帳號:guest(18.224.54.255)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳立程
作者(英文):Li-Cheng Chen
論文名稱:全球暖化下福山亞熱帶雨林樹木的遷移現象
指導教授:孫義方
指導教授(英文):I-Fang Sun
口試委員:陳毓昀
陳一菁
張楊家豪
口試委員(英文):Yu-Yun Chen
I-Ching Chen
Chia-Hao Chang-Yang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:自然資源與環境學系
學號:610854003
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:59
關鍵詞:全球暖化遷移亞熱帶森林種子小苗空模型
關鍵詞(英文):global warmingmigrationsubtropical forestseedseedlingnull model
相關次數:
  • 推薦推薦:0
  • 點閱點閱:21
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
全球暖化引起的氣溫上升和降水變化,嚴重影響了樹種的存活率與生長率,間接改變了森林的碳、水循環。在全球暖化的影響下,物種會透過遷移來適應不斷變化的環境以避免生境喪失和物種滅絕。相同物種在不同海拔區間所受的溫度改變壓力不同,物種分布的上沿族群傾向增加或是擴張分布範圍,種子數量與小苗數量逐漸增加;而下沿族群面臨升溫壓力死亡率增加並縮小分布範圍,種子數量與小苗數量逐漸減少。本研究地點位於福山森林動態樣區(Fushan Forest Dynamics Plot, FFDP),目的是了解台灣常綠闊葉林物種是否產生遷移現象。本研究首先收集台灣植物誌等文獻,探討出現於FFDP各物種在台灣的海拔分布,藉此了解不同物種在FFDP的海拔環境下面臨的環境改變壓力,並將FFDP物種分成臨上界物種、中段物種與臨下界物種。本研究提出4項預測: 1. 臨上界物種比臨下界物種的遷移現象更加明顯,因為臨下界物種會有死亡的延遲。2. 臨下界物種的死亡率較其他物種高。3. 臨下界物種的種子量與小苗新增數會隨時間逐漸下降而臨上界物種的種子量與小苗新增數會逐漸上升。4. 臨上界物種與臨下界物種的種子量與小苗新增數變化趨勢會有顯著差異。本研究選擇了超過100棵個體以上的樹種(59種),計算2004和2019年各樹種分布範圍的平均海拔、上沿和下沿,以探討每個物種的海拔高度變化,並使用空模型 (null model)分析來檢驗每個物種其長期海拔高度變化是否顯著。研究結果顯示59種物種中有三分之一的物種其平均海拔有顯著向上的現象,但臨上界物種並沒有比臨下界物種更有顯著往高海拔遷移的趨勢。此外,臨下界物種的死亡率也沒有高於其他物種。利用ANCOVA分析比較臨上下界物種的種子產量與小苗新增數量,透過混合線性模型分析(LMM)以驗證預測3、4。結果並沒有發現臨上下界物種的種子產量與新增小苗數量的差異,也沒有發現臨上界物種的種苗增加或是臨下界物種的種苗減少的現象。研究結果表明FFDP物種對以溫度上升為基礎的預測遷移趨勢並不明顯,有許多可能影響物種遷移的其他因素,例如不同物種對溫度上升的反應不同,又或許是FFDP的微氣候變化對樹木的影響遠大於全球暖化所造成的影響,皆可能導致無法觀察到物種的遷移趨勢。
Climate change caused by global warming, including rising temperatures and changes in precipitation, has severely impacted many forest trees. Plants exhibited different strategy, such as migration, to adapt to the constantly changing environment to avoid habitat loss and species extinction. Migration refers to the current population distribution pattern change to a more suitable environment than it is in the past. The migration of plants is usually driven by increasing temperature, which population move to areas of high altitudes with relatively low temperatures. Past studies have pointed out that migration occurs mostly in high latitudes and temperate regions, and the response of tropical forests to rising temperatures is unclear. The purpose of this study is to understand the response mechanism of Taiwan's evergreen broad-leaved forest to climate change. Our Study is occurred in Fushan Subtropical Forest Dynamics Plot(FFDP),located in Taiwan. FFDP has rich forest resources and long-term forest dynamics research records. The relationship between forest dynamics records and temperature environmental factors is used to explore the mechanism of climate change on subtropical forests. First, I select tree species with more than 100 individuals (59 species), found the each species's mean elevation, leading edge and trailing edge of 2004 and 2019. Comparing the two of data, we can see the changes in altitude of each species, Then used the null model analysis to test whether the long-term altitude change of each species was significant. The results show that one third of the studied species have a significant upward trend in their average altitude, however, the upper species and lower species did not migrate to higher altitudes more significantly than the mid-range species. Further analysis to see whether the mortality rate of the critical species was higher than that of other species, but did not reveal the trend. Subsequent analyses using seedling and seed data for each species did not reveal an increase in seedlings of upper species or a decrease in seedlings of lower species. There are many possibilities that affect species migration, such as different species responding differently to rising temperatures or the Fushan microclimate change is much greater than global warming.
摘要 I
ABSTRACT II
致謝 III
目錄 V
圖目錄 VII
表目錄 VIII
第一章 前言 1
第二章 文獻探討 1
2.1 溫度上升對樹木的影響 1
2.2 森林對氣候變遷的反應 3
2.2.1 遷移 (migrate) 3
2.2.2 馴化 (acclimate) 4
2.2.3 適應 (adapt) 5
2.3 探討物種遷移 6
2.3.1 透過物種平均海拔探討遷移 6
2.3.2 透過物種分布範圍探討遷移 6
2.3.3 透過種子與小苗探討遷移 8
2.4 假說與預測 9
第三章 研究方法 9
3.1 研究地點與氣候資料 9
3.2 資料選取原則與海拔資料處理 11
3.3 物種平均海拔與分布範圍的空模型建立 12
3.4 樹木死亡率、種子、小苗的分析 13
第四章 結果 15
4.1 FFDP的溫度變化與臨上下界物種判斷 15
4.2 空模型分析 16
4.3 死亡率、種子量與新增小苗分析 18
第五章 討論 19
5.1 影響物種遷移的複雜原因 19
5.2 影響種子量與新增小苗變化的不同觀點 22
5.3 研究的改進空間 24
第六章 結論 25
第七章 引用文獻 27
附錄一 本研究之物種名錄 58



Adams, H. D., Macalady, A. K., Breshears, D. D., Allen, C. D., Stephenson, N. L., Saleska, S. R., Huxman, T. E., & McDowell, N. G. (2010). Climate-Induced Tree Mortality: Earth System Consequences. Transactions American Geophysical Union, 91(17), 153-154.

Adu-Bredu, S., Yokota, T., & Hagihara, A. (1997). Temperature effect on maintenance and growth respiration coefficients of young, field-grown hinoki cypress (Chamaecyparis obtusa). Ecological Research, 12(3), 357-362.

Alexander, J. M., Chalmandrier, L., Lenoir, J., Burgess, T. I., Essl, F., Haider, S., Kueffer, C., McDougall, K., Milbau, A., & Nuñez, M. A. (2018). Lags in the response of mountain plant communities to climate change. Global Change Biology, 24(2), 563-579.

Allen, Babiker, M., Chen, Y., de Coninck, H., Connors, S., van Diemen, R., Dube, O. P., Ebi, K. L., Engelbrecht, F., & Ferrat, M. (2018). Summary for Policymakers: Intergovernmental Panel on Climate Change

Aubin, I., Munson, A., Cardou, F., Burton, P., Isabel, N., Pedlar, J., Paquette, A., Taylor, A., Delagrange, S., & Kebli, H. (2016). Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environmental Reviews, 24(2), 164-186.

Becklin, K. M., Anderson, J. T., Gerhart, L. M., Wadgymar, S. M., Wessinger, C. A., & Ward, J. K. (2016). Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiology, 172(2), 635-649.

Bush, M. B., Silman, M. R., & Urrego, D. H. (2004). 48,000 years of climate and forest change in a biodiversity hot spot. Science, 303(5659), 827-829.

Chambers, J. Q., Higuchi, N., & Schimel, J. P. (1998). Ancient trees in Amazonia. Nature, 391(6663), 135-136.

Chang‐Yang, C. H., Lu, C. L., Sun, I. F., & Hsieh, C. F. (2013a). Flowering and Fruiting Patterns in a Subtropical Rain Forest, Taiwan. Biotropica, 45(2), 165-174.

Chang‐Yang, C. H., Lu, C. L., Sun, I. F., & Hsieh, C. F. (2013b). Long-term seedling dynamics of tree species in a subtropical rain forest, Taiwan. Taiwania, 58(1), 35-43.

Chang‐Yang, C. H., Sun, I. F., Tsai, C. H., Lu, C. L., & Hsieh, C. F. (2016). ENSO and frost codetermine decade‐long temporal variation in flower and seed production in a subtropical rain forest. Journal of Ecology, 104(1), 44-54.

Chen, C. C., & Chou, L. S. (1999). The diet of forest birds at Fushan Experimental Forest. Taiwan Journal of Forest Science, 14(3), 275-287.

Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024-1026.

Clark, J. S., Gelfand, A. E., Woodall, C. W., & Zhu, K. (2014). More than the sum of the parts: forest climate response from joint species distribution models. Ecological Applications, 24(5), 990-999.

Davis, M. B., & Shaw, R. G. (2001). Range shifts and adaptive responses to Quaternary climate change. Science, 292(5517), 673-679.

De Witte, L. C., Armbruster, G. F., Gielly, L., Taberlet, P., & Stoecklin, J. (2012). AFLP markers reveal high clonal diversity and extreme longevity in four key arctic-alpine species. Molecular Ecology, 21(5), 1081-1097.

Decker, R. R., Baskett, M. L., & Hastings, A. (2021). Trailing-edge zombie forests can increase population persistence in the face of climate change. BioRxiv [Preprint.].

Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N. E., Guisan, A., Willner, W., Plutzar, C., Leitner, M., & Mang, T. (2012). Extinction debt of high-mountain plants under twenty-first-century climate change. Nature Climate Change, 2(8), 619-622.

Dupoué, A., Trochet, A., Richard, M., Sorlin, M., Guillon, M., Teulieres‐Quillet, J., Vallé, C., Rault, C., Berroneau, M., & Berroneau, M. (2021). Genetic and demographic trends from rear to leading edge are explained by climate and forest cover in a cold‐adapted ectotherm. Diversity and Distributions, 27(2), 267-281.

Esper, J., Büntgen, U., Frank, D. C., Nievergelt, D., & Liebhold, A. (2007). 1200 years of regular outbreaks in alpine insects. Proceedings of the Royal Society B: Biological Sciences, 274(1610), 671-679.

Essl, F., Dullinger, S., Rabitsch, W., Hulme, P. E., Pyšek, P., Wilson, J. R., & Richardson, D. M. (2015). Historical legacies accumulate to shape future biodiversity in an era of rapid global change. Diversity and Distributions, 21(5), 534-547.

Feeley, K. J., Rehm, E. M., & Machovina, B. (2012). Perspective: the responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct? Frontiers of Biogeography, 4(2).

Feeley, K. J., Silman, M. R., Bush, M. B., Farfan, W., Cabrera, K. G., Malhi, Y., Meir, P., Revilla, N. S., Quisiyupanqui, M. N. R., & Saatchi, S. (2011). Upslope migration of Andean trees. Journal of Biogeography, 38(4), 783-791.

Gazda, A., Kościelniak, P., Hardy, M., Muter, E., Kędra, K., Bodziarczyk, J., Frączek, M., Chwistek, K., Różański, W., & Szwagrzyk, J. (2019). Upward expansion of distribution ranges of tree species: Contrasting results from two national parks in Western Carpathians. Science of the Total Environment, 653, 920-929.

Graae, B. J., Ejrnæs, R., Lang, S. I., Meineri, E., Ibarra, P. T., & Bruun, H. H. (2010). Strong microsite control of seedling recruitment in tundra. Oecologia, 166(2), 565-576.

Greenwood, S., Chen, J. C., Chen, C. T., & Jump, A. S. (2014). Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region. Global Change Biology, 20(12), 3756-3766.

Gustafson, E. J., Miranda, B. R., De Bruijn, A. M., Sturtevant, B. R., & Kubiske, M. E. (2017). Do rising temperatures always increase forest productivity? Interacting effects of temperature, precipitation, cloudiness and soil texture on tree species growth and competition. Environmental Modelling & Software, 97, 171-183.

Hall, S. J., McNicol, G., Natake, T., & Silver, W. L. (2015). Large fluxes and rapid turnover of mineral-associated carbon across topographic gradients in a humid tropical forest: insights from paired 14 C analysis. Biogeosciences, 12(8), 2471-2487.

Hampe, A., & Jump, A. S. (2011). Climate relicts: past, present, future. Annual Review of Ecology, Evolution, and Systematics, 42, 313-333.

Hampe, A., & Petit, R. J. (2005). Conserving biodiversity under climate change: the rear edge matters. Ecology Letters, 8(5), 461-467.

Hampton, J. G., Conner, A. J., Boelt, B., Chastain, T. G., & Rolston, P. (2016). Climate change: seed production and options for adaptation. Agriculture, 6(3), 33.

Hasanuzzaman, M., Nahar, K., Alam, M., Roychowdhury, R., & Fujita, M. (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences, 14(5), 9643-9684.

Hennon, P. E., D'Amore, D. V., Schaberg, P. G., Wittwer, D. T., & Shanley, C. S. (2012). Shifting climate, altered niche, and a dynamic conservation strategy for yellow-cedar in the North Pacific coastal rainforest. BioScience, 62(2), 147-158.

Ibáñez, I., Clark, J. S., LaDeau, S., & Lambers, J. H. R. (2007). Exploiting temporal variability to understand tree recruitment response to climate change. Ecological Monographs, 77(2), 163-177.

Iida, Y., Kohyama, T. S., Swenson, N. G., Su, S. H., Chen, C. T., Chiang, J. M., & Sun, I. F. (2014). Linking functional traits and demographic rates in a subtropical tree community: the importance of size dependency. Journal of Ecology, 102(3), 641-650.

Jansson, J. K., & Hofmockel, K. S. (2020). Soil microbiomes and climate change. Nature Reviews Microbiology, 18(1), 35-46.

Jepsen, J. U., Kapari, L., Hagen, S. B., Schott, T., Vindstad, O. P. L., Nilssen, A. C., & Ims, R. A. (2011). Rapid northwards expansion of a forest insect pest attributed to spring phenology matching with sub-Arctic birch. Global Change Biology, 17(6), 2071-2083.

Jump, A. S., Huang, T. J., & Chou, C. H. (2012). Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography, 35(3), 204-210.

Kang, R. L., Lin, T. C., Jan, J. F., & Hwong, J. L. (2005). Changes in the normalized difference vegetation index (NDVI) at the Fushan Experimental Forest in relation to typhoon Bilis of 2000. Taiwan Journal of Forest Science, 20(1), 73-87.

Kelly, C. K., Chase, M. W., De Bruijn, A., Fay, M. F., & Woodward, F. I. (2003). Temperature‐based population segregation in birch. Ecology Letters, 6(2), 87-89.

Kremer, A., Ronce, O., Robledo‐Arnuncio, J. J., Guillaume, F., Bohrer, G., Nathan, R., Bridle, J. R., Gomulkiewicz, R., Klein, E. K., & Ritland, K. (2012). Long‐distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 15(4), 378-392.

Kroiss, S. J., & HilleRisLambers, J. (2015). Recruitment limitation of long-lived conifers: implications for climate change responses. Ecology, 96(5), 1286-1297.

Kudo, G., Nishikawa, Y., Kasagi, T., & Kosuge, S. (2004). Does seed production of spring ephemerals decrease when spring comes early? Ecological Research, 19(2), 255-259.

Lasky, J. R., Sun, I. F., Su, S. H., Chen, Z. S., & Keitt, T. H. (2013). Trait‐mediated effects of environmental filtering on tree community dynamics. Journal of Ecology, 101(3), 722-733.

Lenoir, J., Gégout, J. C., Guisan, A., Vittoz, P., Wohlgemuth, T., Zimmermann, N. E., Dullinger, S., Pauli, H., Willner, W., & Svenning, J. C. (2010). Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography, 33(2), 295-303.

Lenoir, J., Gégout, J. C., Marquet, P., De Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768-1771.

Li, H. L., & Huang, T. C. (1993–2003). Flora of Taiwan (Editorial committee of the Flora of Taiwan. 2nd ed.). Taipei, Taiwan: Department of Botany, National Taiwan University.

Lin, K. C., Hamburg, S. P., Tang, S. l., Hsia, Y. J., & Lin, T. C. (2003). Typhoon effects on litterfall in a subtropical forest. Canadian Journal of Forest Research, 33(11), 2184-2192.

Lin, T. C. (2020). Reevaluating the Theory of Gap Dynamics Using Studies of Typhoon Disturbance at the Fushan Experimental Forest, Northeastern Taiwan. Taiwan Journal of Forest Science, 35(1), 97-102.

Lin, T. C., Hamburg, S. P., Hsia, Y. J., Lin, T. T., King, H. B., Wang, L. J., & Lin, K. C. (2003). Influence of typhoon disturbances on the understory light regime and stand dynamics of a subtropical rain forest in northeastern Taiwan. Journal of Forest Research, 8(3), 139-145.

Lin, T. C., Hamburg, S. P., Lin, K. C., Wang, L. J., Chang, C. T., Hsia, Y. J., Vadeboncoeur, M. A., Mabry McMullen, C. M., & Liu, C. P. (2011). Typhoon disturbance and forest dynamics: lessons from a northwest Pacific subtropical forest. Ecosystems, 14(1), 127-143.

Liu, X. Z., & Huang, B. (2000). Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Science, 40(2), 503-510.

Lu, S. Y., Sun, M. Y., Fu, H. C., & Huang, H. H. (2021). Study of Long-Term Trends of Changes in Rainfall and Temperature at the Fushan Experimental Forest. Taiwan Journal of Forest Science, 36(3), 235-244.

Maclean, I. M., Hopkins, J. J., Bennie, J., Lawson, C. R., & Wilson, R. J. (2015). Microclimates buffer the responses of plant communities to climate change. Global Ecology and Biogeography, 24(11), 1340-1350.

Markewitz, D., Devine, S., Davidson, E. A., Brando, P., & Nepstad, D. C. (2010). Soil moisture depletion under simulated drought in the Amazon: impacts on deep root uptake. New Phytologist, 187(3), 592-607.

Martini, F., Chang‐Yang, C. H., & Sun, I. F. (2022). Variation in biotic interactions mediates the effects of masting and rainfall fluctuations on seedling demography in a subtropical rainforest. Journal of Ecology, 110(4), 762-771.

Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., & Pidcock, R. (2018). Global warming of 1.5° C. Intergovernmental Panel on Climate Change, 1(5).

Matías, L., González-Díaz, P., & Jump, A. S. (2014). Larger investment in roots in southern range-edge populations of Scots pine is associated with increased growth and seedling resistance to extreme drought in response to simulated climate change. Environmental and Experimental Botany, 105, 32-38.

Matías, L., & Jump, A. S. (2014). Impacts of predicted climate change on recruitment at the geographical limits of Scots pine. Journal of Experimental Botany, 65(1), 299-310.

Maza, M., Adler, K., Ramos, D., Garcia, A. M., & Nepf, H. (2017). Velocity and drag evolution from the leading edge of a model mangrove forest. Journal of Geophysical Research: Oceans, 122(11), 9144-9159.

McDowell, N., Allen, C. D., Anderson‐Teixeira, K., Brando, P., Brienen, R., Chambers, J., Christoffersen, B., Davies, S., Doughty, C., & Duque, A. (2018). Drivers and mechanisms of tree mortality in moist tropical forests. New Phytologist, 219(3), 851-869.

Meineri, E., Spindelböck, J., & Vandvik, V. (2013). Seedling emergence responds to both seed source and recruitment site climates: a climate change experiment combining transplant and gradient approaches. Plant Ecology, 214(4), 607-619.

Meinzer, F. C., Johnson, D. M., Lachenbruch, B., McCulloh, K. A., & Woodruff, D. R. (2009). Xylem hydraulic safety margins in woody plants: coordination of stomatal control of xylem tension with hydraulic capacitance. Functional Ecology, 23(5), 922-930.

Milbau, A., Shevtsova, A., Osler, N., Mooshammer, M., & Graae, B. J. (2013). Plant community type and small-scale disturbances, but not altitude, influence the invasibility in subarctic ecosystems. New Phytologist, 197(3), 1002-1011.

Mitchard, E. T. A. (2018). The tropical forest carbon cycle and climate change. Nature, 559(7715), 527-534.

Molau, U., & Larsson, E. L. (2000). Seed rain and seed bank along an alpine altitudinal gradient in Swedish Lapland. Canadian Journal of Botany, 78(6), 728-747.

Morley, P. J., Donoghue, D. N. M., Chen, J. C., & Jump, A. S. (2019). Quantifying structural diversity to better estimate change at mountain forest margins. Remote Sensing of Environment, 223, 291-306.

Muller-Landau, H. C., Wright, S. J., Calderón, O., Hubbell, S. P., & Foster, R. B. (2002). Assessing recruitment limitation: concepts, methods and case-studies from a tropical forest. Seed Dispersal and Frugivory: Ecology, Evolution and Conservation, 35-53.

Naoe, S., Tayasu, I., Sakai, Y., Masaki, T., Kobayashi, K., Nakajima, A., Sato, Y., Yamazaki, K., Kiyokawa, H., & Koike, S. (2016). Mountain-climbing bears protect cherry species from global warming through vertical seed dispersal. Current Biology, 26(8), R315-R316.

Neuschulz, E. L., Merges, D., Bollmann, K., Gugerli, F., & Böhning‐Gaese, K. (2018). Biotic interactions and seed deposition rather than abiotic factors determine recruitment at elevational range limits of an alpine tree. Journal of Ecology, 106(3), 948-959.

O'Sullivan, K. S., Ruiz‐Benito, P., Chen, J. C., & Jump, A. S. (2020). Onward but not always upward: individualistic elevational shifts of tree species in subtropical montane forests. Ecography, 44(1), 112-123.

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637-669.

Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37-42.

Peereman, J., Hogan, J. A., & Lin, T. C. (2020). Assessing typhoon-induced canopy damage using vegetation indices in the Fushan Experimental Forest, Taiwan. Remote Sensing, 12(10), 1654.

Penuelas, J., Ogaya, R., Boada, M., & Jump, A. S. (2007). Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography, 30(6), 829-837.

Petit, R. J., Hu, F. S., & Dick, C. W. (2008). Forests-of-the-past-a-window-to-future changes. Science, 320(5882), 1450-1452.

Phillips, O. L., & Gentry, A. H. (1994). Increasing turnover through time in tropical forests. Science, 263(5149), 954-958.

Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta‐analysis. New Phytologist, 182(3), 565-588.

Pureswaran, D. S., Roques, A., & Battisti, A. (2018). Forest insects and climate change. Current Forestry Reports, 4(2), 35-50.

Randin, C. F., Engler, R., Normand, S., Zappa, M., Zimmermann, N. E., Pearman, P. B., Vittoz, P., Thuiller, W., & Guisan, A. (2009). Climate change and plant distribution: local models predict high-elevation persistence. Global Change Biology, 15(6), 1557-1569.

Sage, R. F., Way, D. A., & Kubien, D. S. (2008). Rubisco, Rubisco activase, and global climate change. Journal of Experimental Botany., 59(7), 1581-1595.

Sendall, K. M., Reich, P. B., Zhao, C., Jihua, H., Wei, X., Stefanski, A., Rice, K., Rich, R. L., & Montgomery, R. A. (2015). Acclimation of photosynthetic temperature optima of temperate and boreal tree species in response to experimental forest warming. Global Change Biology, 21(3), 1342-1357.

Sheth, S. N., & Angert, A. L. (2018). Demographic compensation does not rescue populations at a trailing range edge. Proceedings of the National Academy of Sciences, 115(10), 2413-2418.

Sidder, A. M., Kumar, S., Laituri, M., & Sibold, J. S. (2016). Using spatiotemporal correlative niche models for evaluating the effects of climate change on mountain pine beetle. Ecosphere, 7(7), e01396.

Su, S. H., Chang-Yang, C., Lu, C., Tsui, C., Lin, T., Lin, C., Chiou, W., Kuan, L., Chen, Z., & Hsieh, C. (2007). Fushan Subtropical Forest Dynamics Plot: Tree Species Characteristics and Distribution Patterns. Taipei, Taiwan.

Swaine, M., Lieberman, D., & Putz, F. E. (1987). The dynamics of tree populations in tropical forest: a review. Journal of Tropical Ecology, 3(4), 359-366.

Thang, T. H., Thu, A. M., & Chen, J. (2020). Tree species of tropical and temperate lineages in a tropical Asian montane forest show different range dynamics in response to climate change. Global Ecology and Conservation, 22.

Thompson, L. M., Faske, T. M., Banahene, N., Grim, D., Agosta, S. J., Parry, D., Tobin, P. C., Johnson, D. M., & Grayson, K. L. (2017). Variation in growth and developmental responses to supraoptimal temperatures near latitudinal range limits of gypsy moth Lymantria dispar (L.), an expanding invasive species. Physiological Entomology, 42(2), 181-190.

Travers‐Smith, H. Z., & Lantz, T. C. (2020). Leading‐edge disequilibrium in alder and spruce populations across the forest–tundra ecotone. Ecosphere, 11(7), e03118.

Ullah, A., Nadeem, F., Nawaz, A., Siddique, K. H., & Farooq, M. (2022). Heat stress effects on the reproductive physiology and yield of wheat. Journal of Agronomy and Crop Science, 208(1), 1-17.

Urrego, D. H., Bush, M. B., & Silman, M. R. (2010). A long history of cloud and forest migration from Lake Consuelo, Peru. Quaternary Research, 73(2), 364-373.

Viana, D. S., Santamaría, L., & Figuerola, J. (2016). Migratory birds as global dispersal vectors. Trends in Ecology & Evolution, 31(10), 763-775.

Wang, H. C., Friend, A., & Huang, C. Y. (2017). Simulating the effects of typhoon-induced defoliation on forest dynamics using a process-based model in a subtropical forest. Paper presented at the 2017 Institute of Electrical and Electronics Engineers International Geoscience and Remote Sensing Symposium.

Wang, J., Gan, Y., Clarke, F., & McDonald, C. (2006). Response of chickpea yield to high temperature stress during reproductive development. Crop Science, 46(5), 2171-2178.

Wang, T., Wang, G., Innes, J., Nitschke, C., & Kang, H. (2016). Climatic niche models and their consensus projections for future climates for four major forest tree species in the Asia–Pacific region. Forest Ecology and Management, 360, 357-366.

Wilfried, T. (2007). Biodiversity: Climate change and the ecologist. Nature, 448(7153), 550-552.

Zhu, K., Woodall, C. W., Ghosh, S., Gelfand, A. E., & Clark, J. S. (2014). Dual impacts of climate change: forest migration and turnover through life history. Global Change Biology, 20(1), 251-264.

Zuleta, D., Arellano, G., Muller‐Landau, H. C., McMahon, S. M., Aguilar, S., Bunyavejchewin, S., Cárdenas, D., Chang‐Yang, C. H., Duque, A., & Mitre, D. (2022). Individual tree damage dominates mortality risk factors across six tropical forests. New Phytologist, 233(2), 705-721.

呂福原, 歐辰雄, & 呂金誠. (1999). 台灣樹木解說 (Vol. 1-4). 台灣: 行政院研究發展考核委員會.

林則桐, 王相華, & 蘇聲欣. (2004). 福山闊葉林長期動態研究. 行政院農業委員會.

林則桐, 王相華, & 蘇聲欣. (2009). 福山闊葉林長期動態研究(II). 行政院農業委員會.

孫義方. (2014). 全球暖化對台灣森林生態系影響之初探. 科技部.

孫義方. (2019). 福山森林動態樣區複查計畫. 行政院農業委員會.

孫義方, & 張楊家豪. (2006). 福山森林動態樣區種子雨及喬木小苗長期監測計畫. 行政院農業委員會.

許晃雄, 周佳, 陳維婷, 羅敏輝, 李明安, 許晃雄, 洪志誠, 鄒治華, 盧孟明, 洪致文, 陳正達, & 鄭兆尊. (2017). 台灣氣候變遷科學報告2017-物理現象與機制. 新北市: 國家災害防救科技中心.

陳玉峰. (2001). 台灣植被誌. 台北: 前衛.

陳朝圳, & 王慈憶. (2009). 氣候變遷對台灣森林之衝擊評估與因應策略. 林業研究專訊, 16(5), 1-5.

錢崇澍, & 陳煥鏞. (1995). 中國植物誌 (中國科學院中國植物誌編輯委員會. Vol. 31-49). 中國: 科學.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *