帳號:guest(3.141.19.156)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:林煒傑
作者(英文):Wei-Jie Lin
論文名稱:原子層沉積氧化鋁於矽太陽電池鈍化之優化研究
論文名稱(英文):Optimizing Research on Passivation of Atomic Layer Deposition of Al2O3 in Silicon Solar Cells
指導教授:林楚軒
指導教授(英文):Chu-Hsuan Lin
口試委員:王智明
林群傑
口試委員(英文):Chih-Ming Wang
Chun-Chieh Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610825010
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:76
關鍵詞:表面鈍化原子層沉積氧化鋁固定負電荷介面氧化矽
關鍵詞(英文):surface passivationatomic layer depositionAluminium oxidenegative fixed chargeinterfacial SiOx
相關次數:
  • 推薦推薦:0
  • 點閱點閱:78
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏收藏:0
  目前市面上和未來幾年是以PERC技術為主流的太陽電池,而且使用p型單晶矽PERC太陽電池的比例最高。PERC電池背面的鈍化層除了能反射更多光線,更能減少少數載子復合。氧化鋁(Al2O3)有多而穩定的負電荷特性使其非常適合作為p型矽的鈍化材料,以原子層沉積(ALD)系統成長Al2O3可獲得優異的鈍化品質。
  本研究使用thermal ALD系統以三甲基鋁(TMA)為鋁來源,水為氧來源在矽表面成長的Al2O3已經具備一定程度的化學鈍化,再透過熱退火產生高密度固定負電荷感應電場形成的場效鈍化更是大幅提升鈍化表現。N2 95% + H2 5%的合成氣體退火(FGA)相較於N2退火可以更有效提升鈍化品質,表示其中所含的氫有所貢獻。400 °C可能是退火的臨界溫度,在400 °C以上可縮短退火時間且成效更好。
  矽表面的預處理會影響Al2O3的鈍化品質,沉積前的清洗作業中保留矽表面的原生氧化層或清洗過程形成的氧化矽,對於Al2O3薄膜後續退火和高溫處理有更好的表現,這可能與Si/ Al2O3介面的SiOx特性有關。
  Solar cells currently on the market and in the next few years are and will be based on PERC technology as the mainstream, and the largest proportion of PERC based solar cells use p-type monocrystalline silicon. The passivation layer on the back side of the PERC solar cell does not only reflect more sunlight, but it also reduces minority carrier recombination. Aluminium oxide (Al2O3) is very suitable as a passivation material for p-type silicon because of its large and stable negative charge characteristics. The growth of Al2O3 by the atomic layer deposition (ALD) technique provides excellent passivation quality.
  In this study, the thermal atomic layer deposition system used trimethylaluminum (TMA) as the aluminum source and H2O as the oxygen source to grow Al2O3 on the silicon surface to a certain degree of chemical passivation. After thermal annealing, the field effect passivation formed by the high-density negative fixed charge induced electric field which greatly improved the passivation ability. Compared with N2 annealing, forming gas annealing (FGA) (N2 95% + H2 5%) can improve passivation quality more effectively, indicating that the hydrogen contained therein contributes to the improved passivation quality. 400 °C may be the critical temperature for annealing, above 400 °C can shorten the annealing time and achieve better results.
  The pretreatment of the silicon surface will affect the passivation quality of Al2O3. In the cleaning process before deposition, the native oxide on the silicon surface or the silicon oxide formed during the cleaning process is retained, which has better performance in the subsequent annealing and high temperature treatment of the Al2O3 film, this may be related to the SiOx characteristics of the Si/Al2O3 interface.
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文架構 4
第二章 理論基礎 5
2.1 太陽電池 5
2.1.1 工作原理 5
2.1.2 傳統矽晶太陽電池 9
2.1.3 載子的復合 10
2.1.4 表面鈍化 13
2.1.5 C-V特性 14
2.2 原子層沉積 22
2.2.1 背景 22
2.2.2 氧化鋁生長機制 24
第三章 應用原子層沉積於太陽電池之表面鈍化 27
3.1 表面鈍化層製備 27
3.1.1 儀器介紹 27
3.1.2 實驗步驟 33
3.1.3 分析結果 36
3.2 MOS元件製備與分析 41
3.2.1 儀器介紹 41
3.2.2 實驗步驟 44
3.2.3 分析結果 46
第四章 氧化鋁鈍化之特性優化 55
4.1 熱退火參數之優化 55
4.1.1 實驗步驟 55
4.1.2 分析結果 56
4.2 基板清洗流程之優化 59
4.2.1 實驗步驟 59
4.2.2 分析結果 62
第五章 結論與未來方向 65
5.1 結論 65
5.2 未來方向 65
參考文獻 67
[1-1] International Technology Roadmap for Photovoltaic (ITRPV) 2020 Results https://itrpv.vdma.org/download
[1-2] Zhao, J., Wang, A., & Green, M. A. (1999). 24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates. Progress in Photovoltaics: Research and Applications, 7(6), 471–474. doi:10.1002/(sici)1099-159x(199911/12)7:6<471::aid-pip298>3.0.co;2-7
[1-3] Dauwe, S., Mittelstädt, L., Metz, A., & Hezel, R. (2002). Experimental evidence of parasitic shunting in silicon nitride rear surface passivated solar cells. Progress in Photovoltaics: Research and Applications, 10(4), 271–278. doi:10.1002/pip.420
[1-4] Hübner, A., Aberle, A. G., & Hezel, R. (1997). Novel cost-effective bifacial silicon solar cells with 19.4% front and 18.1% rear efficiency. Applied Physics Letters, 70(8), 1008–1010. doi:10.1063/1.118466
[1-5] Hoex, B., Schmidt, J., Bock, R., Altermatt, P. P., van de Sanden, M. C. M., & Kessels, W. M. M. (2007). Excellent passivation of highly doped p-type Si surfaces by the negative-charge-dielectric Al2O3. Applied Physics Letters, 91(11), 112107. doi:10.1063/1.2784168
[1-6] Saint-Cast, P., Kania, D., Hofmann, M., Benick, J., Rentsch, J., & Preu, R. (2009). Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide. Applied Physics Letters, 95(15), 151502. doi:10.1063/1.3250157
[1-7] Hezel, R. (1989). Low-Temperature Surface Passivation of Silicon for Solar Cells. Journal of The Electrochemical Society, 136(2), 518. doi:10.1149/1.2096673
[1-8] Hoex, B., Heil, S. B. S., Langereis, E., van de Sanden, M. C. M., & Kessels, W. M. M. (2006). Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3. Applied Physics Letters, 89(4), 042112. doi:10.1063/1.2240736
[1-9] Agostinelli, G., Delabie, A., Vitanov, P., Alexieva, Z., Dekkers, H. F. W., De Wolf, S., & Beaucarne, G. (2006). Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge. Solar Energy Materials and Solar Cells, 90(18-19), 3438–3443. doi:10.1016/j.solmat.2006.04.014
[1-10] Dingemans, G., van de Sanden, M. C. M., & Kessels, W. M. M. (2010). Influence of the Deposition Temperature on the c-Si Surface Passivation by Al2O3 Films Synthesized by ALD and PECVD. Electrochemical and Solid-State Letters, 13(3), H76. doi:10.1149/1.3276040
[1-11] Dingemans, G., Beyer, W., van de Sanden, M. C. M., & Kessels, W. M. M. (2010). Hydrogen induced passivation of Si interfaces by Al2O3 films and SiO2/Al2O3 stacks. Applied Physics Letters, 97(15), 152106. doi:10.1063/1.3497014
[1-12] Black, L.E., Allen, T., McIntosh, K.R. (2013). Safe and inexpensive Al22O33 deposited by APCVD with single-source precursor. Proceedings of the 28th European Photovoltaic Solar Energy Conference, Paris, pp. 1068–1072
[2-1] Australian Academy of Science. From sunlight to electricity. https://www.science.org.au/curious/technology-future/solar-pv
[2-2] File:Pn-junction-equilibrium-graph.svg - Wikimedia Commons https://commons.wikimedia.org/wiki/File:Pn-junction-equilibrium-graph.svg
[2-3] How a Solar Cell Works - American Chemical Society https://www.acs.org/content/acs/en/education/resources/highschool/chemmatters/past-issues/archive-2013-2014/how-a-solar-cell-works.html
[2-4] Hallam, B. J., Ciesla, A. M., Chan, C. C., Soeriyadi, A., Liu, S., Soufiani, A. M., … Wenham, S. (2018). Overcoming the Challenges of Hydrogenation in Silicon Solar Cells. Australian Journal of Chemistry, 71(10), 743. doi:10.1071/ch18271
[2-5] Akand, M.A., Basher, M., Asrafusjaman, Chowdhuyi, N., Abedin, A., & Hoq, M. (2015). Study and Fabrication of Crystalline Silicon Solar Cell in Bangladesh; Using Thermal Diffusion Technique. International journal of innovation and scientific research, 18, 417-426.
[2-6] Agrawal, G. P., & Dutta, N. K. (1993). Recombination Mechanisms in Semiconductors. Semiconductor Lasers, 74–146. doi:10.1007/978-1-4613-0481-4_3
[2-7] Fu, H., & Zhao, Y. (2018). Efficiency droop in GaInN/GaN LEDs. Nitride Semiconductor Light-Emitting Diodes (LEDs), 299–325. doi:10.1016/b978-0-08-101942-9.00009-5
[2-8] Bemski, G. (1958). Recombination in Semiconductors. Proceedings of the IRE, 46(6), 990–1004. doi:10.1109/jrproc.1958.286838
[2-9] Surface Recombination | PVEducation https://www.pveducation.org/pvcdrom/pn-junctions/surface-recombination
[2-10] Yoshikawa, K., Kawasaki, H., Yoshida, W., Irie, T., Konishi, K., Nakano, K., … Yamamoto, K. (2017). Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2(5), 17032. doi:10.1038/nenergy.2017.32
[2-11] Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., Yoshimura, N., … Okamoto, S. (2014). Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell. IEEE Journal of Photovoltaics, 4(6), 1433–1435. doi:10.1109/jphotov.2014.2352151
[2-12] Singh, G., Verma, A., & Jeyakumar, R. (2014). Fabrication of c-Si solar cells using boric acid as a spin-on dopant for back surface field. RSC Adv., 4(9), 4225–4229. doi:10.1039/c3ra45746j
[2-13] Sze, S. M., & Ng, K. K. (2006). Physics of Semiconductor Devices. pp. 197-198. Hoboken, NJ, USA: John Wiley & Sons. doi:10.1002/0470068329
[2-14] Sze, S. and Ng, K.K. (2006). Metal-Insulator-Semiconductor Capacitors. In Physics of Semiconductor Devices. pp.199. Hoboken, NJ, USA: John Wiley & Sons doi:10.1002/9780470068328.ch4
[2-15] El-Kareh, B. (2009). Silicon Devices and Process Integration: Deep Submicron and Nano-Scale Technologies. pp 113–114. Boston, MA: Springer US. doi.org/10.1007/978-0-387-69010_2
[2-16] El-Kareh, B. (2009). Silicon Devices and Process Integration: Deep Submicron and Nano-Scale Technologies. pp 15–16. Boston, MA: Springer US.
doi.org/10.1007/978-0-387-69010_1
[2-17] Neamen, D. A. (2012). Semiconductor physics and devices: Basic principles (4th ed.). pp. 164-165. New York, McGraw-Hill.
[2-18] Hu, C. (2010). Modern semiconductor devices for integrated circuits. pp. 20-21. Upper Saddle River, N.J: Pearson Education.
[2-19] Ohring, M., & Kasprzak, L. (2015). Reliability and Failure of Electronic Materials and Devices, pp. 332–334. Amsterdam: Elsevier/Academic Press.
doi:10.1016/b978-0-12-088574-9.00006-9
[2-20] Hu, C. (2010). Modern semiconductor devices for integrated circuits. pp. 208. Upper Saddle River, N.J: Pearson Education.
[2-21] El-Kareh, B. (2009). Silicon Devices and Process Integration: Deep Submicron and Nano-Scale Technologies. pp 251–252. Boston, MA: Springer US.
[2-22] Suntola, T. (1992). Atomic layer epitaxy. Thin Solid Films, 216(1), 84–89. doi:10.1016/0040-6090(92)90874-b
[2-23] Li, P. H., & Chu, P. K. (2016). Thin film deposition technologies and processing of biomaterials. Thin Film Coatings for Biomaterials and Biomedical Applications, 3–28. doi:10.1016/b978-1-78242-453-6.00001-8
[2-24] Pan, D., Ma, L., Xie, Y., Jen, T. C., & Yuan, C. (2015). On the physical and chemical details of alumina atomic layer deposition: A combined experimental and numerical approach. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 33(2), 021511. doi:10.1116/1.4905726
[2-25] Kim, H., Lee, H.-B.-R., & Maeng, W.-J. (2009). Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films, 517(8), 2563–2580. doi:10.1016/j.tsf.2008.09.007
[2-26] Miikkulainen, V., Leskelä, M., Ritala, M., & Puurunen, R. L. (2013). Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. Journal of Applied Physics, 113(2), 021301. doi:10.1063/1.4757907
[2-27] Mistry, K., Allen, C., Auth, C., Beattie, B., Bergstrom, D., Bost, M., … Chau, R. (2007). A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging. 2007 IEEE International Electron Devices Meeting. doi:10.1109/iedm.2007.4418914
[2-28] Johnson, R. W., Hultqvist, A., & Bent, S. F. (2014). A brief review of atomic layer deposition: from fundamentals to applications. Materials Today, 17(5), 236–246. doi:10.1016/j.mattod.2014.04.026
[2-29] Schmidt, J., Merkle, A., Brendel, R., Hoex, B., de Sanden, M. C. M. van, & Kessels, W. M. M. (2008). Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3. Progress in Photovoltaics: Research and Applications, 16(6), 461–466. doi:10.1002/pip.823
[2-30] Platzer-Björkman, C., Zabierowski, P., Pettersson, J., Törndahl, T., & Edoff, M. (2010). Improved fill factor and open circuit voltage by crystalline selenium at the Cu(In,Ga)Se2/buffer layer interface in thin film solar cells. Progress in Photovoltaics: Research and Applications. doi:10.1002/pip.957
[2-31] Antila, L. J., Heikkilä, M. J., Mäkinen, V., Humalamäki, N., Laitinen, M., Linko, V., … Korppi-Tommola, J. E. I. (2011). ALD Grown Aluminum Oxide Submonolayers in Dye-Sensitized Solar Cells: The Effect on Interfacial Electron Transfer and Performance. The Journal of Physical Chemistry C, 115(33), 16720–16729. doi:10.1021/jp204886n
[2-32] Glunz, S.W., Grohe, A., Hermle, M., Hofmann, M., Janz, S., Roth, T., Schultz, O., Vetter, M., Martin, I., Ferré, R., Bermejo, S., Wolke, W., Warta, W., Preu, R., Willeke, G. (2005). Comparison of different dielectric passivation layers for application in industrially feasible high-efficiency crystalline silicon solar cells. 20th European Photovoltaic Solar Energy Conference and Exhibition. Barcelona, 6-10.
[2-33] Hannebauer, H., Falcon, T., Cunnusamy, J., & Dullweber, T. (2016). Single Print Metal Stencils for High-efficiency PERC Solar Cells. Energy Procedia, 98, 40–45. doi:10.1016/j.egypro.2016.10.079
[2-34] Dingemans, G., Terlinden, N. M., Pierreux, D., Profijt, H. B., van de Sanden, M. C. M., & Kessels, W. M. M. (2011). Influence of the Oxidant on the Chemical and Field-Effect Passivation of Si by ALD Al2O3. Electrochemical and Solid-State Letters, 14(1), H1. doi:10.1149/1.3501970
[2-35] Frascaroli, J., Seguini, G., Cianci, E., Saynova, D., van Roosmalen, J., & Perego, M. (2012). Surface passivation for ultrathin Al2O3 layers grown at low temperature by thermal atomic layer deposition. Physica Status Solidi (a), 210(4), 732–736. doi:10.1002/pssa.201200568
[2-36] Seguini, G., Cianci, E., Wiemer, C., Saynova, D., van Roosmalen, J. A. M., & Perego, M. (2013). Si surface passivation by Al2O3 thin films deposited using a low thermal budget atomic layer deposition process. Applied Physics Letters, 102(13), 131603. doi:10.1063/1.4800541
[2-37] Lee, H., Tachibana, T., Ikeno, N., Hashiguchi, H., Arafune, K., Yoshida, H., … Ogura, A. (2012). Interface engineering for the passivation of c-Si with O3-based atomic layer deposited AlOx for solar cell application. Applied Physics Letters, 100(14), 143901. doi:10.1063/1.3701280
[2-38] Knoops, H. C. M., Potts, S. E., Bol, A. A., & Kessels, W. M. M. (2015). Atomic Layer Deposition. Handbook of Crystal Growth, 1101–1134. doi:10.1016/b978-0-444-63304-0.00027-5
[2-39] Kwon, J., Dai, M., Halls, M. D., Langereis, E., Chabal, Y. J., & Gordon, R. G. (2008). In Situ Infrared Characterization during Atomic Layer Deposition of Lanthanum Oxide. The Journal of Physical Chemistry C, 113(2), 654–660. doi:10.1021/jp806027m
[2-40] Puurunen, R. L. (2005). Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. Journal of Applied Physics, 97(12), 121301. doi:10.1063/1.1940727
[2-41] Lownsbury, J. M., Gladden, J. A., Campbell, C. T., Kim, I. S., & Martinson, A. B. F. (2017). Direct Measurements of Half-Cycle Reaction Heats during Atomic Layer Deposition by Calorimetry. Chemistry of Materials, 29(20), 8566–8577. doi:10.1021/acs.chemmater.7b01491
[3-1] Semnani, D. (2017). Geometrical characterization of electrospun nanofibers. Electrospun Nanofibers, 151–180. doi:10.1016/b978-0-08-100907-9.00007-6
[3-2] STM-2XM 2-Channel Rate/Thickness Monitor- INFICON https://www.inficon.com/v1/attachment/e048e6c0-ae3b-42e1-b98e-794aa11dac0b/STM-2XM%20Product%20Sheet_2015_FNL.pdf
[3-3] Tipler, P. A., & Llewellyn, R. A. (2008). Modern Physics (Fifth Edition.). pp. 127-132. New York: W. H. Freeman.
[3-4] Hoex, B., Schmidt, J., Pohl, P., van de Sanden, M. C. M., & Kessels, W. M. M. (2008). Silicon surface passivation by atomic layer deposited Al2O3. Journal of Applied Physics, 104(4), 044903. doi:10.1063/1.2963707
[3-5] Vermang, B., Goverde, H., Simons, V., De Wolf, I., Meersschaut, J., Tanaka, S., … Mertens, R. (2012). A study of blister formation in ALD Al2O3 grown on silicon. 2012 38th IEEE Photovoltaic Specialists Conference. doi:10.1109/pvsc.2012.6317802
[4-1] Richter, A., Benick, J., Hermle, M., & Glunz, S. W. (2014). Reaction kinetics during the thermal activation of the silicon surface passivation with atomic layer deposited Al2O3. Applied Physics Letters, 104(6), 061606. doi:10.1063/1.4865901
[4-2] Benick, J., Richter, A., Li, T.-T. A., Grant, N. E., McIntosh, K. R., Ren, Y., … Glunz, S. W. (2010). Effect of a post-deposition anneal on Al2O3/Si interface properties. 2010 35th IEEE Photovoltaic Specialists Conference. doi:10.1109/pvsc.2010.5614148
[4-3] Zhu, L. Q., Li, X., Yan, Z. H., Zhang, H. L., & Wan, Q. (2012). Dual Function of Antireflectance and Surface Passivation of Atomic-Layer-Deposited Al2O3 Films. IEEE Electron Device Letters, 33(12), 1753–1755. doi:10.1109/led.2012.2219491
[4-4] Vandana, V., Batra, N., Gope, J., Singh, R., Panigrahi, J., Tyagi, S., … Singh, P. K. (2014). Effect of low thermal budget annealing on surface passivation of silicon by ALD based aluminum oxide films. Phys. Chem. Chem. Phys., 16(39), 21804–21811. doi:10.1039/c4cp03430a
[4-5] Getz, M. N., Povoli, M., & Monakhov, E. (2021). Effect of the native oxide on the surface passivation of Si by Al2O3. Journal of Applied Physics, 129(20), 205701.
[4-6] Kern, W. (1990). The Evolution of Silicon Wafer Cleaning Technology. Journal of The Electrochemical Society, 137(6), 1887. doi:10.1149/1.2086825
[4-7] Black, L. E., van de Loo, B. W. H., Macco, B., Melskens, J., Berghuis, W. J. H., & Kessels, W. M. M. (2018). Explorative studies of novel silicon surface passivation materials: Considerations and lessons learned. Solar Energy Materials and Solar Cells, 188, 182–189. doi:10.1016/j.solmat.2018.07.003
[4-8] Werner, F., Veith, B., Zielke, D., Kühnemund, L., Tegenkamp, C., Seibt, M., … Schmidt, J. (2011). Electronic and chemical properties of the c-Si/Al2O3 interface. Journal of Applied Physics, 109(11), 113701. doi:10.1063/1.3587227
[4-9] Verlaan, V., van den Elzen, L. R. J. G., Dingemans, G., van de Sanden, M. C. M., & Kessels, W. M. M. (2010). Composition and bonding structure of plasma-assisted ALD Al2O3films. Physica Status Solidi (c), 7, 976-979. doi:10.1002/pssc.200982891
[4-9] Hoex, B., Gielis, J. J. H., van de Sanden, M. C. M., & Kessels, W. M. M. (2008). On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3. Journal of Applied Physics, 104(11), 113703. doi:10.1063/1.3021091
[5-1] Hossain, M. A., Khoo, K. T., Cui, X., Poduval, G., Zhang, T., Li, X., … Hoex, B. (2019). Atomic layer deposition enabling higher efficiency solar cells: A review. Nano Materials Science. doi:10.1016/j.nanoms.2019.10.001
[5-2] Min, K. H., Choi, S., Jeong, M. S., Park, S., Kang, M. G., Lee, J. I., … Song, H. (2020). Wet Chemical Oxidation to Improve Interfacial Properties of Al2O3/Si and Interface Analysis of Al2O3/SiOx/Si Structure Using Surface Carrier Lifetime Simulation and Capacitance–Voltage Measurement. Energies, 13(7), 1803. doi:10.3390/en13071803
[5-3] Repo, P., Talvitie, H., Li, S., Skarp, J., & Savin, H. (2011). Silicon Surface Passivation by Al2O3: Effect of ALD Reactants. Energy Procedia, 8, 681–687. doi:10.1016/j.egypro.2011.06.201
[5-4] Von Gastrow, G., Li, S., Repo, P., Bao, Y., Putkonen, M., & Savin, H. (2013). Ozone-based Batch Atomic Layer Deposited Al2O3 for Effective Surface Passivation. Energy Procedia, 38, 890–894. doi:10.1016/j.egypro.2013.07.361
[5-5] Bao, Y., Li, S., von Gastrow, G., Repo, P., Savin, H., & Putkonen, M. (2015). Effect of substrate pretreatments on the atomic layer deposited Al2O3 passivation quality. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 33(1), 01A123. doi:10.1116/1.4901456
[5-6] Lüdera, T., Lauermann, T., Zuschlag, A., Hahn, G., & Terheiden, B. (2012). Al2O3/SiNx-Stacks at Increased Temperatures: Avoiding Blistering During Contact Firing. Energy Procedia, 27, 426–431. doi:10.1016/j.egypro.2012.07.088
[5-7] Kersten, F., Schmid, A., Bordihn, S., Müller, J. W., & Heitmann, J. (2013). Role of Annealing Conditions on Surface Passivation Properties of ALD Al2O3 Films. Energy Procedia, 38, 843–848. doi:10.1016/j.egypro.2013.07.354
[5-8] Hsu, C.-H., Cho, Y.-S., Wu, W.-Y., Lien, S.-Y., Zhang, X.-Y., Zhu, W.-Z., … Chen, S.-Y. (2019). Enhanced Si Passivation and PERC Solar Cell Efficiency by Atomic Layer Deposited Aluminum Oxide with Two-step Post Annealing. Nanoscale Research Letters, 14(1). doi:10.1186/s11671-019-2969-z
(此全文20241027後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *