帳號:guest(3.146.176.88)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:徐翊庭
作者(英文):Yi-Ting Hsu
論文名稱:以系統動態及因果語境模型應用於疫情時代下2025年台灣離岸風電裝置容量之影響評估
論文名稱(英文):2025 Taiwan Offshore Wind Power Capacity Assessment in the Era of COVID-19 Epidemic with the Application of System Dynamics and Causal Context Models
指導教授:褚志鵬
指導教授(英文):Chih-Peng Chu
口試委員:王中允
黃郁文
陳正杰
口試委員(英文):Chung-Yung Wang
Juh-Wen Hwang
Cheng-Chieh Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:運籌管理研究所
學號:610837013
出版年(民國):110
畢業學年度:110
語文別:英文
論文頁數:43
關鍵詞:綠色能源離岸風力發電因果語境模型系統動態學系統模擬
關鍵詞(英文):Green EnergyOffshore Wind PowerCausal Context ModelSystem DynamicsSystem Simulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:31
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
近年來,台灣社會發生無預警跳電事件引發各界對電力系統的質疑,因此,為了尋求替代能源以鞏固電力系統並兼顧淨零碳排放的國際共識,政府選擇發展離岸風電,並將其納入2025年國家發展專案項目。然而,COVID-19正於此專案項目之開始階段爆發,大幅削弱勞動力量能以及阻礙其供應鏈之運作,已造成「台電一期示範風場」電網併聯與試營運延宕至少半年之久,連帶其它風場開發亦受影響。故,本研究主旨為推測受COVID-19疫情影響之下的離岸風電是否能如期達成目標裝置容量;若否,則說明其延宕程度,並給予其建議與展望。

研究方法是以Vensim模擬軟體設計兩種因果語境模型,第一種模型是計算從預組裝港口到海上安裝所運作的前置時間,其使用台電一期示範風場之數據作為受疫情影響之參考值,而未受疫情影響之參考值取自匿名受訪者;第二種模型是運算2025年台灣離岸風場之總裝置容量與總發電量,其是以前者模型所分析之數據推論2025專案計劃內風場之延宕時程,並評估其總裝置容量。最後,分析結果顯示預測之總裝置容量少於原先計劃0.31百萬瓩。受到風速條件不穩定之影響,總發電量低於總裝置容量約三倍,此彰顯儲電技術之研發對於穩定風力能源是相輔相成的。為了有效攔截更多風能,風力機將有大型化之趨勢,故,預先規劃調整所需設備或建設,才能滿足未來台灣離岸風電發展之可期需求。
In recent years, the occurrence of random power outages in Taiwan has raised doubts on the security of the power system. In order to seek for alternative energy to reinforce the power system’s stability, and also to consider the global consensus of net-zero carbon emissions, the government has decided to develop offshore wind power (OWP) which has been taken as 2025 Taiwan national development project (2025 TWOWP). However, at the starting phase of this project, the breakout of COVID-19 has significantly reduced the labor capacity and even hindered the operation of its supply chain which has caused the delayed grid connection and trial operation of “Taipower Phase I Wind Farm” for six months at least, and other offshore wind farm (OWF) projects are also affected. Therefore, this subject is to assess the feasibility of 2025 TWOWP, and give our suggestion based on the study results.

There are two causal context models (CCM) we designed on Vensim software. The first is to illustrate the way how the lead time is accumulated from the pre-assembled port to offshore installation, which uses the data of Taipower Phase I as the reference values under the pandemic impact while the reference values without the pandemic impact are from the anonymous interviewees; The second is to perform the way how the total installed capacity and power generation are computed for 2025 TWOWP which the assumed schedule of each OWF will be forecasted by the analysis of the first model. The result shows that the forecasted installed capacity has a margin of 0.31 GW from the original planned installed capacity. Due to the unstable wind conditions, the output of power generation is about three times lower than the total installed capacity, which may suggest that the R&D of electricity storage technology is complementary to keep the stability of wind energy. In order to effectively capture more wind energy on sea, it is predictable that more large-sized wind turbines will become the new trend. Therefore, it is necessary to program and adjust the relative equipment or construction in advance to satisfy the expected demand of Taiwan offshore wind power development.
CHAPTER 1 INTRODUCTION 1
CHAPTER 1.1 RESEARCH BACKGROUND AND MOTIVATION 1
CHAPTER 1.2 RESEARCH OBJECTIVE 3
CHAPTER 1.3 RESEARCH PROCESS 3
CHAPTER 2 LITERATURE REVIEW 5
CHAPTER 2.1 KNOWLEDGE EXPLORATION ON OFFSHORE WIND POWER 5
CHAPTER 2.1.1 Brief Introduction of Offshore Wind Power development 5
CHAPTER 2.1.2 The Complexity Management in Wind-Power Supply Chain 6
CHAPTER 2.1.3 Transportation and Logistics of Offshore Installation 6
CHAPTER 2.2 THE THEORY OF CAUSAL CONTEXT MODEL AND SYSTEM DYNAMICS 9
CHAPTER 2.2.1 Theory of CCM 9
CHAPTER 2.2.2 Theory of SD 9
CHAPTER 2.3 LEAD TIME CONTROL 10
CHAPTER 3 RESEARCH METHODOLOGY 13
CHAPTER 3.1 CCM I 13
CHAPTER 3.2 CCM II 19
CHAPTER 4 MODEL APPLICATION AND RESULTS ANALYSIS 23
CHAPTER 5 CONCLUSION, SUGGESTION AND OUTLOOK 29
CHAPTER 5.1 CONCLUSION TO 2025 TWOWP 29
CHAPTER 5.2 SUGGESTION AND OUTLOOK TO TAIWAN OWP DEVELOPMENT 29
周桂蘭 (2020)。2020年全球再生能源現況報告。工業技術研究院:綠能與環境研究所,https://km.twenergy.org.tw/Document/reference_more?id=227。

黃建遠、郭坤成(2019)。離岸風機安裝。大地技師期刊第18期,頁57-60。

A. Edgecliffe-johnson (2021). Companies Pledging Net-Zero Targets Need to Show
Substance, Channel News Asia. [Online] Available: https://www.channelnewsasia.com/commentary/business-pledging-net-zero-sustainability-climate-change-targets-1883161

Bloomberg New Energy Finance. (2017) New Energy Outlook 2017. [Online] Available:
https://about.bnef.com/new-energy-outlook/.

C. Wustemeyer, R. Madlener, and D. W. Bunn (2015). A Stakeholder Analysis of Divergent Supply-Chain Trends for the European Onshore and Offshore Wind Installations. Energy Policy, 80, pp.36–44.[Online] Available: https://doi.org/10.1016/j.enpol.2015.01.017.

Cavana, R. Y., & Mares, E. D. (2004). Integrating critical thinking and systems thinking: From premises to causal loops. System Dynamics Review, 20(3), pp. 223–235. [Online] Available: https://doi.org/10.1002/sdr.294.

CAN (2021). News about the Impact of the Epidemic Disrupting the Shipping
Logistics Chain. [Online] Available: https://www.cna.com.tw/news/firstnews/202107040192.aspx.

C. J. Franco, M. Castaneda, and I. Dyner (2015). Simulating the new British Electricity-Market Reform. European Journal of Operational Research, 245, pp. 273–285. [Online] Available: https://doi.org/10.1016/j.ejor.2015.02.040.

Environmental Information Center (2021). News about Demo 3 Wind Farm Project.
[Online] Available: https://e-info.org.tw/node/232113.

Erik Pruyt (2013). Small System Dynamics Models for Big Issues: Triple Jump towards Real-World Complexity. Delft: TU Delft Library. 324p

E Finance Management (2021). Article of Lead Time – Meaning, Importance, How to
Improve, and More. Costing Terms. [Online] Available: https://efinancemanagement.com/costing-terms/lead-time.

F. M. Asif, C. Bianchi, A. Rashid, and C. M. Nicolescu (2012) Performance Analysis
of the Closed Loop Supply Chain. Jnl Remanufactur 2, 4. [Online] Available: https://doi.org/10.1186/2210-4690-2-4.

F. Schöneborn (2003). Strategisches controlling mit system dynamics. Heidelberg:
Physica-Verlag. [Online] Available: https://doi.org/10.1007/978-3-7908-2699-9.

G. Prostean, A. Badea, C. Vasar, and P. Octavian (2014). Risk Variables in Wind
Power Supply Chain. Procedia - Social and Behavioral Sciences, 124, pp. 124–132. [Online]Available: https://doi.org/10.1016/j.sbspro.2014.02.468.

Global Wind Energy Council (G.W.E.C.) (2021). Global Wind Energy Market Report.
[Online]Available:https://gwec.net/global-offshore-wind-report-2021/.

H. Qudrat-Ullah (2015). Modelling and Simulation in Service of Energy Policy.
Energy Procedia, 75, pp. 2819–2825. [Online] Available: https://doi.org/10.1016/j.egypro.2015.07.558.

Hardhour (2021). Article of Domino Effect. [Online] Available: https://www.hardhour.com/domino-effect/.

Industry Value Chain Platform Website: Wind Power Industry. [Online]Available:
https://ic.tpex.org.tw/introduce.php?ic=AB20.

IEA (2016). Key World Energy Statistics [Online] Available:
https://doi.org/10.1787/key_energ_stat-2016-en.

IEA (2021). Net Zero by 2050: A Roadmap for the Global Power Sector. [Online]
Available: https://www.iea.org/reports/net-zero-by-2050

Intergovernmental Panel on Climate Change (2018). Summary for Policymakers of
IPCC Special Report on Global Warming of 1.5°C approved by governments. [Online] Available:https://www.ipcc.ch/2018/10/08/summary-for-policymakers-of-ipcc-special-report-on-global-warming-of-1-5c-approved-by-governments/.

Isaac Dyner, and Erik R Larsen (2001). From Planning to Strategy in the Electricity Industry.Energy Policy, 29, pp. 1145–1154. [Online]Available:
https://doi.org/10.1016/S0301-4215(01)00040-4.

J. D. Linton, R. Klassen, and V. Jayaraman (2007). Sustainable Supply Chains: An
Introduction. Journal of Operations Management, 25, pp.1075–1082. [Online] Available:https://www.academia.edu/2323360/Sustainable_supply_chains_An_introduction.

J. Orjuela-Castro, M. Herrera-Ramirez, and W. Adarme-Jaimes (2017). Warehousing
and Transportation Logistics of Mango in Colombia: A System Dynamics Model. Revista Facultad de Ingenieria, 26, pp. 71–85. [Online] Available: https://doi.org/10.19053/01211129.

J. Yuan, S. Sun, J. Shen, Y. Xu, and C. Zhao (2014). Wind Power Supply Chain in China. [Online]Available: https://doi.org/10.1016/j.rser.2014.07.014.

John D. Sterman (2000). Business Dynamics, System Thinking and Modeling for a
Complex World, 19. [Online] Available: http://lst-iiep.iiep-unesco.org/cgi-bin/wwwi32.exe/[in=epidoc1.in]/?t2000=013598/(100).

J. D. W. Morecroft (2007). Strategic Modelling and Business Dynamics: A Feedback
Systems Approach. Chichester: Wiley.

J. Fernando (2021). Supply Chain Management (SCM). Investopedia. [Online]
Available: https://www.investopedia.com/terms/s/scm.asp.

K. Warren (2008). Strategic Management Dynamics. Chichester, West Sussex, England: Wiley.

Kelvin Leong (2021). Taiwan’s Power Outage Highlights Grid Vulnerability, Argus
Media News.[Online] Available: https://www.argusmedia.com/en/news/2214700-taiwans-power-outage-highlights-grid-vulnerability.

Lund, P. D. (2009). Effects of Energy Policies on Industry Expansion in Renewable
Energy, Renewable Energy, 34, pp. 53–64. [Online] Available:
https://doi.org/10.1016/j.renene.2008.03.018.

Lin G., Palopoli M., Dadwal V. (2020) From Causal Loop Diagrams to System Dynamics Models in a Data-Rich Ecosystem. In: Celi L., Majumder M., Ordóñez P., Osorio J., Paik K., Somai M. (eds) Leveraging Data Science for Global Health. Springer, Cham. [Online] Available: https://doi.org/10.1007/978-3-030-47994-7_6.

Milton M. Herrera, Isaac Dyner, and Federico Cosenz (2018). Alternative Energy
Policy for Mitigating the Asynchrony of the Wind-Power Industry’s Supply Chain in Brazil. Innovative Solutions for Sustainable Supply Chains, pp.199-221. [Online]Available: https://doi.org/10.1007/978-3-319-94322-0_8.

M. A. Rendon-Sagardi, C. Sanchez-Ramirez, G. Cortes-Robles, G. Alor-Hernandez, and M. G. Cedillo-Campos (2014). Dynamic Analysis of Feasibility in Ethanol Supply Chain for Biofuel Production in Mexico. Applied Energy, 123, pp. 358–367. [Online] Available: https://doi.org/10.1016/j.apenergy.2014.01.023.

Massachusetts Institute of Technology (1997). System Dynamics. [Online] Available:
http://web.mit.edu/sd-intro/.

O. Miltenberger, M. D. Potts (2021). Why Corporate Climate Pledges of ‘Net-Zero’ Emissions Should Trigger a Healthy Dose of Skepticism, The Conversation. [Online] Available:https://theconversation.com/why-corporate-climate-pledges-of-net-zero-emissions-should-trigger-a-healthy-dose-of-skepticism-156386.

P. L. Kunsch, and J. Friesewinkel (2014). Nuclear Energy Policy in Belgium after Fukushima. Energy Policy, 66, pp.462–474. [Online] Available: https://doi.org/10.1016/j.enpol.2013.11.035.

Roberts, E. (1988). Managerial Applications of System Dynamics. Cambridge, MA.: MIT Press.1, 35.

R. Black, K. Cullen, B. Fay, T. Hale, J. Lang, S. Mahmood and S. Smith (2021).
Taking Stock: A Global Assessment of Net Zero Targets, Energy&Climate Intelligence Unit.[Online] Available: https://www.greengrowthknowledge.org/research/taking-stock-global-assessment-net-zero-targets.

R.Poudineh, Craig Brown, Benjamin Foley (2017). Economics of Offshore Wind Power Challenges and Policy Considerations, V. [Online] Available: https://link.springer.com/book/10.1007/978-3-319-66420-0.

Richardson, G. P. (1991). Feedback thought in social science and systems theory. Philadelphia: University of Pennsylvania Press.

S. N. Grösser (2017). Complexity Management and System Dynamics Thinking. Dynamics of Long-Life Assets. Springer, Cham. [Online] Available: https://doi.org/10.1007/978-3-319-45438-2_5.

SiemensGamesa (2020). How It All Comes Together at Sea: Installing an Offshore Wind Farm, Youtube Channel. [Online] Available: https://www.youtube.com/watch?v=mDvS7tizetg.

Sterman, J. D. (2001). System dynamics modeling: Tools for learning in a complex
world. California Management Review, 43(4), pp. 8–25. [Online] Available: https://doi.org/10.2307/41166098.

Taipower Co. Ltd. Capacity Factor Statistics in Recent 5 years, Wind Power Operation. [Online]Available:https://www.taipower.com.tw/tc/page.aspx?mid=204&cid=1581&cchk=82fb957e-2fe8-49b6-90a9-b750387de936 .

Taiwan International Ports Co., Ltd(TIPC) (2020). Offshore Wind Power Transportation and Logistics.[Online] Available: https://report.nat.gov.tw/ReportFront/ReportDetail/detail?sysId=C10803351.

U.S. Energy Information Administration. What is the Difference between
Electricity Generation Capacity and Electricity Generation, FREQUENTLY ASKED QUESTIONS (FAQS). [Online] Available: https://www.eia.gov/tools/faqs/faq.php?id=101&t=3.

Vattenfall UK (2018). Time-Lapse Installation of Turbine at Vattenfall’s EOWDC Wind Farm. Youtube Channel. [Online] Available: https://www.youtube.com/watch?v=KjIVUzyhiXU.

Wolstenholme, E. (1990). System Enquiry. A system dynamics approach. Chichester: John Wiley and Sons. 1, 40.

Wind Taiwan Website. Taiwan Offshore Wind Farm Information. [Online] Available: https://www.windtaiwan.com/Windfarm.aspx.

Willam J. Stevenson (2018). Process Selection and Facility Layout, Operation Management, 13th edition, chapter 6, pp.271-273.

W. Musial (2005). Offshore Wind Energy Potential for the United States, Wind Powering America - Annual State Summit.

Will Kenton (2021). Article of Lead Time. Investopedia. [Online]
Available: https://www.investopedia.com/terms/l/leadtime.asp.

Wikipedia (2016). Smart grid. [Online] Available:
https://en.wikipedia.org/wiki/Smart_grid/.

X. Yang, and K. Bai (2010). Development and Prospects of Offshore Wind Power, 2010 World Non-Grid-Connected Wind Power and Energy Conference, pp. 1-4.[Online] Available:https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5673138&tag=1.

Y. Tian, K. Govindan, and Q. Zhu (2014). A System Dynamics Model Based on Evolutionary Game Theory for Green Supply Chain Management Diffusion Among Chinese Manufacturers. Journal of Cleaner Production, 80, pp. 96–105.[Online] Available: https://doi.org/10.1016/j.jclepro.2014.05.076.














(此全文20260208後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *