帳號:guest(18.219.95.160)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李宜霖
作者(英文):YI-LIN LI
論文名稱:台灣亞熱帶雨林樹種生活史策略隨個體發育之轉變現象
指導教授:孫義方
指導教授(英文):I-Fang Sun
口試委員:陳毓昀
張楊家豪
林宜靜
口試委員(英文):Yu-Yun Chen
Chia-Hao Chang-Yang
Yi-Ching Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:自然資源與環境學系
學號:610854006
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:60
關鍵詞:生活史策略資源分配策略耐受性死亡率對資源反應性個體發育轉變
關鍵詞(英文):Life-history strategiesResource allocation strategiesToleranceResponsivenessOntogenetic shift
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
森林環境資源分布的異質性與植物的生活史策略分化,是棲位生態學中討論物種共存的關鍵,而物種的耐受性策略一直是熱門議題。然而不同生活史階段植物遇到的環境選汰壓力與資源條件並非一成不變,物種的生活史策略也可能隨之轉換,但是其在幼樹至成樹階段策略如何變化的相關研究卻不多。本研究依理論前人基礎,以物種中個體的生長速率表現作為其所在環境資源條件的簡化指標,將由廣義線性迴歸模型對其死亡機率進行預測,藉由耐受性 (生長速率為零時之死亡率) 及對資源反應性 (死亡率隨生長速率增加下降的程度) 更進一步描述物種的資源分配策略,並探討福山亞熱帶森林48個物種的資源分配策略在幼樹與成樹間是否出現策略轉變現象。研究另以葉面積指數 (Leaf Area Index, LAI) 以及由離子交換樹脂取得之土壤化學養分含量討論物種幼樹生長速率與環境資源因子的關係。在死亡率預測模型的結果中,能觀察到福山物種隨個體成長而有策略轉變現象,且皆為死亡率對資源反應的物種。其中多數物種呈現資源越多的個體分配資源至維持存活的比例越多,且其程度隨成長而逐漸遞減的策略變化趨勢;僅柏拉木與大明橘呈現資源越多的個體分配資源至維持存活的比例越多,且其程度隨成長而逐漸增加的策略變化趨勢。而以零生長死亡率作為幼樹耐受性指標的結果顯示,本研究無法在先驅物種、極耐受性物種以及多數灌木樹種中觀察到策略轉變現象,此結果符合假說預期。在環境資源與幼樹生長速率分析方面,環境因子顯著與否在物種的資源分配策略無法觀察到明顯的趨勢,研判 葉面積指數 與土壤資料對植物幼樹生長的解釋性十分有限。未來可能需要在時間與空間上更精細的環境資源及生物間競爭資料作為解釋植物生長速率的參數,才有機會驗證不同策略物種對資源需求的實際情形。
1. 前言 1
2. 文獻回顧 3
2.1 耐受性策略理論 3
2.2 以生長-死亡關係探討資源分配策略 4
2.3 生活史策略的轉變現象 5
3. 研究假說 7
4. 材料與方法 9
4.1 研究地區-福山動態樣區 9
4.2 研究資料 9
4.2.1 福山樣區每木調查 9
4.2.2 環境因子-葉面積指數 9
4.2.3 環境因子-土壤資料 10
4.3 資料處理 10
4.3.1 環境因子空間內插 10
4.3.2 土壤養分主成分分析 11
4.4 資料分析 11
4.4.1 死亡率預測模型 11
4.4.2 環境資源與幼樹生長速率迴歸模型 12
5. 研究結果 15
5.1 死亡率預測模型分析結果 15
5.1.1 死亡率對資源不反應策略 15
5.1.2 死亡率對資源反應策略而無策略轉變現象 15
5.1.3 福山樹種的生活史策略轉變現象 15
5.2 環境資源與幼樹生長速率分析 16
6. 討論 19
6.1 死亡率預測模型分析結果 19
6.1.1 死亡率對資源不反應策略 19
6.1.2 死亡率對資源反應策略與生活史策略轉變現象 19
6.1.3 福山樹種的耐受性 21
6.2 環境資源與幼樹生長速率分析 22
7. 結論與建議 25
8. 參考文獻 26
9. 圖 31
10. 表 45
11. 附錄 51
Abdu, N. (2006). Soil-phosphorus extraction methodologies: A review. African Journal of Agricultural Research, 1(5), 159-161.
Bache, B. W. (2008). Base Saturation. In Chesworth, W. (Ed.), Encyclopedia of Soil Science (pp. 52-54). Dordrecht: Springer Netherlands.
Baltzer, J. L., & Thomas, S. C. (2007). Determinants of whole-plant light requirements in Bornean rain forest tree saplings. Journal of Ecology, 95(6), 1208-1221. doi:https://doi.org/10.1111/j.1365-2745.2007.01286.x
Bazzaz, F. A., & Carlson, R. W. (1982). Photosynthetic acclimation to variability in the light environment of early and late successional plants. Oecologia, 54(3), 313-316. doi:10.1007/BF00379999
Björkman, O. (1981). Responses to different quantum flux densities. In Lange, O. L., Nobel, P. S., Osmond, C. B., & Ziegler, H. (Eds.), Physiological Plant Ecology I: Responses to the Physical Environment (pp. 57-107). Berlin, Heidelberg: Springer Berlin Heidelberg.
Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211-243. doi:https://www.jstor.org/stable/2984418
Chang, C. T., Lee Shaner, P. J., Wang, H. H., & Lin, T. C. (2020). Resilience of a subtropical rainforest to annual typhoon disturbance: Lessons from 25-year data of leaf area index. Forest Ecology and Management, 470-471, 118210. doi:https://doi.org/10.1016/j.foreco.2020.118210
Chapin, F. S. (1980). The mineral nutrition of wild plants. Annual Review of Ecology and Systematics, 11(1), 233-260. doi:10.1146/annurev.es.11.110180.001313
Chazdon, R. L., & Fetcher, N. (1984). Photosynthetic light environments in a lowland tropical rain forest in costa rica. Journal of Ecology, 72(2), 553-564. doi:10.2307/2260066
Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of Ecology and Systematics, 31(1), 343-366. doi:10.1146/annurev.ecolsys.31.1.343
Chi, C.-H., McEwan, R. W., Chang, C.-T., Zheng, C., Yang, Z., Chiang, J.-M., & Lin, T.-C. (2015). Typhoon disturbance mediates elevational patterns of forest structure, but not species diversity, in humid monsoon Asia. Ecosystems, 18(8), 1410-1423. doi:10.1007/s10021-015-9908-3
Coley, P. D., Bryant, J. P., & Chapin, F. S. (1985). Resource availability and plant antiherbivore defense. Science, 230(4728), 895-899.
Condit, R., Ashton, P., Bunyavejchewin, S., Dattaraja, H. S., Davies, S., Esufali, S., . . . Zillio, T. (2006). The importance of demographic niches to tree diversity. Science, 313(5783), 98-101. doi:10.1126/science.1124712
Craine, J. M., & Reich, P. B. (2005). Leaf-level light compensation points in shade-tolerant woody seedlings. New Phytologist, 166(3), 710-713. doi:https://doi.org/10.1111/j.1469-8137.2005.01420.x
Dalling, J. W., Winter, K., Nason, J. D., Hubbell, S. P., Murawski, D. A., & Hamrick, J. L. (2001). The unusual life history of Alseis blackiana: A shade-persistent pioneer tree? Ecology, 82(4), 933-945.
Dani, K. G. S., & Kodandaramaiah, U. (2019). Ageing in trees: Role of body size optimization in demographic senescence. Perspectives in Plant Ecology, Evolution and Systematics, 36, 41-51. doi:10.1016/j.ppees.2018.10.002
Dayrell, R. L. C., Arruda, A. J., Pierce, S., Negreiros, D., Meyer, P. B., Lambers, H., & Silveira, F. A. O. (2018). Ontogenetic shifts in plant ecological strategies. Functional Ecology, 32(12), 2730-2741. doi:https://doi.org/10.1111/1365-2435.13221
Donohue, K., de Casas, R. R., Burghardt, L., Kovach, K., & Willis, C. G. (2010). Germination, Postgermination Adaptation, and Species Ecological Ranges. Annual Review of Ecology, Evolution, and Systematics, 41(1), 293-319. doi:10.1146/annurev-ecolsys-102209-144715
Feng, J. Y., Zhao, K. N., He, D., Fang, S. Q., Lee, T. M., Chu, C. J., & He, F. L. (2018). Comparing shade tolerance measures of woody forest species. Peerj, 6, 19. doi:10.7717/peerj.5736
Grime, J. P. (1977). Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist, 111(982), 1169-1194.
Grubb, P. J. (2015). Trade-offs in interspecific comparisons in plant ecology and how plants overcome proposed constraints. Plant Ecology & Diversity, 1-31. doi:10.1080/17550874.2015.1048761
Haque, E., Kashem, A., & Osman, K. T. (2013). Extractable phosphorus contents of some soils of bangladesh and their correlation with phosphorus concentration in rice Leaves. Open Journal of Soil Science, 03(02), 115-122. doi:10.4236/ojss.2013.32013
Herms, D. A., & Mattson, W. J. (1992). The dilemma of plants: to grow or defend. The Quarterly Review of Biology, 67(3), 283-335. doi:10.1086/417659
Iida, Y., Kohyama, T. S., Swenson, N. G., Su, S.-H., Chen, C.-T., Chiang, J.-M., & Sun, I. F. (2014). Linking functional traits and demographic rates in a subtropical tree community: the importance of size dependency. Journal of Ecology, 102(3), 641-650. doi:10.1111/1365-2745.12221
Iida, Y., & Swenson, N. G. (2020). Towards linking species traits to demography and assembly in diverse tree communities: Revisiting the importance of size and allocation. ECOLOGICAL RESEARCH, 35(6), 947-966. doi:10.1111/1440-1703.12175
Kenfack, D., Chuyong, G. B., Condit, R., Russo, S. E., & Thomas, D. W. (2014). Demographic variation and habitat specialization of tree species in a diverse tropical forest of Cameroon. Forest Ecosystems, 1(1). doi:10.1186/s40663-014-0022-3
Kitajima, K. (1994). Relative importance of photosynthetic traits and allocation patterns as correlates of seedling shade tolerance of 13 tropical trees. Oecologia, 98(3), 419-428. doi:10.1007/BF00324232
Kneeshaw, D. D., Kobe, R. K., Coates, K. D., & Messier, C. (2006). Sapling size influences shade tolerance ranking among southern boreal tree species. Journal of Ecology, 94(2), 471-480. doi:10.1111/j.1365-2745.2005.01070.x
Kobe, R. K. (1996). Intraspecific variation in sapling mortality and growth predicts geographic variation in forest composition. Ecological Monographs, 66(2), 181-201. doi:10.2307/2963474
Kobe, R. K., Pacala, S. W., Silander Jr, J. A., & Canham, C. D. (1995). Juvenile Tree Survivorship as a Component of Shade Tolerance. Ecological Applications, 5(2), 517-532. doi:https://doi.org/10.2307/1942040
Kunstler, G., Coomes, D. A., & Canham, C. D. (2009). Size-dependence of growth and mortality influence the shade tolerance of trees in a lowland temperate rain forest. Journal of Ecology, 97(4), 685-695. doi:10.1111/j.1365-2745.2009.01482.x
Kuo, Y.-L., & Yeh, C.-L. (2015). Photosynthetic capacity and shade tolerance of 180 native broadleaf tree species in Taiwan. Taiwan J For Sci, 30(4), 229-243.
Lin, T.-C., Hamburg, S. P., Hsia, Y.-J., Lin, T.-T., King, H.-B., Wang, L.-J., & Lin, K.-C. (2003). Influence of typhoon disturbances on the understory light regime and stand dynamics of a subtropical rain forest in northeastern Taiwan. Journal of Forest Research, 8(3), 139-145. doi:10.1007/s10310-002-0019-6
Lin, T.-C., Hamburg, S. P., Lin, K.-C., Wang, L.-J., Chang, C.-T., Hsia, Y.-J., . . . Liu, C.-P. (2011). Typhoon disturbance and forest dynamics: lessons from a northwest pacific subtropical forest. Ecosystems, 14(1), 127-143. doi:10.1007/s10021-010-9399-1
Lu, R., Qiao, Y., Wang, J., Zhu, C., Cui, E., Xu, X., . . . Xia, J. (2021). The U‐shaped pattern of size‐dependent mortality and its correlated factors in a subtropical monsoon evergreen forest. Journal of Ecology, 109(6), 2421-2433. doi:10.1111/1365-2745.13652
Lusk, C. H. (2004). Leaf area and growth of juvenile temperate evergreens in low light: species of contrasting shade tolerance change rank during ontogeny. Functional Ecology, 18(6), 820-828. doi:10.1111/j.0269-8463.2004.00897.x
Mabry, C. M., Hamburg, S. P., Lin, T.-C., Horng, F.-W., King, H.-B., & Hsia, Y.-J. (1998). Typhoon disturbance and stand-level damage patterns at a subtropical forest in Taiwan. Biotropica, 30(2), 238-250. doi:10.1111/j.1744-7429.1998.tb00058.x
Nagelkerke, N. J. D. (1991). A note on a general definition of the coefficient of determination. Biometrika, 78(3), 691-692. doi:10.1093/biomet/78.3.691
Niinemets, U. (1998). Growth of young trees of Acer platanoides and Quercus robur along a gap-understory continuum: Interrelationships between allometry, biomass partitioning, nitrogen, and shade tolerance. International Journal of Plant Sciences, 159(2), 318-330. doi:10.1086/297553
Pacala, S. W., Canham, C. D., Saponara, J., Silander Jr, J. A., Kobe, R. K., & Ribbens, E. (1996). Forest models defined by field measurements: estimation, error analysis and dynamics. Ecological Monographs, 66(1), 1-43. doi:https://doi.org/10.2307/2963479
Parish, J. A. D., & Bazzaz, F. A. (1985). Ontogenetic niche shifts in old-field annuals. Ecology, 66(4), 1296-1302. doi:https://doi.org/10.2307/1939182
Poorter, L. (2009). Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. The New Phytologist, 181(4), 890-900. doi:: 10.1111/j.1469-8137.2008.02
Queenborough, S. A., Metz, M. R., Valencia, R., & Wright, S. J. (2013). Demographic consequences of chromatic leaf defence in tropical tree communities: do red young leaves increase growth and survival? Annals of Botany, 112(4), 677-684. doi:10.1093/aob/mct144
Ramos, J., & Grace, J. (1990). The effects of shade on the gas exchange of seedlings of four tropical trees from Mexico. Functional Ecology, 4(5), 667-677. doi:10.2307/2389735
Reich, P. B., Wright, I. J., Cavender-Bares, J., Craine, J. M., Oleksyn, J., Westoby, M., & Walters, M. B. (2003). The evolution of plant functional variation: Traits, spectra, and strategies. International Journal of Plant Sciences, 164(3), S143-S164. doi:10.1086/374368
Russo, S. E., Brown, P., Tan, S., & Davies, S. J. (2008). Interspecific demographic trade-offs and soil-related habitat associations of tree species along resource gradients. Journal of Ecology, 96(1), 192-203. doi:10.1111/j.1365-2745.2007.01330.x
Russo, S. E., McMahon, S. M., Detto, M., Ledder, G., Wright, S. J., Condit, R. S., . . . Chang-Yang, C.-H. (2020). The interspecific growth–mortality trade-off is not a general framework for tropical forest community structure. Nature Ecology & Evolution, 1-10.
Schoenholtz, S. H., Miegroet, H. V., & Burger, J. A. (2000). A review of chemical and physical properties as indicators of forest soil quality: challenges and opportunities. Forest Ecology and Management, 138(1), 335-356. doi:https://doi.org/10.1016/S0378-1127(00)00423-0
Seiwa, K. (2007). Trade-offs Between Seedling Growth and Survival in Deciduous Broadleaved Trees in a Temperate Forest. Annals of Botany, 99(3), 537-544. doi:10.1093/aob/mcl283
Sendall, K. M., Reich, P. B., & Lusk, C. H. (2018). Size-related shifts in carbon gain and growth responses to light differ among rainforest evergreens of contrasting shade tolerance. Oecologia, 187(3), 609-623. doi:10.1007/s00442-018-4125-3
Sterck, F. J., Duursma, R. A., Pearcy, R. W., Valladares, F., Cieslak, M., & Weemstra, M. (2013). Plasticity influencing the light compensation point offsets the specialization for light niches across shrub species in a tropical forest understorey. Journal of Ecology, 101(4), 971-980. doi:10.1111/1365-2745.12076
Su, S.-H., Chang‐Yang, C. H., Lu, C.-L., Tsui, C.-C., Lin, T.-T., Lin, C.-L., . . . Hsieh, C.-F. (2007). Fushan subtropical forest dynamics plot: tree species characteristics and distribution patterns: Taiwan Forestry Research Institute.
Su, S.-H., Guan, B. T., Chang‐Yang, C. H., Sun, I. F., Wang, H. H., & Hsieh, C. F. (2020). Multi‐stemming and size enhance survival of dominant tree species in a frequently typhoon‐disturbed forest. Journal of Vegetation Science, 31(3), 429-439. doi:10.1111/jvs.12858
Tilman, D. (1982). Resource competition and community structure: Princeton university press.
Valladares, F., & Niinemets, U. (2008). Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology Evolution and Systematics, 39, 237-257. doi:10.1146/annurev.ecolsys.39.110707.173506
Wright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., . . . Zanne, A. E. (2010). Functional traits and the growth–mortality trade‐off in tropical trees. Ecology, 91(12), 3664-3674. doi:10.1890/09-2335.1
Wu, Y. T., Gutknecht, J., Nadrowski, K., Geißler, C., Kühn, P., Scholten, T., . . . Buscot, F. (2012). Relationships between soil microorganisms, plant Communities, and soil characteristics in chinese subtropical forests. Ecosystems, 15(4), 624-636. doi:10.1007/s10021-012-9533-3
Yao, A. W., Chiang, J. M., McEwan, R., & Lin, T. C. (2015). The effect of typhoon‐related defoliation on the ecology of gap dynamics in a subtropical rain forest of T aiwan. Journal of Vegetation Science, 26(1), 145-154. doi:10.1111/jvs.12217
孫義方. (2015). 福山動態樣區複查計畫. 行政院農業委員會林務局
孫義方. (2019). 福山動態樣區複查計畫. 行政院農業委員會林務局
蘇聲欣, & 王相華. (2009). 福山闊葉林長期動態研究. 行政院農業委員會林務局 Retrieved from https://www.grb.gov.tw/search/planDetail?id=1849286

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *