3實驗儀器及研究原理 10
1.3.1熱場發射掃描式電子顯微鏡(Thermal Field emission scanning electron microscope, FE-SEM) 10
1.3.2 能量色散X光譜儀(Energy dispersive spectrometers, EDS) 10
1.3.3原子力顯微鏡(Atomic force microscopy, AFM) 11
1.3.4拉曼光譜分析儀(Raman) 13
1.3.5 X光光電子能譜儀(x-ray photoelectron spectrometer, XPS) 14
1.3.6 X射線繞射分析儀(X-Ray Diffractometer, XRD) 14
1.3.7太陽光模擬器(Solar Simulator) 16
1.3.8電化學分析儀(EIS) 18
1.3.9外部量子轉換效率分析儀(IPCE) 21
1.4參考資料 22
第二章 聚苯胺/四氧化三鐵複合材料應用於染料敏化太陽能電池對電極之研究 25
2.1前言 25
2.2實驗步驟 26
2.2.1材料製備 26
2.2.2電極製備 28
2.2.3 DSSC元件製作 29
2.3結果與討論 30
2.3.1奈米結構分析 30
2.3.2化學元素結構鑑定分析 32
2.3.3電化學電性分析 36
2.3.4元件特性量測 37
2.4結論 41
2.5參考文獻 42
第三章 石墨烯/鎳錯合物複合材料應用於染料敏化太陽能電池對電極之研究 43
3.1前言 43
3.2實驗步驟 44
3.2.1材料製備 44
3.2.2電極製備 46
3.2.3 DSSC元件製作 47
3.3結果與討論 48
3.3.1奈米材料分析 48
3.3.2化學結構鑑定分析 50
3.3.3電化學電性分析 55
3.3.4元件特性量測 56
3.4結論 60
3.5參考文獻 61
第四章 石墨烯/鐵錯合物複合材料應用於染料敏化太陽能電池對電極之研究 63
4.1前言 63
4.2實驗步驟 64
4.2.1材料製備 64
4.2.2電極製備 66
4.2.3 DSSC元件製作 67
4.3結果與討論 68
4.3.1奈米材料分析 68
4.3.2化學結構鑑定分析 70
4.3.3電化學電性分析 74
4.3.4元件特性量測 75
4.4結論 79
4.5參考文獻 80
第五章 總結論 81
1.4參考資料
[1] 陳智翰,"新型染料敏化太陽能電池結構及新穎有機染料之研究"國立東華大學光電工程研究所碩士論文,2014
[2] 財團法人國家政策研究基金會,"石化能源污染知多少"
https://www.npf.org.tw/3/12415
[3] 陳維新,《能源概論》,高立圖書,2012
[4] 施純鈞,"石墨烯奈米複合材料於染料敏化太陽能電池對電極之研究"國立東華大學光電工程研究所碩士論文,2017
[5] 經濟部能源局,"綠色能源" http://www3.nstm.gov.tw/green/01_about_a.html
[6] 維基百科,"再生能源"
[7] Basu, Sarbani; Antia, H. M. "Helioseismology and Solar Abundances." Physics Reports. 2008, 457(5-6): 217-283.
[8] Broggini, Carlo. "Nuclear Processes at Solar Energy." Physics in Collision. 2003: 21.
[9] Zirker, Jack B. "Journey from the Center of the Sun." Princeton University Press. 2002: 15-34.
[10] Phillips, Kenneth J. H. "Guide to the Sun." Cambridge University Press. 1995: 47-53.
[11] 維基百科,"太陽能"
[12] 維基百科,"太陽光"
[13] 科學 Online,《太陽能電池》,NTU,2014
https://highscope.ch.ntu.edu.tw/wordpress/?p=1649
[14] ASTM InternationalASTM E490-00A
[15] Collins, Dave G.; Blättner, Wolfram G.; Wells, Michael B.; Horak, Henry G. "Backward Monte Carlo Calculations of the Polarization Characteristics of the Radiation Emerging from Spherical-Shell Atmospheres." Applied Optics. 1972, 11(11): 2684-2696.
[16] Bird, R. E.; Hulstrom, R. L.; Lewis, L. J. "Terrestrial solar spectral data sets." Solar Energy. 1983, 30(6): 563-573.
[17] JEONG, J., PHOTOVOLTAICS: Measuring the 'Sun'. Retrieved from: https://www.laserfocusworld.com/lasers-sources/article/16566681/photovoltaics-measuring-the-sun.
[18] 維基百科,"電池"
[19] 維基百科,"太陽能電池"
[20] 許曉壟,"石墨烯奈米複合材料於染料敏化太陽能電池對電極之研究"國立東華大學光電工程研究所碩士論文,2018
[21] "NREL Demonstrates 46.0% Efficiency for Concentrator Solar Cell", 2020.
[22] Putseiko, K.O.; Terenin, A.N. "Photosensitization of the internal photoeffect in zinc oxide and other semiconductors by adsorbed dyes." Zhur. Fiz. Khim. 1949, 23: 676.
[23] Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T. "Dye Sensitized Zinc Oxide: Aqueous Electrolyte Platinum Photocell." Nature. 1976, 261: 402-403.
[24] O’Regan, Brian; Grätzel, Michael. "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films." Nature. 1991, 353: 737-740.
[25] Burschka, Julian; Pellet, Norman; Moon, Soo Jin; Humphry-Baker, Robin; Gao, Peng; Nazeeruddin, Mohammad K.; Grätzel, Michael. "Sequential deposition as a route to high-performance perovskite-sensitized solar cells." Nature. 2013, 499 (7458): 316-319.
[26] C. H. Tsai. "Investigation of Device Structures and Novel Organic Dyes for Dye-Sensitized Solar Cells." Graduate Institute of Photonics and Opto-eletronics College of Electrical Engineering and Computer Science National Taiwan University Doctoral Dissertation. 2011.
[27] Hara, Kohjiro; Arakawa, Hironori. "Dye-Sensitized Solar Cells." Handbook of Photovoltaic Science and Engineering. 2005: 663-700.
[28] 莊秉元,"染料敏化太陽能電池元件結構及材料特性之研究"國立東華大學光電工程研究所碩士論文,2014
[29] Grätzel, Michael. "Photoelectrochemical cells." Nature. 2001, 414: 338-344
[30] 維基百科,"掃描電子顯微鏡"
[31] Goldstein, J.; Newbury, D.E.; Joy, D.C.; Lyman, C.E.; Echlin, P.; Lifshin, E.; Sawyer, L.; Michael, J.R. "Scanning Electron Microscopy and X-Ray Microanalysis." Springer. 2003.
[32] http://web1.knvs.tp.edu.tw/AFM/ch4.htm
[33] 吳維謙,"染料敏化碳管應用於染料敏化太陽能電池之研究"國立東華大學光電工程研究所碩士論文,2015
[34] 維基百科,"拉曼光譜學"
[35] EAG Inc ,《XRD》, 2018.
[36] 維基百科,"X 射線衍射儀"
[37] 費伯希,"應用新穎材料與結構於染料敏化太陽能電池"國立東華大學光電工程研究所碩士論文,2015
[38] 陳玉麟,"應用新穎材料於染料敏化太陽能電池與電致變色元件之研究"國立東華大學光電工程研究所碩士論文,2016
[39] Applied optic. "ASTM/IEC/JIS Standards."
[40] 維基百科,"循環伏安法"

2.5參考文獻
[1] Hussain, S.; Patil, S. A.; Memon, A. A.; Vikraman, D.; Abbas, H. G.; Jeong, S. H.; Kim, Hyun Seok; Kim, Hak Sung; Jung, J. "Development of WS2/MoTe2 heterostructure as a counter electrode for the improved performance in dye-sensitized solar cells." Inorg. Chem. Front. 2018, 5(12): 3178-3183.
[2] Ghani, Sheeba; Sharif, Rehana; Bashir, Saima; Ashraf, Ayesha; Shahzadi, Shamaila; Zaidi, Azhar A.; Rafique, Shaista; Zafar, N.; Kamboh, Afzal H. "Dye-sensitized solar cells with high-performance electrodeposited gold/polyaniline composite counter electrodes." Materials Science in Semiconductor Processing. 2015, 31: 588-592.
[3] Karim, Nayab Abdul; Mehmood, Umer; Zahid, Hafiza Fizza; Asif, Tahira. "Nanostructured photoanode and counter electrode materials for efficient Dye-Sensitized Solar Cells (DSSCs)." Solar Energy. 2019, 185: 165–188.
[4] Guo, Xueyi; Yi, Pengfei; Yang, Ying; Cui, Jiarui; Xiao, Si; Wang, Wenyong. "Effects of surfactants on agarose-based magnetic polymer electrolyte for dye-sensitized solar cells." Electrochimica Acta. 2013, 90: 524–529.
[5] Bera, Susanta; Kundu, Susmita; Khan, Hasmat; Jana, Sunirmal. "Polyaniline coated graphene hybridized SnO2 nanocomposite: Low temperature solution synthesis, structural property and room temperature ammonia gas sensing." Journal of Alloys and Compounds. 2018, 744: 260-270.
[6] 趙硯捷,"新穎奈米材料於染料敏化太陽能電池電極之應用"國立東華大學光電工程研究所碩士論文,2018

3.5參考文獻
[1] O’Regan, Brian; Grätzel, Michael. "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films." Nature. 1991, 353: 737-740.
[2] 施純鈞,"石墨烯奈米複合材料於染料敏化太陽能電池對電極之研究"國立東華大學光電工程研究所碩士論文,2016
[3] 黃偉智,"奈米複合材料於染料敏化太陽能電池對電極之研究"國立東華大學光電工程研究所碩士論文,2015

4.5參考文獻
[1] O’Regan, Brian; Grätzel, Michael. "A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films." Nature. 1991, 353: 737-740.
[2] Choi, Hyonkwang; Kim, Hyunkook; Hwang, Sookhyun; Han, Youngmoon; Jeon, Minhyon. "Graphene counter electrodes for dye-sensitized solar cells prepared by electrophoretic deposition." Journal of Materials Chemistry. 2011, 21(21): 7548-7551.
[3] Lee, Changgu; Wei, Xiaoding; Kysar, Jeffrey W.; Hone, James. "Measurement of the elastic properties and intrinsic strength of monolayer graphene." Science. 2008, 321(5887): 385-388.
[4] Chen, Jian Hao; Jang, Chaun; Xiao, Shudong; Ishigami, Masa; Fuhrer, Michael S. "Intrinsic and extrinsic performance limits of graphene devices on SiO2." Nature nanotechnology. 2008, 3(4): 206-209.
[5] Bolotin, K. I.; Sikes, K. J.; Hone, J.; Stormer, H. L.; Kim, P. "Temperature-dependent transport in suspended graphene." Physical review letters. 2008, 101(9).
[6] Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.R.; Geim, A. K. "Fine structure constant defines visual transparency of graphene." Science. 2008, 320(5881): 1308.
[7] 黃偉智,"奈米複合材料於染料敏化太陽能電池對電極之研究"國立東華大學光電工程研究所碩士論文,2015
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *