帳號:guest(3.16.135.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:林恆毅
作者(英文):Heng-Yi Lin
論文名稱:簡易磷化熱處理製備磷化物應用於光電化學產氫之研究
論文名稱(英文):Facile Synthesis of Phosphide Photoelectrode by Phosphorization Treatment for Solar Hydrogen Generation
指導教授:徐裕奎
指導教授(英文):Yu-Kuei Hsu
口試委員:徐裕奎
黃俊元
蔡志宏
陳盈竹
口試委員(英文):Yu-Kuei Hsu
Chun-Yuan Huang
Chih-Hung Tsai
Ying-Zhu Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610825007
出版年(民國):109
畢業學年度:108
語文別:中文
論文頁數:82
關鍵詞:磷化銦二氧化鈦磷酸銦磷化光電化學產氫
關鍵詞(英文):indium phosphidetitanium dioxideindium phosphatephoshporizationphotoelectrochemistryhydrogen generation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏收藏:0
本研究使用簡易的磷化製程,成功將銦金屬磷化成磷化銦,僅需要將次亞磷酸鈉與銦金屬一同以425 ℃進行熱處理即可。跟市面上的磷化銦晶圓製程相比,所耗費的時間與資源減少的非常之多。透過材料分析,可以發現由此方式製備出的磷化銦,擁有不錯的結晶結構,將其應用於光電化學反應產氫的實驗上,在-0.2 V的電壓下可以產生出的光電流為1.7 mAcm-2,接著將此磷化製程應用於其他結構合成上。

在光電化學產氫上,二氧化鈦因一直都有不錯的成果,但高載子複合速率限制了它的表現。本研究使用水熱法在鈦薄片上成長出二氧化鈦奈米線,並且使用簡易的磷化製程,在二氧化鈦的表面合成出磷酸銦,磷酸銦可以增益二氧化鈦的載子分離效率,減少載子的複合損耗,進而提升其光電化學上的表現。在光電化學反應的量測中,純二氧化鈦米線在1 V的電壓時,只有0.035 mAcm-2,而在放上磷酸銦之後,其光電流達到了0.36 mAcm-2,提升成了原本的10倍。

上述兩實驗結果證實,此簡易且迅速的磷化製程,能確實製備出磷化銦與磷酸銦,並且在光電化學反應上都擁有不錯的表現。
In this study, a facile phosphorization process was used to successfully convert indium metal into indium phosphide. It is only necessary to thermally treat sodium hypophosphite together with indium metal at 425 oC. Compared with the indium phosphide wafer process on the market, the time and resources consumed are greatly reduced. The photocurrent of indium phosphide shows 1.7 mAcm-2 at the potential of 1 V vs Ag/AgCl electrode.

Titanium dioxide is a good photoelectrode, but its performance is limited by high carrier recombination rate. The second work in this study uses the facile phosphorization process to produce indium phosphate on the surface of titanium dioxide nanowire. This heterostructure photoelectrode has 0.36 mAcm-2 of photocurrent at the potential of 1 V vs Ag/AgCl electrode, which is one order of magnitude higher than that of the bare titanium dioxide nanowire.

This work demonstrated that the facile phosphorization process can successfully fabricate indium phosphide and indium phosphate with good photoelectrochemical performance.
致謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
第二章 文獻回顧 7
第三章 實驗方法與步驟 17
第四章 結果與討論 39
第五章 結論與未來展望75
第六章 參考文獻 77
[1] 李怡靜,“葡萄糖修飾氧化鋅表面應用於染料敏化太陽能電池之研究”,國立東華大學光電工程研究所碩士論文,2015。
[2] 楊昆浩, “沉積氧化鋅量子點於氧化鋅奈米柱應用於光電化學產氫之研究”,國立東華大學光電工程研究所碩士論文,2018。
[3] 維基百科
[4] Hyperphysics (2005). Wien’s Displacement Law. P. o. i. v. f. plot.
[5] 太陽光。檢自https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E5%85%89
(Jul.17,2018)
[6] 再生能源展望-氫能篇https://www.re.org.tw/knowledge/more.aspx?cid=201&id=2158
[7] 黃瑞雄, 顏溪成, (2002) “漫談電化學”, 科學發展, 359
[8] Fotosintezė ir Fotokatalizė, Algimantas Časas, 2010, from
https://www.slideshare.net/AlgimantasEmpire/photosynthesis-photocatalysis
[9] Ulmer, U., Dingle, T., Duchesne, P. N., Morris, R. H., Tavasoli, A., Wood, T., & Ozin, G. A. (2019). Fundamentals and applications of photocatalytic CO 2 methanation. Nature communications, 10(1), 1-12.
[10] Murphy, A. B., Barnes, P. R. F., Randeniya, L. K., Plumb, I. C., Grey, I. E., Horne, M. D., & Glasscock, J. A. (2006). Efficiency of solar water splitting using semiconductor electrodes. International journal of hydrogen energy, 31(14), 1999-2017.
[11] Bolton, J. R., Haught, A. F., & Ross, R. T. (1981). Photochemical energy storage: an analysis of limits. Photochemical Conversion and Storage of Solar Energy, 297-330.
[12] Weber, M. F., & Dignam, M. J. (1984). Efficiency of splitting water with semiconducting photoelectrodes. Journal of The Electrochemical Society, 131(6), 1258.
[13] nanografi, Indium Phosphide Wafers, from
https://nanografi.com/blog/indium-phosphide-wafers/
[14] 頂天鋼鐵有限公司, InP Crystal Growth Process 自
https://www.dtisanitary.com.tw/self_pages/process_tw.html
[15] Pan, J. H., Zhao, X. S., & Lee, W. I. (2011). Block copolymer-templated synthesis of highly organized mesoporous TiO2-based films and their photoelectrochemical applications. Chemical engineering journal, 170(2-3), 363-380.
[16] Ozawa, K., Emori, M., Yamamoto, S., Yukawa, R., Yamamoto, S., Hobara, R., ... & Matsuda, I. (2014). Electron–hole recombination time at TiO2 single-crystal surfaces: influence of surface band bending. The Journal of Physical Chemistry Letters, 5(11), 1953-1957.
[17] Gao, Y., Zhang, S., Wu, Y., Tian, Y., Fu, H., & Zhan, S. (2019). P-doped In2S3 nanosheets coupled with InPOx overlayer: Charge-transfer pathways and highly enhanced photoelectrochemical water splitting. Journal of catalysis, 375, 389-398.
[18] Nie, X., Zhuo, S., Maeng, G., & Sohlberg, K. (2009). Doping of TiO2 polymorphs for altered optical and photocatalytic properties. International Journal of Photoenergy, 2009.
[19] Tang, Y., Fu, S., Zhao, K., Xie, G., & Teng, L. (2015). Synthesis of TiO2 nanofibers with adjustable anatase/rutile ratio from Ti sol and rutile nanoparticles for the degradation of pollutants in wastewater. Ceramics International, 41(10), 13285-13293.
[20] 科學基礎研究之重要利器-掃描式電子顯微鏡
file:///C:/Users/ndhuh/Downloads/52-5-2_%E6%9C%AC%E6%9C%88%E5%B0%88%E9%A1%8C_%E7%A7%91%E5%AD%B8%E5%9F%BA%E7%A4%8E%E7%A0%94%E7%A9%B6%E4%B9%8B%E9%87%8D%E8%A6%81%E5%88%A9%E5%99%A8%E2%94%80%E6%8E%83%E6%8F%8F%E5%BC%8F%E9%9B%BB%E5%AD%90%E9%A1%AF%E5%BE%AE%E9%8F%A1(SEM)_1663.pdf
[21] 郭瀚介,SEM的微觀世界
https://gsmat10002.weebly.com/sem3034024494352641999030028.html
[22] 陳建淼,洪連輝,現代科技簡介2009 09 09
[23] 羅聖全,工業材料雜誌 2003 201 90
[24] 張寶樹,輻射物理
https://www.slideserve.com/barry-cooley/5936367
[25] 俞姿宇,X射線光電子能譜儀2016
[26] Thermo scientific XPS, What is XPS
https://xpssimplified.com/whatisxps.php
[27] 利泓科技股份有限公司 拉曼光譜儀原理
https://www.rightek.com.tw/product_detail.php?id=186
[28] 謝嘉民、賴一凡、林永昌、枋志堯,光激發螢光量測的原理、架構及應用,國家奈米元件實驗室 奈米通訊,第十二卷第二期 ,2005。
[29] 葉佳良, PL技術用於LED材料特性檢測
[30] Jimenez, J., & Tomm, J. W. (2016). Spectroscopic Analysis of optoelectronic semiconductors (pp. 182-192). Switzerland: Springer International Publishing.
[31] Linear Sweep and Cyclic Voltametry: The Principles. University of Cambridge.
[32] Hsu, Y. K., Yu, C. H., Chen, Y. C., & Lin, Y. G. (2013). Synthesis of novel Cu2O micro/nanostructural photocathode for solar water splitting. Electrochimica Acta, 105, 62-68.
[33] Macdonald, J. R., & Barsoukov, E. (2005). Impedance spectroscopy: theory, experiment, and applications. History, 1(8), 1-13.
[34] Instruments, G. (2007). Basics of electrochemical impedance spectroscopy. G. Instruments, Complex impedance in Corrosion, 1-30.
[35] Gelderman, K., Lee, L., & Donne, S. W. (2007). Flat-band potential of a semiconductor: using the Mott–Schottky equation. Journal of chemical education, 84(4), 685.
[36] Jaramillo-Fernandez, J., Chavez-Angel, E., Sanatinia, R., Kataria, H., Anand, S., Lourdudoss, S., & Sotomayor-Torres, C. M. (2017). Thermal conductivity of epitaxially grown InP: experiment and simulation. CrystEngComm, 19(14), 1879-1887.
[37] Ezzedini, M., Zeydi, I., El Kazzi, S., Jiang, S., Guo, W., Sfaxi, L., ... & Merckling, C. (2015). Comprehensive study of Cp2Mg p-type doping of InP with MOVPE growth technique. Journal of Alloys and Compounds, 651, 344-349.
[38] Tang, Y., Hong, L., Wu, Q., Li, J., Hou, G., Cao, H., ... & Zheng, G. (2016). TiO2 (B) nanowire arrays on Ti foil substrate as three-dimensional anode for lithium-ion batteries. Electrochimica Acta, 195, 27-33.
[39] Rambabu, Y., Jaiswal, M., & Roy, S. C. (2016). Graphene Oxide Modified TiO2 Micro Whiskers and Their Photo Electrochemical Performance. Journal of nanoscience and nanotechnology, 16(5), 4835-4839.
[40] Li, S., Wu, X., Wu, W., Liao, S., & Hu, Y. (2014). Preparation and ultraviolet–visible ray transmission property of nanocrystalline InPO 4. Journal of Thermal Analysis and Calorimetry, 115(2), 1705-1709.
[41] Dwivedi, A., Kaiwart, R., Varma, M., Velaga, S., & Poswal, H. K. (2020). High-pressure structural investigations on InPO4. Journal of Solid State Chemistry, 282, 121065.
[42] Thamaphat, K., Limsuwan, P., & Ngotawornchai, B. (2008). Phase characterization of TiO2 powder by XRD and TEM. Kasetsart J.(Nat. Sci.), 42(5), 357-361.
[43] Li, C., Fan, W., Lu, H., Ge, Y., Bai, H., & Shi, W. (2016). Fabrication of Au@ CdS/RGO/TiO 2 heterostructure for photoelectrochemical hydrogen production. New Journal of Chemistry, 40(3), 2287-2295.
[44] Wang, Y., Bai, W., Wang, H., Jiang, Y., Han, S., Sun, H., ... & Huan, Q. (2017). Promoted photoelectrocatalytic hydrogen evolution of a type II structure via an Al 2 O 3 recombination barrier layer deposited using atomic layer deposition. Dalton Transactions, 46(32), 10734-10741.
[45] Zhou, C., Wang, H., Huang, T., Zhang, X., Shi, Z., Zhou, L., ... & Tang, G. (2019). High-Performance TiO 2/ZnO Photoanodes for CdS Quantum Dot-Sensitized Solar Cells. Journal of Electronic Materials, 48(11), 7320-7327.
[46] Łęcki, T., Zarębska, K., Sobczak, K., & Skompska, M. (2019). Photocatalytic degradation of 4-chlorophenol with the use of FTO/TiO2/SrTiO3 composite prepared by microwave-assisted hydrothermal method. Applied Surface Science, 470, 991-1002.
[47] Ni, S., Guo, F., Wang, D., Jiao, S., Wang, J., Zhang, Y., ... & Zhao, L. (2019). Optimal Sr-Doped Free TiO2@ SrTiO3 Heterostructured Nanowire Arrays for High-Efficiency Self-Powered Photoelectrochemical UV Photodetector Applications. Crystals, 9(3), 134.
[48] Liu, D., Li, X., Wei, L., Zhang, T., Wang, A., Liu, C., & Prins, R. (2017). Disproportionation of hypophosphite and phosphite. Dalton Transactions, 46(19), 6366-6378.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *