帳號:guest(3.145.164.28)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:林尚衡
作者(英文):Shang-Heng Lin
論文名稱:應用無機營養鹽施肥法培育三種海水魚苗(無齒鰺Gnathanodon speciosus、布氏鯧鰺Trachinotus blochii及淡斑荷包魚Chaetodontoplus caeruleopunctatus)之模廠生產研究
論文名稱(英文):Pilot-scale production on application of inorganic fertilization method for larviculture of the golden trevally (Gnathanodon speciosus), the snubnose pompano (Trachinotus blochii) and the bluespotted angelfish (Chaetodontoplus caeruleopunctatus)
指導教授:呂明毅
郭傑民
指導教授(英文):Ming-Yih Leu
Jimmy Kuo
口試委員:呂明毅
郭傑民
楊順德
口試委員(英文):Ming-Yih Leu
Jimmy Kuo
Shuenn-Der Yang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610863001
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:131
關鍵詞:無機營養鹽施肥法營養鹽海水浮游仔魚魚苗培育浮游植物浮游動物
關鍵詞(英文):Inorganic fertilization methodNutrientMarine pelagic fish larvaeLarviculturePhytoplanktonZooplankton
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
大多數的海水浮游仔魚在首次攝食階段口徑較小,且缺乏合適的餌料生物,為魚苗培育初期活存率低的主要原因。因此,為了控制養殖條件,大多魚苗培育實驗是在較精準的實驗室規模進行。為了擴大魚苗培育規模,本研究進行二次模廠規模魚苗培育實驗,第一次實驗(Exp. 1)培育無齒鰺(golden trevally, Gnathanodon speciosus)和布氏鯧鰺(snubnose pompano, Trachinotus blochii),第二次實驗(Exp. 2)培育無齒鰺和淡斑荷包魚(bluespotted angelfish, Chaetodontoplus caeruleopunctatus)。此外,我們測量首次攝食階段的仔魚口徑大小,並進行不可逆致死點(point of no return, PNR)實驗。魚苗培育實驗使用無機營養鹽施肥法,並在7公噸圓形玻璃纖維水槽(FRP)進行,分為對照組(control group,n = 3)和施肥組(fertilized group,n = 3)。施肥組分別維持氮、磷、鐵(II)及二氧化矽濃度在700、100、100及1500 μg L-1,並在活體葉綠素a濃度達到10 μg L-1時接種橈足類成體(> 150 μm,0.1 ind. mL-1),再於8天後放受精卵。而對照組不施肥,僅於施肥組的活體葉綠素a濃度達到10 μg L-1時添加藻水(主要為矽藻),且放受精卵時間與施肥組相同。對照組和施肥組分別於2~18和6~18 DPH (孵化後天數)額外投餵橈足類無節幼生、橈足類成體及輪蟲(0.1 ind. mL-1,0.1 ind. mL-1及1 ~ 5 ind. mL-1)。此外,於實驗期間測量水質、營養鹽濃度、光照度,及活體葉綠素a濃度(Total,25 ~ 75 μm,0.45 ~ 25 μm),並在8 DPH前,每日記錄浮游植物(25 ~ 75 μm,0.45 ~ 25 μm)和浮游動物(> 75 μm,25 ~ 75 μm)的物種比例和密度。結果顯示,無齒鰺、布氏鯧鰺及淡斑荷包魚的口徑大小分別為207 ± 53 μm (3 DPH)、278 ± 34 μm (3 DPH)及225 ± 68 μm (2 DPH)。在第一次實驗,無齒鰺和布氏鯧鰺的不可逆致死點皆為72 HPH (孵化後小時)。施肥組的pH、營養鹽濃度(除了NH3-N)及活體葉綠素a濃度(除了25 ~ 75 μm)皆顯著高於對照組(P < 0.05)。此外,施肥組的浮游植物(二個大小區間)以矽藻為主,像是骨條藻屬(Skeletonema spp.)、直鏈藻屬(Melosira spp.)及海線藻屬(Thalassionema spp.)等,其比例皆顯著高於對照組,且二個大小區間的原生動物、橈足類無節幼生,及哲水蚤成體密度皆顯著高於對照組。於45 DPH,施肥組的無齒鰺和布氏鯧鰺魚苗活存率(2.98 ± 1.04%)顯著高於對照組(0.75 ± 0.17%),而魚苗形質則沒有顯著差異(P > 0.05)。在第二次實驗,淡斑荷包魚的不可逆致死點為48 HPH。施肥組的溶氧量、pH、營養鹽濃度及活體葉綠素a濃度皆顯著高於對照組。此外,施肥組的浮游植物(二個大小區間)以矽藻為主,像是骨條藻屬、根管藻屬(Rhizosolenia spp.)、菱形藻屬(Nitzschia spp.)及筒柱藻屬(Cylindrotheca spp.)等,其比例皆顯著高於對照組,且二個大小區間的原生動物、橈足類無節幼生,及哲水蚤成體密度皆顯著高於對照組。於45 DPH,施肥組的無齒鰺和淡斑荷包魚魚苗活存率(無齒鰺:8.12 ± 1.74%,淡斑荷包魚:4.00 ± 1.64%)皆顯著高於對照組(無齒鰺:1.38 ± 0.40%,淡斑荷包魚:0.03 ± 0.05%),而魚苗形質則沒有顯著差異。本研究結果指出,無機營養鹽施肥法可產生多種高密度,且適合於無齒鰺、布氏鯧鰺及淡斑荷包魚的浮游植物和浮游動物,並提高此三種魚類模廠規模培育的活存率。
Most marine pelagic fish larvae have low survival rates at early larviculture due to the small gape height and lack of suitable live prey during the first feeding stage. Therefore, most of the larvae rearing experiment was conducted in accurate laboratory-scale, to ensure well control of each larviculture factor. In order to expand larviculture scale, we conducted two times pilot-scale larviculture experiments, Exp. 1 (experiment 1) raised the golden trevally Gnathanodon speciosus and the snubnose pompano Trachinotus blochii, Exp. 2 (experiment 2) raised G. speciosus and the bluespotted angelfish Chaetodontoplus caeruleopunctatus larvae. Furthermore, we measured the first feeding stage larvae gape height, and did the point-of-no-return (PNR) experiment. The inorganic fertilization method was applied for the larviculture experiments in the 7 t round shape FRP tank, and the each time experiment was divided into the control group (n = 3) and the fertilized group (n = 3). The fertilized group maintain nitrogen, phosphorus, Iron (II) and silica concentration level respectively at 700, 100, 100 and 1500 μg L-1, then added copepod adults (> 150 μm, 0.1 ind. mL-1) when total in vivo Chl a concentration reached 10 μg L-1; then added fertilized eggs on 8 days after the fertilized group adding copepod adults. While the control group didn’t fertilize, only added green water (mainly diatom) when the fertilized group total in vivo Chl a concentration reached 10 μg L-1, and the day of adding fertilized eggs was same as the fertilized group. The control and fertilized group were provided with copepod nauplii, copepod adults and rotifers (0.1 ind. mL-1, 0.1 ind. mL-1 and 1 ~ 5 ind. mL-1), respectively, in 2 ~ 18 and 6 ~ 18 DPH (Days post-hatching). In addition, we measured water qualities, nutrients concentration, illuminance, and in vivo Chl a concentrations (total, 25 ~ 75 μm, 0.45 ~ 25 μm) during the two times experiments period. Meanwhile, we identified and counted species ratio and density of phytoplankton (25 ~ 75 μm, 0.45 ~ 25 μm), and zooplankton (> 75 μm, 25 ~ 75 μm) until 8 DPH. The results showed that the gape height of G. speciosus, T. blochii and C. caeruleopunctatus was 207 ± 53 μm (3 DPH), 278 ± 34 μm (3 DPH) and 225 ± 68 μm (2 DPH), respectively. In Exp. 1, we found that G. speciosus and T. blochii PNR were both 72 HPH (hours post-hatch); the fertilized group pH value, nutrients concentration (except NH3-N) and in vivo Chl a concentrations (except 25 ~ 75 μm) were significantly higher than the control group (P < 0.05). Moreover, the fertilized group phytoplankton (both size range) was dominated by diatoms, such as the ratio of Skeletonema spp., Melosira spp., Thalassionema spp., etc., were significantly higher than the control group. Also, the fertilized group zooplankton (both size range), such as density of protozoa, copepod nauplii and calanoida adults, were significantly higher than the control group. The average G. speciosus and T. blochii juvenile fish survival rates at 45 DPH in the fertilized group (2.98 ± 1.04%) was significantly higher than the control group (0.75 ± 0.17%), however, the fish characters didn’t show significant difference (P > 0.05). In Exp. 2, C. caeruleopunctatus PNR was 48 HPH (hours post-hatch); the fertilized group dissolved oxygen, pH value, nutrients concentration and in vivo Chl a concentrations were significantly higher than the control group. Moreover, the fertilized group phytoplankton (both size range) was dominated by diatoms, such as the ratio of Skeletonema spp., Rhizosolenia spp., Nitzschia spp., Cylindrotheca spp., etc., were significantly higher than the control group. Meanwhile, the fertilized group zooplankton (both size range), such as density of protozoa, copepod nauplii and calanoida adults, were significantly higher than the control group. The average juvenile fish survival rates at 45 DPH in the fertilized group (G. speciosus: 8.12 ± 1.74%, C. caeruleopunctatus: 4.00 ± 1.64%) was significantly higher than the control group (G. speciosus: 1.38 ± 0.40%, C. caeruleopunctatus: 0.03 ± 0.05%), however, the fish characters didn’t show significant difference. The result demonstrated that the inorganic fertilization method can produce various high-density phytoplankton and zooplankton which were desirable for G. speciosus, T. blochii and C. caeruleopunctatus, and improve these three fish species survival rates in the pilot-scale larviculture.
謝辭 I
摘要 III
Abstract V
表目錄 ⅩⅢ
圖目錄 ⅩⅤ
第一章 前言 1
1.1 緒言 1
1.2 魚苗培育瓶頸 1
1.3 魚苗培育技術發展 2
1.3.1 綠水養殖 2
1.3.2 餌料生物 3
1.4 無機營養鹽施肥法 4
1.4.1 氮和磷 5
1.4.2 鐵 6
1.4.3 矽 7
1.5 不可逆致死點 7
1.6 模廠規模 8
1.7 實驗魚種 9
1.7.1 無齒鰺(Gnathanodon speciosus) 9
1.7.2 布氏鯧鰺(Trachinotus blochii) 10
1.7.3 淡斑荷包魚(Chaetodontoplus caeruleopunctatus) 10
1.8 研究目的 11
第二章 材料與方法 13
2.1 實驗設計 13
2.1.1 實驗環境 13
2.1.2 無機營養鹽施肥 14
2.1.3 藻水與餌料生物接種 14
2.2 藻水與餌料生物培育 14
2.2.1 藻水培育 14
2.2.2 橈足類培育 15
2.2.3 輪蟲培育 15
2.2.4 豐年蝦培育與滋養 15
2.3 實驗魚卵 15
2.3.1 魚卵收集 15
2.3.1.1 無齒鰺 15
2.3.1.2 布氏鯧鰺 16
2.3.1.3 淡斑荷包魚 16
2.3.2 放卵時間 16
2.3.3 孵化率計算 17
2.4 仔稚魚培育 17
2.4.1 投餵管理 17
2.4.2 水質管理 17
2.5 仔稚魚攝食形質調查 18
2.5.1 口徑測量 18
2.5.2 仔魚不可逆致死點(PNR) 18
2.5.2.1 無齒鰺 18
2.5.2.2 布氏鯧鰺 18
2.5.2.3 淡斑荷包魚 19
2.5.3 活存率 19
2.5.4 稚魚形質測定 19
2.6 浮游植物調查 19
2.6.1 浮游植物鏡檢 19
2.6.2 in vivo Chl a濃度測量 19
2.7 浮游動物鏡檢 20
2.8 營養鹽測量 20
2.8.1 硝酸鹽氮 20
2.8.2 亞硝酸鹽氮 20
2.8.3 氨態氮 21
2.8.4 磷酸鹽-磷 21
2.8.5 亞鐵離子 21
2.8.6 二氧化矽 21
2.9 水質測量 22
2.9.1 水溫 22
2.9.2 鹽度 22
2.9.3 溶氧量 22
2.9.4 pH 22
2.10 光照度測量 23
2.11 統計分析 23
第三章 結果 25
3.1 受精卵數量與孵化率 25
3.1.1 第一次實驗 (Exp. 1) 25
3.1.2 第二次實驗 (Exp. 2) 25
3.2 仔魚口徑 25
3.3 仔魚不可逆致死點(PNR) 26
3.4 水質資料 27
3.4.1 水溫 27
3.4.1.1 第一次實驗 (Exp. 1) 27
3.4.1.2 第二次實驗 (Exp. 2) 28
3.4.2 鹽度 28
3.4.2.1 第一次實驗 (Exp. 1) 28
3.4.2.2 第二次實驗 (Exp. 2) 28
3.4.3 溶氧量 28
3.4.3.1 第一次實驗 (Exp. 1) 28
3.4.3.2 第二次實驗 (Exp. 2) 29
3.4.4 pH 29
3.4.4.1 第一次實驗 (Exp. 1) 29
3.4.4.2 第二次實驗 (Exp. 2) 29
3.5 營養鹽資料 29
3.5.1 硝酸鹽氮 29
3.5.1.1 第一次實驗 (Exp. 1) 29
3.5.1.2 第二次實驗 (Exp. 2) 29
3.5.2 亞硝酸鹽氮 30
3.5.2.1 第一次實驗 (Exp. 1) 30
3.5.2.2 第二次實驗 (Exp. 2) 30
3.5.3 氨態氮 30
3.5.3.1 第一次實驗 (Exp. 1) 30
3.5.3.2 第二次實驗 (Exp. 2) 30
3.5.4 磷酸鹽-磷 30
3.5.4.1 第一次實驗 (Exp. 1) 30
3.5.4.2 第二次實驗 (Exp. 2) 31
3.5.5 亞鐵離子 31
3.5.5.1 第一次實驗 (Exp. 1) 31
3.5.5.2 第二次實驗 (Exp. 2) 31
3.5.6 二氧化矽 31
3.5.6.1 第一次實驗 (Exp. 1) 31
3.5.6.2 第二次實驗 (Exp. 2) 32
3.6 光照度 32
3.6.1 第一次實驗 (Exp. 1) 32
3.6.2 第二次實驗 (Exp. 2) 32
3.7 浮游植物 32
3.7.1 第一次實驗 (Exp. 1) 32
3.7.1.1 大小範圍 25 ~ 75 µm 32
3.7.1.2 大小範圍 0.45 ~ 25 µm 33
3.7.2 第二次實驗 (Exp. 2) 34
3.7.2.1 大小範圍 25 ~ 75 µm 34
3.7.2.2 大小範圍 0.45 ~ 25 µm 35
3.8 浮游動物 36
3.8.1 第一次實驗 (Exp. 1) 36
3.8.1.1 大小範圍 > 75 µm 36
3.8.1.2 大小範圍 25 ~ 75 µm 37
3.8.2 第二次實驗 (Exp. 2) 38
3.8.2.1 大小範圍 > 75 µm 38
3.8.2.2 大小範圍 25 ~ 75 µm 39
3.9 仔稚魚活存率 40
3.9.1 第一次實驗 (Exp. 1) 40
3.9.2 第二次實驗 (Exp. 2) 40
3.10 魚苗形質 41
3.10.1 第一次實驗 (Exp. 1) 41
3.10.2 第二次實驗 (Exp. 2) 41
第四章 討論 43
4.1 仔魚初期口徑 43
4.2 PNR 43
4.3 無機營養鹽施肥法 44
4.4 養殖環境參數 45
4.4.1 溶氧量 45
4.4.2 pH 46
4.4.3 營養鹽 47
4.5 浮游植物 51
4.6 浮游動物 53
4.7 魚苗培育 57
4.7.1 仔稚魚活存率 57
4.7.2 魚苗形質 58
第五章 結論 61
參考文獻 63
附錄 131
千原 光雄、村野 正昭 (1997) 日本産海洋プランクトン検索図説。東海大学出版会,東京,1574 pp.
山路 勇 (1983) 日本海洋プランクトン図鑑。保育社,大阪,369 pp.
王俊博 (2021) 人工環境中淡斑荷包魚(Chaetodontoplus caeruleopunctatus)
(Yasuda & Tominaga, 1976)及福氏刺尻魚(Centropyge vrolikii) (Bleeker, 1853)的自然產卵及初期生活史之比較研究。國立東華大學海洋生物研究所碩士論文,139 pp.
行政院農業委員會家畜衛生試驗所 (2021) 水生動物疾病診斷輔助系統https://aqua.nvri.gov.tw/default.aspx. (accessed 29 December 2021).
何源興、鄭明忠、江玉瑛、張文炳、陳文義 (2011) 無齒鰺的初期發育及育苗
研究。水產研究,pp. 45-54.
広瀬 弘幸 (1965) 藻類学総説。内田老鶴圃新社,東京,506 pp.
李驊穎 (2011) 銀鱗鯧的胚胎、仔稚魚發育及對氨氮急毒性耐受性之研究。國立東華大學海洋生物多樣性及演化研究所碩士論文,75 pp.
洪俊欽 (2013) 銀鱗鯧稚魚對亞硝酸鹽急毒性耐受性之研究。國立東華大學海洋生物多樣性及演化研究所碩士論文,68 pp.
張武昌、趙楠、陶振鋮、張翠霞 (2010) 中國海浮游橈足類圖譜。科學出版社,北京,468 pp.
黃美瑩、許慧文、劉文御 (2000) 氨及亞硝酸對金目鱸稚魚之急性毒研究。水產研究,pp. 45-51.
楊雅捷 (2012) 鞍斑海葵魚(Amphiprion polymnus)的初期發育與氨氮、亞硝酸鹽及硝酸鹽之急毒性耐受性研究。國立東華大學海洋生物科技研究所碩士論文,139 pp.
葉文昭 (2019) 利用無機營養鹽模擬春季水華現象對珊瑚礁魚類仔魚初期活存
之影響。國立東華大學海洋生物研究所碩士論文,73 pp.
Abdel-Aziz, N., Gharib, S., Dorgham, M., 2006. The interaction between phytoplankton and zooplankton in a lake-sea connection, Alexandria, Egypt. Int. J. Oceans Oceanogr. 1, 151-165.
Ajiboye, O.O., Yakubu, A.F., Adams, T.E., Olaji, E.D., Nwogu, N.A., 2010. A review of the use of copepods in marine fish larviculture. Rev. Fish Biol. Fish. 21, 225-246. https://doi.org/10.1007/s11160-010-9169-3.
Alajmi, F., Zeng, C., 2014. The effects of stocking density on key biological parameters influencing culture productivity of the calanoid copepod, Parvocalanus crassirostris. Aquaculture. 434, 201-207. https://doi.org/10.1016/j.aquaculture.2014.08.029.
Alam, M.S., Watanabe, W.O., Carroll, P.M., Rezek, T., 2009. Effects of dietary protein and lipid levels on growth performance and body composition of black sea bass Centropristis striata (Linnaeus, 1758) during grow-out in a pilot-scale marine recirculating system. Aquac. Res. 40, 442-449. https://doi.org/10.1111/j.1365-2109.2008.02113.x.
Allen, G., 2010. Chaetodontoplus caeruleopunctatus. The IUCN red list of threatened species 2010: e.T165894A6159417.
https://doi.org/10.2305/IUCN.UK.2010-4.RLTS.T165894A6159417.en.
Allen, G.R., 1980. Butterfly and angelfishes of the world. Wiley, Germany, 352 pp.
Allen, G.R., Steene, R.C., 1979. The fishes of Christmas Island, Indian Ocean. Australian Govt. Pub. Service, Canberra.
Allen, G.R., Erdmann, M., 2012. Reef fishes of the east Indies. Conservation International Foundation, Virginia, U.S.A., 1292 pp.
Allen, J.F., 2002. Photosynthesis of ATP-electrons, proton pumps, rotors, and poise. Cell. 110, 273-276. https://doi.org/10.1016/s0092-8674(02)00870-x.
Alonso, A., Camargo, J.A., 2003. Short-term toxicity of ammonia, nitrite, and nitrate to the aquatic snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca). Bull. Environ. Contam. Toxicol. 70, 1006-1012.
https://doi.org/10.1007/s00128-003-0082-5.
Alvarez-Lajonchère, L., Abdo de la Parra, M.I., Rodríguez Ibarra, L.E., Velasco Blanco, G., Puello-Cruz, A.C., González Rodríguez, B., Ibarra-Soto, A., Ibarra Castro, L., 2012. The scale-up of spotted rose snapper, Lutjanus guttatus, larval rearing at mazatlan, mexico. J. World Aquac. Soc. 43, 411-422. https://doi.org/10.1111/j.1749-7345.2012.00573.x.
Alvarez-Verde, C.A., Sampaio, L.A., Okamoto, M.H., 2018. Effects of light intensity on growth of juvenile brazilian flounder Paralichthys orbignyanus. Bol. Inst. Pesca. 41, 859-864.
Anderson, D.M., Glibert, P.M., Burkholder, J.M., 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries. 25, 704-726. https://doi.org/10.1007/bf02804901.
Aragão, C., Conceição, L.E.C., Lacuisse, M., Yúfera, M., Dinis, M.T., 2007. Do dietary amino acid profiles affect performance of larval gilthead seabream? Aquat. Living Resour. 20, 155-161. https://doi.org/10.1051/alr:2007026.
Arai, H., 1994. Spawning behavior and early ontogeny of a pomacanthid fish, Chaetodontoplus duboulayi, in an aquarium. Jpn. J. Ichthyol. 41, 181-187. https://doi.org/10.11369/jji1950.41.181.
Arvedlund, M., McCormick, M., Ainsworth, T., 2000. Effects of photoperiod on growth of larvae and juveniles of the anemonefish Amphiprion melanopus. NAGA. 23, 18-23.
Atkinson, A., 1996. Subantarctic copepods in an oceanic, low chlorophyll environment:ciliate predation, food selectivity and impact on prey populations. Mar. Ecol. Prog. Ser. 130, 85-96. https://doi.org/10.3354/meps130085.
Avella, M.A., Olivotto, I., Gioacchini, G., Maradonna, F., Carnevali, O., 2007. The role of fatty acids enrichments in the larviculture of false percula clownfish Amphiprion ocellaris. Aquaculture. 273, 87-95. https://doi.org/10.1016/j.aquaculture.2007.09.032.
Aya, F.A., Garcia, L.M.B., 2016. Growth response of cultured larvae of silver therapon Leiopotherapon plumbeus (Kner, 1864) in outdoor tanks in relation to fertilizer type and fish density. J. Appl. Ichthyol. 32, 1186-1193. https://doi.org/10.1111/jai.13138.
Baensch, F., Tamaru, C.S., 2009. Spawning and development of larvae and juveniles of the rare blue mauritius angelfish, Centropyge debelius (1988), in the hatchery. J. World Aquac. Soc. 40, 425-439.
https://doi.org/10.1111/j.1749-7345.2009.00273.x.
Bardon-Albaret, A., Saillant, E.A., 2016. Effects of hypoxia and elevated ammonia concentration on the viability of red snapper embryos and early larvae. Aquaculture. 459, 148-155. https://doi.org/10.1016/j.aquaculture.2016.03.042.
Barker, H.A., 1935. The culture and physiology of the marine dinoflagellates. Arch Mikrobiol. 6, 157-181. https://doi.org/10.1007/bf00407285.
Behrenfeld, M.J., Bale, A.J., Kolber, Z.S., Aiken, J., Falkowski, P.G., 1996. Confirmation of iron limitation of phytoplankton photosynthesis in the equatorial Pacific Ocean. Nature. 383, 508-511. https://doi.org/10.1038/383508a0.
Bell, J.G., McEvoy, L.A., Estevez, A., Shields, R.J., Sargent, J.R., 2003. Optimising lipid nutrition in first-feeding flatfish larvae. Aquaculture. 227, 211-220. https://doi.org/10.1016/s0044-8486(03)00504-0.
Benoiston, A.S., Ibarbalz, F.M., Bittner, L., Guidi, L., Jahn, O., Dutkiewicz, S., Bowler, C., 2017. The evolution of diatoms and their biogeochemical functions. Phil. Trans. R. Soc. B. 372. https://doi.org/10.1098/rstb.2016.0397.
Bergerhouse, D.L., 1992. Lethal effects of elevated pH and ammonia on early life stages of walleye. N. Am. J. Fish. Manag. 12, 356-366. https://doi.org/10.1577/1548-8675(1992)012<0356:Leoepa>2.3.Co;2.
Blain, S., Queguiner, B., Armand, L., Belviso, S., Bombled, B., Bopp, L., Bowie, A., Brunet, C., Brussaard, C., Carlotti, F., Christaki, U., Corbiere, A., Durand, I., Ebersbach, F., Fuda, J.L., Garcia, N., Gerringa, L., Griffiths, B., Guigue, C., Guillerm, C., Jacquet, S., Jeandel, C., Laan, P., Lefevre, D., Lo Monaco, C., Malits, A., Mosseri, J., Obernosterer, I., Park, Y.H., Picheral, M., Pondaven, P., Remenyi, T., Sandroni, V., Sarthou, G., Savoye, N., Scouarnec, L., Souhaut, M., Thuiller, D., Timmermans, K., Trull, T., Uitz, J., van Beek, P., Veldhuis, M., Vincent, D., Viollier, E., Vong, L., Wagener, T., 2007. Effect of natural iron fertilization on carbon sequestration in the southern ocean. Nature. 446, 1070-1074. https://doi.org/10.1038/nature05700.
Blanda, E., Hansen, B.W., Højgaard, J.K., Jepsen, P.M., Pedersen, M.F., Rayner, T.A., Thoisen, C.V., Jakobsen, H.H., 2016. Inorganic nitrogen addition in a semi-intensive turbot larval aquaculture system: effects on phytoplankton and zooplankton composition. Aquac. Res. 47, 3913-3933. https://doi.org/10.1111/are.12842.
Blanda, E., Drillet, G., Huang, C.-C., Hwang, J.-S., Højgaard, J.K., Jakobsen, H.H., Rayner, T.A., Su, H.-M., Hansen, B.W., 2017. An analysis of how to improve production of copepods as live feed from tropical Taiwanese outdoor aquaculture ponds. Aquaculture. 479, 432-441. https://doi.org/10.1016/j.aquaculture.2017.06.018.
Blaxter, J.H.S., Hempel, G., 1963. The influence of egg size on herring larvae (Clupea harengus L.). ICES J. Mar. Sci. 28, 211-240. https://doi.org/10.1093/icesjms/28.2.211.
Blue zoo aquatics, 2021. https://www.bluezooaquatics.com/productDetail.asp?did=1&pid=149&cid=8
(accessed 29 December 2021).
Boal, D.H., 2012. Mechanics of the cell. Cambridge University press, Cambridge, U.K., 622 pp.
Boyd, P.W., Watson, A.J., Law, C.S., Abraham, E.R., Trull, T., Murdoch, R., Bakker, D.C., Bowie, A.R., Buesseler, K.O., Chang, H., Charette, M., Croot, P., Downing, K., Frew, R., Gall, M., Hadfield, M., Hall, J., Harvey, M., Jameson, G., LaRoche, J., Liddicoat, M., Ling, R., Maldonado, M.T., McKay, R.M., Nodder, S., Pickmere, S., Pridmore, R., Rintoul, S., Safi, K., Sutton, P., Strzepek, R., Tanneberger, K., Turner, S., Waite, A., Zeldis, J., 2000. A mesoscale phytoplankton bloom in the polar southern ocean stimulated by iron fertilization. Nature. 407, 695-702. https://doi.org/10.1038/35037500.
Boynton, W.R., Kemp, W.M., 1985. Nutrient regeneration and oxygen consumption by sediments along an estuarine salinity gradient. Mar. Ecol. Prog. Ser. 23, 45-55. https://doi.org/10.3354/meps023045.
Bransden, M.P., Cobcroft, J.M., Battaglene, S.C., Morehead, D.T., Dunstan, G.A., Nichols, P.D., Kolkovski, S., 2005. Dietary 22:6n-3 alters gut and liver structure and behaviour in larval striped trumpeter (Latris lineata). Aquaculture. 248, 275-285. https://doi.org/10.1016/j.aquaculture.2005.04.034.
Breier, C.F., Buskey, E.J., 2007. Effects of the red tide dinoflagellate, Karenia brevis, on grazing and fecundity in the copepod Acartia tonsa. J. Plankton Res. 29, 115-126. https://doi.org/10.1093/plankt/fbl075.
Bręk-Laitinen, G., Ojala, A., 2011. Grazing of heterotrophic nanoflagellates on the eukaryotic picoautotroph Choricystis sp. Aquat. Microb. Ecol. 62, 49-59. https://doi.org/10.3354/ame01457.
Broach, J.S., Ohs, C.L., Palau, A., Danson, B., Elefante, D., 2015. Induced spawning and larval culture of golden trevally. N. Am. J. Aquac. 77, 532-538. https://doi.org/10.1080/15222055.2015.1066470.
Brownell, C.L., 1980. Water quality requirements for first-feeding in marine fish larvae. I. ammonia, nitrite, and nitrate. J. Exp. Mar. Biol. Ecol. 44, 269-283. https://doi.org/10.1016/0022-0981(80)90158-6.
Brutemark, A., Engström-Öst, J., Vehmaa, A., 2011. Long-term monitoring data reveal pH dynamics, trends and variability in the western Gulf of Finland. Oceanol. Hydrobiol. Stud. 40, 91-94. https://doi.org/10.2478/s13545-011-0034-3.
Brzezinski, M.A., 1985. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol. 21, 347-357. https://doi.org/10.1111/j.0022-3646.1985.00347.x.
Burns, B.D., Beardall, J., 1987. Utilization of inorganic carbon by marine microalgae. J. Exp. Mar. Biol. Ecol. 107, 75-86.
https://doi.org/10.1016/0022-0981(87)90125-0.
Buskey, E.J., 2005. Behavioral characteristics of copepods that affect their suitability as food for larval fishe. In: Lee, C.-S., O'Bryen, P.J., Marcuscopepods, N.H. (Eds.), Copepods in aquaculture. Wiley-Blackwell, New Jersey, U.S.A., pp. 91-106. https://doi.org/10.1002/9780470277522.ch8.
Buskey, E.J., Coulter, C.J., Strom, S.L., 1993. Locomotory patterns of microzooplankton: potential effects on food selectivity of larval fish. Bull. Mar. Sci. 53, 29-43.
Buttino, I., 1994. The effect of low concentrations of phenol and ammonia on egg production rates, fecal pellet production and egg viability of the calanoid copepod Acartia clausi. Mar. Biol. 119, 629-634. https://doi.org/10.1007/bf00354327.
Côrtes, G., Tsuzuki, M.Y., 2012. Effect of different live food on survival and growth of first feeding barber goby, Elacatinus figaro (Sazima, Moura & Rosa, 1997) larvae. Aquac. Res. 43, 831-834.
https://doi.org/10.1111/j.1365-2109.2011.02896.x.
Cahu, C., Zambonino Infante, J., Escaffre, A.M., Bergot, P., Kaushik, S., 1998. Preliminary results on sea bass (Dicentrarchus labrax) larvae rearing with compound diet from first feeding. Comparison with carp (Cyprinus carpio) larvae. Aquaculture. 169, 1-7. https://doi.org/10.1016/s0044-8486(98)00316-0.
Calbet, A., Saiz, E., 2005. The ciliate-copepod link in marine ecosystems. Aquat. Microb. Ecol. 38, 157-167. https://doi.org/10.3354/ame038157.
Callan, C.K., Burgess, A.I., Rothe, C.R., Touse, R., 2018. Development of improved feeding methods in the culture of yellow tang, Zebrasoma flavescens. J. World Aquac. Soc. 49, 493-503. https://doi.org/10.1111/jwas.12496.
Camus, T., Zeng, C., 2009. The effects of stocking density on egg production and hatching success, cannibalism rate, sex ratio and population growth of the tropical calanoid copepod Acartia sinjiensis. Aquaculture. 287, 145-151. https://doi.org/10.1016/j.aquaculture.2008.10.005.
Carlson, C.A., Ingraham, J.L., 1983. Comparison of denitrification by Pseudomonas stutzeri, Pseudomonas aeruginosa, and Paracoccus denitrificans. Appl. Environ. Microbiol. 45, 1247-1253. https://doi.org/10.1128/aem.45.4.1247-1253.1983
Carman, K.R., Dobbs, F.C., 1997. Epibiotic microorganisms on copepods and other marine crustaceans. Microsc. Res. Tech. 37, 116-135. https://doi.org/10.1002/(SICI)1097-0029(19970415)37:2<116::AID-JEMT2>3.0.CO;2-M.
Carton, A.G., 2005. The impact of light intensity and algal-induced turbidity on first-feeding Seriola lalandi larvae. Aquac. Res. 36, 1588-1594. https://doi.org/10.1111/j.1365-2109.2005.01383.x.
Chai, Y., Xie, C., Wei, Q.W., 2011. Yolk-sac absorption and point of no return in Chinese sturgeon Acipenser sinensis larvae. J. Appl. Ichthyol. 27, 687-689. https://doi.org/10.1111/j.1439-0426.2010.01631.x.
Chen, B., Liu, H., Landry, M.R., DaI, M., Huang, B., Sune, J., 2009. Close coupling between phytoplankton growth and microzooplankton grazing in the western South China Sea. Limnol. Oceanogr. 54, 1084-1097. https://doi.org/10.4319/lo.2009.54.4.1084.
Chen, C.Y., Durbin, E.G., 1994. Effects of pH on the growth and carbon uptake of marine phytoplankton. Mar. Ecol. Prog. Ser. 109, 83-94. https://doi.org/10.3354/meps109083.
Chen, J.Y., Zeng, C., 2021. The effects of live prey and greenwater on the early larval rearing of orchid dottyback Pseudochromis fridmani. Aquaculture. 543. https://doi.org/10.1016/j.aquaculture.2021.737008.
Chen, J.Y., Zeng, C., Jerry, D.R., Cobcroft, J.M., 2019. Recent advances of marine ornamental fish larviculture: broodstock reproduction, live prey and feeding regimes, and comparison between demersal and pelagic spawners. Rev. Aquac. https://doi.org/10.1111/raq.12394.
Cheng, S.-H., Kâ, S., Kumar, R., Kuo, C.-S., Hwang, J.-S., 2011. Effects of salinity, food level, and the presence of microcrustacean zooplankters on the population dynamics of rotifer Brachionus rotundiformis. Hydrobiologia. 666, 289-299. https://doi.org/10.1007/s10750-011-0615-6.
Chou, R., 1994. Seafarming and searanching in Singapore, seminar-workshop on aquaculture development in southeast asia and prospects for seafarming and searanching; 19-23 August 1991. Aquaculture department, southeast asian fisheries development center, Iloilo city, Philippines, pp. 115-121.
Chou, R., Lee, H.B., 1997. Commercial marine fish farming in Singapore. Aquac. Res. 28, 767-776. https://doi.org/10.1046/j.1365-2109.1997.00941.x.
Ciji, A., Akhtar, M.S., 2019. Nitrite implications and its management strategies in aquaculture: a review. Rev. Aquac. 12, 878-908. https://doi.org/10.1111/raq.12354.
Ciros-Pérez, J., Carmona, M.J., Lapesa, S., Serra, M., 2004. Predation as a factor mediating resource competition among rotifer sibling species. Limnol. Oceanogr. 49, 40-50. https://doi.org/10.4319/lo.2004.49.1.0040.
Coale, K.H., Johnson, K.S., Fitzwater, S.E., Gordon, R.M., Tanner, S., Chavez, F.P., Ferioli, L., Sakamoto, C., Rogers, P., Millero, F., Steinberg, P., Nightingale, P., Cooper, D., Cochlan, W.P., Landry, M.R., Constantinou, J., Rollwagen, G., Trasvina, A., Kudela, R., 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature. 383, 495-501. https://doi.org/10.1038/383495a0.
Coale, K.H., Johnson, K.S., Chavez, F.P., Buesseler, K.O., Barber, R.T., Brzezinski, M.A., Cochlan, W.P., Millero, F.J., Falkowski, P.G., Bauer, J.E., Wanninkhof, R.H., Kudela, R.M., Altabet, M.A., Hales, B.E., Takahashi, T., Landry, M.R., Bidigare, R.R., Wang, X., Chase, Z., Strutton, P.G., Friederich, G.E., Gorbunov, M.Y., Lance, V.P., Hilting, A.K., Hiscock, M.R., Demarest, M., Hiscock, W.T., Sullivan, K.F., Tanner, S.J., Gordon, R.M., Hunter, C.N., Elrod, V.A., Fitzwater, S.E., Jones, J.L., Tozzi, S., Koblizek, M., Roberts, A.E., Herndon, J., Brewster, J., Ladizinsky, N., Smith, G., Cooper, D., Timothy, D., Brown, S.L., Selph, K.E., Sheridan, C.C., Twining, B.S., Johnson, Z.I., 2004. Southern ocean iron enrichment experiment: carbon cycling in high- and low-Si waters. Science. 304, 408-414. https://doi.org/10.1126/science.1089778.
Cobcroft, J.M., Pankhurst, P.M., Hart, P.R., Battalene, S.C., 2001. The effects of light intensity and algae-induced turbidity on feeding behaviour of larval striped trumpeter. J. Fish Biol. 59, 1181-1197.
https://doi.org/10.1111/j.1095-8649.2001.tb00185.x.
Colin, S.P., Dam, H.G., 2003. Effects of the toxic dinoflagellate Alexandrium fundyense on the copepod Acartia hudsonica: a test of the mechanisms that reduce ingestion rates. Mar. Ecol. Prog. Ser. 248, 55-65. https://doi.org/10.3354/meps248055.
Conceição, L.E.C., Yúfera, M., Makridis, P., Morais, S., Dinis, M.T., 2010. Live feeds for early stages of fish rearing. Aquac. Res. 41, 613-640. https://doi.org/10.1111/j.1365-2109.2009.02242.x.
Conley, D.J., 1999. Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia. 410, 87-96. https://doi.org/10.1023/a:1003784504005.
Conley, D.J., Carstensen, J., Ærtebjerg, G., Christensen, P.B., Dalsgaard, T., Hansen, J.L.S., Josefson, A.B., 2007. Long-term changes and impacts of hypoxia in Danish coastal waters. Ecol. Appl. 17, S165-S184.
https://doi.org/10.1890/05-0766.1.
Costa, L.D.F., Miranda-Filho, K.C., Severo, M.P., Sampaio, L.A., 2008. Tolerance of juvenile pompano Trachinotus marginatus to acute ammonia and nitrite exposure at different salinity levels. Aquaculture. 285, 270-272. https://doi.org/10.1016/j.aquaculture.2008.08.017.
Costello, C., Gaines, S.D., Lynham, J., 2008. Can catch shares prevent fisheries collapse? Science. 321, 1678-1681. https://doi.org/10.1126/science.1159478.
Crab, R., Avnimelech, Y., Defoirdt, T., Bossier, P., Verstraete, W., 2007. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture. 270, 1-14. https://doi.org/10.1016/j.aquaculture.2007.05.006.
Crawford, R.M., 1981. The siliceous components of the diatom cell wall and their
morphological variation. In: Simpson, T.L., Volcani, B.E. (Eds.), Silicon and siliceous structures in biological systems. Springer, New York, U.S.A., pp. 129-156. https://doi.org/10.1007/978-1-4612-5944-2_6.
Cugier, P., Billen, G., Guillaud, J.F., Garnier, J., Ménesguen, A., 2005. Modelling the eutrophication of the Seine Bight (France) under historical, present and future riverine nutrient loading. J. Hydrol. 304, 381-396. https://doi.org/10.1016/j.jhydrol.2004.07.049.
Culver, D.A., 1988. Plankton ecology in fish hatchery ponds in Narrandera, NSW, Australia. Verh. Internat. Verein Limnol. 23, 1085-1089. https://doi.org/10.1080/03680770.1987.11899772.
Culver, D.A., 1991. Effects of the N:P ratio in fertilizer for fish hatchery ponds. Verh. Internat. Verein Limnol. 24, 1503-1507. https://doi.org/10.1080/03680770.1989.11899009.
Culver, D.A., Madon, S.P., Qin, J., 1993. Percid pond production techniques. J. Appl. Aquac. 2, 9-32. https://doi.org/10.1300/J028v02n03_02.
Cunha, I., Planas, M., 1999. Optimal prey size for early turbot larvae (Scophthalmus maximus L.) based on mouth and ingested prey size. Aquaculture. 175, 103-110. https://doi.org/10.1016/s0044-8486(99)00040-x.
Cushing, D.H., 1959. The seasonal variation in oceanic production as a problem in population dynamics. ICES J. Mar. Sci. 24, 455-464. https://doi.org/10.1093/icesjms/24.3.455.
Dahlgren, S., Kautsky, L., 2004. Can different vegetative states in shallow coastal bays of the Baltic Sea be linked to internal nutrient levels and external nutrient load? Hydrobiologia. 514, 249-258. https://doi.org/10.1023/B:hydr.0000018223.26997.b0.
Dalzell, D.J.B., Macfarlane, N.A.A., 1999. The toxicity of iron to brown trout and effects on the gills: a comparison of two grades of iron sulphate. J. Fish Biol. 55, 301-315. https://doi.org/10.1111/j.1095-8649.1999.tb00680.x.
Danilowicz, B.S., Brown, C.L., 1992. Rearing methods for two damselfish species: Dascyllus albisella (Gill) and D. aruanus (L.). Aquaculture. 106, 141-149. https://doi.org/10.1016/0044-8486(92)90198-t.
Davidson, K., Gowen, R.J., Tett, P., Bresnan, E., Harrison, P.J., McKinney, A., Milligan, S., Mills, D.K., Silke, J., Crooks, A.-M., 2012. Harmful algal blooms: How strong is the evidence that nutrient ratios and forms influence their occurrence? Estuar. Coast. Shelf Sci. 115, 399-413. https://doi.org/10.1016/j.ecss.2012.09.019.
Davison, W., 1993. Iron and manganese in lakes. Earth-Sci. Rev. 34, 119-163. https://doi.org/10.1016/0012-8252(93)90029-7.
de Baar, H.J.W., Boyd, P.W., Coale, K.H., Landry, M.R., Tsuda, A., Assmy, P., Bakker, D.C.E., Bozec, Y., Barber, R.T., Brzezinski, M.A., Buesseler, K.O., Boyé, M., Croot, P.L., Gervais, F., Gorbunov, M.Y., Harrison, P.J., Hiscock, W.T., Laan, P., Lancelot, C., Law, C.S., Levasseur, M., Marchetti, A., Millero, F.J., Nishioka, J., Nojiri, Y., van Oijen, T., Riebesell, U., Rijkenberg, M.J.A., Saito, H., Takeda, S., Timmermans, K.R., Veldhuis, M.J.W., Waite, A.M., Wong, C.-S., 2005. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J. Geophys. Res. 110. https://doi.org/10.1029/2004JC002601.
de Figueiredo, G.M., Nash, R.D.M., Montagnes, D.J.S., 2005. The role of the generally unrecognised microprey source as food for larval fish in the Irish Sea. Mar. Biol. 148, 395-404. https://doi.org/10.1007/s00227-005-0088-0.
Deane, E.E., Woo, N.Y., 2007. Impact of nitrite exposure on endocrine, osmoregulatory and cytoprotective functions in the marine teleost Sparus sarba. Aquat. Toxicol. 82, 85-93. https://doi.org/10.1016/j.aquatox.2007.02.004.
Degidio, J.-M.L.A., Yanong, R.P.E., Watson, C.A., Ohs, C.L., Cassiano, E.J., Barden, K., 2017. Spawning, embryology, and larval development of the milletseed butterflyfish Chaetodon miliarisin the laboratory. N. Am. J. Aquac. 79, 205-215. https://doi.org/10.1080/15222055.2017.1302025.
Degidio, J.-M.L.A., Yanong, R.P.E., Ohs, C.L., Watson, C.A., Cassiano, E.J., Barden, K., 2018. First feeding parameters of the milletseed butterflyfish Chaetodon miliaris. Aquac. Res. 49, 1087-1094. https://doi.org/10.1111/are.13558.
Del Rio, A.M., Davis, B.E., Fangue, N.A., Todgham, A.E., 2019. Combined effects of warming and hypoxia on early life stage chinook salmon physiology and development. Conserv. Physiol. 7. https://doi.org/10.1093/conphys/coy078.
Diéguez, M.C., Gilbert, J.J., 2002. Suppression of the rotifer Polyarthra remata by the omnivorous copepod Tropocyclops extensus: predation or competition. J. Plankton Res. 24, 359-369. https://doi.org/10.1093/plankt/24.4.359.
DiMaggio, M.A., Cassiano, E.J., Barden, K.P., Ramee, S.W., Ohs, C.L., Watson, C.A., 2017. First record of captive larval culture and metamorphosis of the pacific blue tang, Paracanthurus hepatus. J. World Aquac. Soc. 48, 393-401. https://doi.org/10.1111/jwas.12426.
Domingues, P.M., Turk, P.E., Andrade, J.P., Lee, P.G., 1998. Pilot-scale production of mysid shrimp in a static water system. Aquac. Int. 6, 387-402. https://doi.org/10.1023/A:1009232921784.
Domingues, R.B., Barbosa, A., Galvão, H., 2005. Nutrients, light and phytoplankton succession in a temperate estuary (the Guadiana, south-western Iberia). Estuar. Coast. Shelf Sci. 64, 249-260. https://doi.org/10.1016/j.ecss.2005.02.017.
Dou, S., Masuda, R., Tanaka, M., Tsukamoto, K., 2002. Feeding resumption, morphological changes and mortality during starvation in Japanese flounder larvae. J. Fish Biol. 60, 1363-1380.
https://doi.org/10.1111/j.1095-8649.2002.tb02432.x.
Dugdale, R.C., Wilkerson, F.P., 1998. Silicate regulation of new production in the equatorial Pacific upwelling. Nature. 391, 270-273. https://doi.org/10.1038/34630.
Eddy, F.B., 2005. Ammonia in estuaries and effects on fish. J. Fish Biol. 67, 1495-1513. https://doi.org/10.1111/j.1095-8649.2005.00930.x.
Egge, J.K., Aksnes, D.L., 1992. Silicate as regulating nutrient in phytoplankton competition. Mar. Ecol. Prog. Ser. 83, 281-289. https://doi.org/10.3354/meps083281.
Ehrlich, K.F., Blaxter, J.H.S., Pemberton, R., 1976. Morphological and histological changes during the growth and starvation of herring and plaice larvae. Mar. Biol. 35, 105-118. https://doi.org/10.1007/bf00390932.
Falkowski, P.G., Raven, J.A., 2007. Aquatic photosynthesis. Princeton University press, Princeton, U.S.A., 488 pp.
FAO, 2021a. Fisheries and aquaculture department, statistics and information service. FishstatJ-FAO-regional and global capture datasets. Available. https://www.fao.org/fishery/en/statistics/software/fishstatj.
FAO, 2021b. Global aquaculture production. Fishery statistical collections. FIGIS data collection. In: FAO Fisheries and Aquaculture Division (online). FAO, Rome, Italy. (accessed 20 November 2021).
Feike, M., Heerkloss, R., 2009. Does Eurytemora affinis (Copepoda) control the population growth of Keratella cochlearis (Rotifera) in the brackish water Darss-Zingst lagoon (southern Baltic Sea)? J. Plankton Res. 31, 571-576. https://doi.org/10.1093/plankt/fbp004.
Fernández-Díaz, C., Yúfera, M., 1997. Detecting growth in gilthead seabream, Sparus aurata L., larvae fed microcapsules. Aquaculture. 153, 93-102. https://doi.org/10.1016/s0044-8486(97)00017-3.
Flynn, K.J., Martin-Jézéquel, V., 2000. Modelling Si-N-limited growth of diatoms. J. Plankton Res. 22, 447-472. https://doi.org/10.1093/plankt/22.3.447.
Foissner, W., Chao, A., Katz, L.A., 2007. Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodivers. Conserv. 17, 345-363. https://doi.org/10.1007/s10531-007-9254-7.
Forsskål, P., 1775. Descriptiones animalium avium, amphibiorum, piscium, insectorum, vermium; quae in itinere orientali observavit. ex officina Mölleri, Hauniæ, pp. 299. https://doi.org/10.5962/bhl.title.2154.
Frangópulos, M., Guisande, C., Maneiro, I., Riveiro, I., Franco, J., 2000. Short-term and long-term effects of the toxic dinoflagellate Alexandrium minutum on the copepod Acartia clausi. Mar. Ecol. Prog. Ser. 203, 161-169. https://doi.org/10.3354/meps203161.
Friedenberg, L.E., Bollens, S.M., Rollwagen-Bollens, G., 2012. Feeding dynamics of larval Pacific herring (Clupea pallasi) on natural prey assemblages: the importance of protists. Fish. Oceanogr. 21, 95-108. https://doi.org/10.1111/j.1365-2419.2011.00611.x.
Gómez, F., 2005. A list of free-living dinoflagellate species in the world’s oceans. Acta. Bot. Croat. 64, 129-212.
Gómez, F., 2020. Symbioses of ciliates (Ciliophora) and diatoms (Bacillariophyceae): taxonomy and host-symbiont interactions. Oceans. 1, 133-155. https://doi.org/10.3390/oceans1030010.
Galbraith, E.D., Le Mézo, P., Solanes Hernandez, G., Bianchi, D., Kroodsma, D., 2019. Growth limitation of marine fish by low iron availability in the open ocean. Front. Mar. Sci. 6. https://doi.org/10.3389/fmars.2019.00509.
Gamboa, M., Moura, P., Moreira, M., Castanho, S., Ribeiro, L., Gonçalves, R., Cunha, M., 2019. The importance of copepods as live feed on larval development of dusky grouper (Epinephelus marginatus Lowe, 1834). Front. Mar. Sci. 5. https://doi.org/10.3389/conf.FMARS.2018.06.00110.
Garcia, L.M.B., Sayco, M.J.P., Aya, F.A., 2020. Point-of-no-return and delayed feeding mortalities in first-feeding larvae of the silver therapon Leiopotherapon plumbeus (Kner) (Teleostei: Terapontidae). Aquac. Rep. 16. https://doi.org/10.1016/j.aqrep.2020.100288.
Geider, R., La Roche, J., 2002. Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur. J. Phycol. 37, 1-17. https://doi.org/10.1017/s0967026201003456.
Geider, R.J., La Roche, J., 1994. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynth. Res. 39, 275-301. https://doi.org/10.1007/BF00014588.
Gisbert, E., Williot, P., 1997. Larval behaviour and effect of the timing of initial feeding on growth and survival of Siberian sturgeon (Acipenser baeri) larvae under small scale hatchery production. Aquaculture. 156, 63-76. https://doi.org/10.1016/s0044-8486(97)00086-0.
Gisbert, E., Conklin, D.B., Piedrahita, R.H., 2004. Effects of delayed first feeding on the nutritional condition and mortality of California halibut larvae. J. Fish Biol. 64, 116-132. https://doi.org/10.1111/j.1095-8649.2004.00289.x.
Glaspie, C.N., Clouse, M.A., Adamack, A.T., Cha, Y., Ludsin, S.A., Mason, D.M., Roman, M.R., Stow, C.A., Brandt, S.B., 2018. Effect of hypoxia on diet of atlantic bumpers in the northern gulf of Mexico. Trans. Am. Fish. Soc. 147, 740-748. https://doi.org/10.1002/tafs.10063.
Gledhill, M., Buck, K.N., 2012. The organic complexation of iron in the marine environment: a review. Front. Microbiol. 3, 69. https://doi.org/10.3389/fmicb.2012.00069.
Glibert, P., Seitzinger, S., Heil, C., Burkholder, J., Parrow, M., Codispoti, L., Kelly, V., 2005. The role of eutrophication in the global proliferation of harmful algal blooms. Oceanography. 18, 198-209. https://doi.org/10.5670/oceanog.2005.54.
Glibert, P.M., Wilkerson, F.P., Dugdale, R.C., Raven, J.A., Dupont, C.L., Leavitt, P.R., Parker, A.E., Burkholder, J.M., Kana, T.M., 2016. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol. Oceanogr. 61, 165-197. https://doi.org/10.1002/lno.10203.
Gopakumar, G., Nazar, A.K.A., Rengarajan, J., G Tamilmani, G.T., Chellappa, K., Sakthivel, M.S., Palsamy, R., Rao, G., Premjothi, R., Vadivel, B., Ramkumar, B., Jayasingh, J., Syda, R., 2012. Broodstock development through regulation of photoperiod and controlled breeding of silver pompano, Trachinotus blochii (LaCépède, 1801) in India. Indian J. Fish. 59.
Gorham, F.P., 1899. Some physiological effects of reduced pressure on fish. J. Boston Soc. Med. Sci. 3, 250-254.
Gowen, R., Tett, P., Bresnan, E., Davidson, K., McKinney, A., Harrison, P., Milligan, S.P., Mills, D.K., Silke, J., Crooks, A.M., 2012. Anthropogenic nutrient enrichment and blooms of harmful phytoplankton. Oceanogr. Mar. Biol. 50, 65-126. https://doi.org/10.1201/b12157-3.
Granéli, E., Haraldsson, C., 1993. Can increased leaching of trace metals from acidified areas influence phytoplankton growth in coastal waters? Ambio, 308-311.
Green, J., 2001. Variability and instability of planktonic rotifer associations in Lesotho, southern Africa. Hydrobiologia. 446/447, 187-194. https://doi.org/10.1023/a:1017511709057.
Grosell, M., Jensen, F.B., 2000. Uptake and effects of nitrite in the marine teleost fish Platichthys flesus. Aquat. Toxicol. 50, 97-107.
https://doi.org/10.1016/s0166-445x(99)00091-0.
Guillard, R.R.L., Ryther, J.H., 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 8, 229-239. https://doi.org/10.1139/m62-029.
Guillard, R.R.L., 1975. Culture of phytoplankton for feeding marine invertebrates. In:
Smith, W.L., Chanley, M.H. (Eds.), Culture of marine invertebrate animals. Springer, Boston, U.S.A., pp. 29-60.
https://doi.org/10.1007/978-1-4615-8714-9_3.
Gutiérrez-Sigeros, I., Ibarra-Castro, L., Alvarez-Lajonchère, L., Sanchez-Zamora, A., 2018. Natural spawning and scaling-up of yellowtail snapper (Ocyurus chrysurus): larval rearing for the mass production of juveniles. Aquaculture. 491, 252-257. https://doi.org/10.1016/j.aquaculture.2018.03.048.
Hairston, N.G., 1979. The adaptive significance of color polymorphism in two species of Diaptomus (Copepoda). Limnol. Oceanogr. 24, 15-37. https://doi.org/10.4319/lo.1979.24.1.0015.
Hansen, B.W., Hansen, P.J., Nielsen, T.G., Jepsen, P.M., 2017. Effects of elevated pH on marine copepods in mass cultivation systems: practical implications. J. Plankton Res. 39, 984-993. https://doi.org/10.1093/plankt/fbx032.
Hansen, P.J., 2002. Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession. Aquat. Microb. Ecol. 28, 279-288. https://doi.org/10.3354/ame028279.
Harding, L.W., Perry, E.S., 1997. Long-term increase of phytoplankton biomass in Chesapeake Bay, 1950-1994. Mar. Ecol. Prog. Ser. 157, 39-52. https://doi.org/10.3354/meps157039.
Helal, H.A., Culver, D.A., 1991. N:P ratio and plankton production in fish hatchery ponds. Verh. Internat. Verein Limnol. 24, 1508-1511. https://doi.org/10.1080/03680770.1989.11899010.
Helland, S., Terjesen, B.F., Berg, L., 2003. Free amino acid and protein content in the planktonic copepod Temora longicornis compared to Artemia franciscana. Aquaculture. 215, 213-228. https://doi.org/10.1016/s0044-8486(02)00043-1.
Hilder, P.I., Cobcroft, J.M., Battaglene, S.C., 2015. The first-feeding response of larval southern bluefin tuna, Thunnus maccoyii (Castelnau, 1872), and yellowtail kingfish, Seriola lalandi (Valenciennes, 1833), to prey density, prey size and larval density. Aquac. Res. 46, 2736-2751. https://doi.org/10.1111/are.12429.
Hinga, K.R., 2002. Effects of pH on coastal marine phytoplankton. Mar. Ecol. Prog. Ser. 238, 281-300. https://doi.org/10.3354/meps238281.
Hioki S., Suzuki K., Tanaka Y., 1982. Spawning behavior, egg and larval development, and sex succession of the hermaphroditic pomacanthine, Genicanthus melanospilos, in the aquarium. Journal of the Faculty of Marine Science and Technology, Tokai University. 15, 359-366.
Hioki S., TanakaY., Suzuki K., 1995. Reproductive behavior, egg, larvae, and sexuality of two angelfishes, Genicanthus watanabei and G. bellus, in an aquarium. Journal of the Faculty of Marine Science and Technology, Tokai University. 40, 151-171.
Hoek, C.v.d., Mann, D.G., Jahns, H.M., 1995. Algae : an introduction to phycology. Cambridge University press, Cambridge, U.K., 640 pp.
Holt, G.J., 2003. Research on culturing the early life stages of marine ornamental fish. In: Cato, J.C., Brown, C.L. (Eds.), Marine ornamental species: collection, culture & conservation. Wiley-Blackwell, New Jersey, U.S.A., pp. 249-254. https://doi.org/10.1002/9780470752722.ch17.
Horner, R.A., 2002. A taxonomic guide to some common marine phytoplankton. Biopress, Bristol, U.K., 195 pp.
Houde, E.D., 1997. Patterns and trends in larval-stage growth and mortality of teleost fish. J. Fish Biol. 51, 52-83.
https://doi.org/10.1111/j.1095-8649.1997.tb06093.x.
Howarth, R.W., 1988. Nutrient limitation of net primary production in marine ecosystems. Ann. Rev. Ecol. 19, 89-110. https://doi.org/10.1146/annurev.es.19.110188.000513.
Howarth, R.W., Marino, R., 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol. Oceanogr. 51, 364-376. https://doi.org/10.4319/lo.2006.51.1_part_2.0364.
Huang, J.-C., Shang, C., 2006. Air stripping. In: Wang, L.K., Hung, Y., Shammas, N.K. (Eds.), Advanced physicochemical treatment processes. Handbook of environmental engineering. Humana press, New Jersey, U.S.A., pp. 47-79. https://doi.org/10.1007/978-1-59745-029-4_2.
Humes, A.G., 1994. How many copepods? Hydrobiologia. 292-293, 1-7. https://doi.org/10.1007/bf00229916.
Humphrey, G.F., 1975. The photosynthesis: respiration ratio of some unicellular marine algae. J. Exp. Mar. Biol. Ecol. 18, 111-119. https://doi.org/10.1016/0022-0981(75)90068-4.
Huys, R., Boxshall, G.A., 1991. Copepod evolution. Ray society, London, U.K., 468 pp.
Ibarra-Castro, L., Martínez Cordero, F.J., Alvarez-Lajonchère, L., 2013. Financial analysis of pilot-scale egg production of spotted rose snapper : Lutjanus guttatus. Aquacult. Econ. Manage. 17, 171-183. https://doi.org/10.1080/13657305.2013.772265.
Ibarra-Castro, L., Alvarez-Lajonchère, L., Rosas, C., Palomino-Albarrán, I.G., Holt, G.J., Sanchez-Zamora, A., 2011. GnRHa-induced spawning with natural fertilization and pilot-scale juvenile mass production of common snook, Centropomus undecimalis (Bloch, 1792). Aquaculture. 319, 479-483. https://doi.org/10.1016/j.aquaculture.2011.07.014.
Jacob, A.P., Culver, D.A., 2010. Experimental evaluation of the impacts of reduced inorganic phosphorus fertilization rates on juvenile saugeye production. Aquaculture. 304, 22-33. https://doi.org/10.1016/j.aquaculture.2010.03.019.
Jakobsen, H.H., Blanda, E., Staehr, P.A., Højgård, J.K., Rayner, T.A., Pedersen, M.F., Jepsen, P.M., Hansen, B.W., 2015. Development of phytoplankton communities: implications of nutrient injections on phytoplankton composition, pH and ecosystem production. J. Exp. Mar. Biol. Ecol. 473, 81-89. https://doi.org/10.1016/j.jembe.2015.08.011.
Jensen, F.B., 2003. Nitrite disrupts multiple physiological functions in aquatic animals. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 135, 9-24. https://doi.org/10.1016/s1095-6433(02)00323-9.
Jensen, F.B., Nielsen, K., 2018. Methemoglobin reductase activity in intact fish red blood cells. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 216, 14-19. https://doi.org/10.1016/j.cbpa.2017.11.004.
Jepsen, P.M., Andersen, C.V.B., Schjelde, J., Hansen, B.W., 2015. Tolerance of un-ionized ammonia in live feed cultures of the calanoid copepod Acartia tonsa Dana. Aquac. Res. 46, 420-431. https://doi.org/10.1111/are.12190.
Jia, R., Han, C., Lei, J.L., Liu, B.L., Huang, B., Huo, H.H., Yin, S.T., 2015. Effects of nitrite exposure on haematological parameters, oxidative stress and apoptosis in juvenile turbot (Scophthalmus maximus). Aquat. Toxicol. 169, 1-9. https://doi.org/10.1016/j.aquatox.2015.09.016.
Job, S., Arvedlund, M., Marnane, M., 1997. Culture of coral reef fishes. Austasia aquac. 11, 56-59.
Jones, D.A., Kamarudin, M.S., Vay, L.L., 1993. The potential for replacement of live feeds in larval culture. J. World Aquac. Soc. 24, 199-210. https://doi.org/10.1111/j.1749-7345.1993.tb00009.x.
Kaatz, S.E., Morris, J.E., Rudacille, J.B., Johnson, J.A., Clayton, R.D., 2011. Role of organic fertilizers in walleye (Sander vitreus) production in plastic-lined culture ponds. Aquac. Res. 42, 490-498.
https://doi.org/10.1111/j.1365-2109.2010.02644.x.
Kamiyama, T., 1994. The impact of grazing by microzooplankton in northern Hiroshima Bay, the Seto Inland Seam, Jpn. Mar. Biol. 119, 77-88. https://doi.org/10.1007/bf00350109.
Kamler, E., 1992. Early life history of fish: an energetics approach. Springer, Dordrecht, Netherlands, pp. 267. https://doi.org/10.1007/978-94-011-2324-2.
Kang'ombe, J., Brown, J.A., Halfyard, L.C., 2006. Effect of using different types of organic animal manure on plankton abundance, and on growth and survival of Tilapia rendalli (Boulenger) in ponds. Aquac. Res. 37, 1360-1371. https://doi.org/10.1111/j.1365-2109.2006.01569.x.
Karus, K., Paaver, T., Agasild, H., Zingel, P., 2014. The effects of predation by planktivorous juvenile fish on the microbial food web. Eur. J. Protistol. 50, 109-121. https://doi.org/10.1016/j.ejop.2014.01.006.
Kawakami, T., Tachihara, K., 2005. Diet shift of larval and juvenile landlocked Ryukyu-ayu Plecoglossus altivelis ryukyuensis in the Fukuji Reservoir, Okinawa Island. Jpn. Fish. Sci. 71, 1003-1009.
https://doi.org/10.1111/j.1444-2906.2005.01057.x.
Kemp, W.M., Testa, J.M., Conley, D.J., Gilbert, D., Hagy, J.D., 2009. Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences. 6, 2985-3008. https://doi.org/10.5194/bg-6-2985-2009.
Kiørboe, T., Munk, P., Josianne, G., Støttrup, J.G., 1985. First feeding by larval herring Clupea harengus L. Dana. 5, 95-107.
Kinne, O., Rosenthal, H., 1967. Effects of sulfuric water pollutants on fertilization, embryonic development and larvae of the herring, Clupea harengus. Mar. Biol. 1, 65-83. https://doi.org/10.1007/bf00346697.
Kleppel, G.S., 1993. On the diets of calanoid copepods. Mar. Ecol. Prog. Ser. 99, 183-195. https://doi.org/10.3354/meps099183.
Koven, W., Gisbert, E., Nixon, O., Solovyev, M.M., Gaon, A., Allon, G., Meiri-Ashkenazi, I., Tandler, A., Rosenfeld, H., 2019. The effect of algal turbidity on larval performance and the ontogeny of digestive enzymes in the grey mullet (Mugil cephalus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 228, 71-80. https://doi.org/10.1016/j.cbpa.2018.11.005.
Krebs, J.M., Turingan, R.G., 2003. Intraspecific variation in gape-prey size relationships and feeding success during early ontogeny in red drum, Sciaenops ocellatus. Environ. Biol. Fishes. 66, 75-84. https://doi.org/10.1023/a:1023290226801.
Kristiansen, S., Hoell, E.E., 2002. The importance of silicon for marine production. Hydrobiologia. 484, 21-31. https://doi.org/10.1023/a:1021392618824.
Kumar, R., 2003. Effects of Mesocyclops thermocyclopoides (copepoda: cyclopoida) predation on the population growth patterns of different prey species. J. Freshw. Ecol. 18, 383-393. https://doi.org/10.1080/02705060.2003.9663974.
Kuo, J., Chen, C.-Y., Han, C.-C., Ju, Y.-M., Tew, K.S., 2021. Analyses of diet preference of larval orange-spotted grouper (Epinephelus coioides) grown under inorganic fertilization method using next-generation sequencing. Aquaculture. 531. https://doi.org/10.1016/j.aquaculture.2020.735916.
Kurten, G.L., Barkoh, A., Begley, D.C., Fries, L.T., 2011. Nutrient manipulation to control the toxic alga Prymnesium parvum: verification of treatments and resolution of the issue of elevated pH. N. Am. J. Aquac. 73, 141-152. https://doi.org/10.1080/15222055.2011.559867.
Løvstad, Ø., Bjørndalen, K., 1990. Nutrients (P, N, Si) and growth conditions for diatoms and Oscillatoria spp. in lakes of south-eastern Norway. Hydrobiologia. 196, 255-263. https://doi.org/10.1007/bf00006137.
Löder, M.G.J., Meunier, C., Wiltshire, K.H., Boersma, M., Aberle, N., 2011. The role of ciliates, heterotrophic dinoflagellates and copepods in structuring spring plankton communities at Helgoland Roads, North Sea. Mar. Biol. 158, 1551-1580. https://doi.org/10.1007/s00227-011-1670-2.
Löder, M.G.J., Kraberg, A.C., Aberle, N., Peters, S., Wiltshire, K.H., 2011. Dinoflagellates and ciliates at Helgoland Roads, North Sea. Helgol. Mar. Res. 66, 11-23. https://doi.org/10.1007/s10152-010-0242-z.
LaCépède, 1801. Histoire naturelle des poissons : 11 tomes. Plassan, Paris, France, pp. 498. https://doi.org/10.5962/bhl.title.125512.
Lapesa, S., Snell, T.W., Fields, D.M., Serra, M., 2002. Predatory interactions between a cyclopoid copepod and three sibling rotifer species. Freshw. Biol. 47, 1685-1695. https://doi.org/10.1046/j.1365-2427.2002.00926.x.
Laruelle, G.G., Roubeix, V., Sferratore, A., Brodherr, B., Ciuffa, D., Conley, D.J., Dürr, H.H., Garnier, J., Lancelot, C., Le Thi Phuong, Q., Meunier, J.D., Meybeck, M., Michalopoulos, P., Moriceau, B., Ní Longphuirt, S., Loucaides, S., Papush, L., Presti, M., Ragueneau, O., Regnier, P., Saccone, L., Slomp, C.P., Spiteri, C., Van Cappellen, P., 2009. Anthropogenic perturbations of the silicon cycle at the global scale: key role of the land-ocean transition. Glob. Biogeochem. Cycles. 23. https://doi.org/10.1029/2008gb003267.
Lavens, P., Sorgeloos, P., 1997. Manual on the production and use of live food for aquaculture. FAO, Rome, Italy, 295 pp.
Lavens, P., Sorgeloos, P., 2000. The history, present status and prospects of the availability of Artemia cysts for aquaculture. Aquaculture. 181, 397-403. https://doi.org/10.1016/s0044-8486(99)00233-1.
Lee, C.S., Ostrowski, A.C., 2001. Current status of marine finfish larviculture in the United States. Aquaculture. 200, 89-109.
https://doi.org/10.1016/s0044-8486(01)00695-0.
Lee, I.S., Ohs, C.L., Broach, J.S., DiMaggio, M.A., Watson, C.A., 2018. Determining live prey preferences of larval ornamental marine fish utilizing fluorescent microspheres. Aquaculture. 490, 125-135. https://doi.org/10.1016/j.aquaculture.2018.01.035.
Leu, M.-Y., Sune, Y.-H., Meng, P.-J., 2015. First results of larval rearing and development of the bluestriped angelfish Chaetodontoplus septentrionalis (Temminck & Schlegel) from hatching through juvenile stage with notes on its potential for aquaculture. Aquac. Res. 46, 1087-1100. https://doi.org/10.1111/are.12265.
Leu, M.-Y., Liou, C.-H., Wang, W.-H., Yang, S.-D., Meng, P.-J., 2009. Natural spawning, early development and first feeding of the semicircle angelfish Pomacanthus semicirculatus (Cuvier, 1831) in captivity. Aquac. Res. 40, 1019-1030. https://doi.org/10.1111/j.1365-2109.2009.02192.x.
Leu, M.-Y., Meng, P.-J., Siong Tew, K., Kuo, J., Hung, C.-C., 2012. Spawning and development of larvae and juveniles of the indian ocean oriental sweetlips, Plectorhinchus vittatus (Linnaeus, 1758), in the aquarium. J. World Aquac. Soc. 43, 595-606. https://doi.org/10.1111/j.1749-7345.2012.00594.x.
Leu, M.-Y., Meng, P.-J., Huang, C.-S., Tew, K.S., Kuo, J., Liou, C.-H., 2010. Spawning behaviour, early development and first feeding of the bluestriped angelfish Chaetodontoplus septentrionalis (Temminck & Schlegel, 1844) in captivity. Aquac. Res. 41, 39-52.
https://doi.org/10.1111/j.1365-2109.2009.02454.x.
Liao, I.C., Su, H.M., Chang, E.Y., 2001. Techniques in finfish larviculture in Taiwan. Aquaculture. 200, 1-31. https://doi.org/10.1016/s0044-8486(01)00692-5.
Lieske, E., Myers, R.F., 2002. Coral reef fishes. Princeton University press, Princeton, New Jersey, U.S.A., 400 pp.
Lin, S., Litaker, R.W., Sunda, W.G., 2016. Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J. Phycol. 52, 10-36. https://doi.org/10.1111/jpy.12365.
Linbo, T.L., 2009. Zebrafish (Danio rerio) husbandry and colony maintenance at the northwest fisheries science center. Northwest fisheries science center, Seattle, U.S.A., 63 pp.
Liu, H., Chen, M., Zhu, F., Harrison, P.J., 2016. Effect of diatom silica content on copepod grazing, growth and reproduction. Front. Mar. Sci. 3. https://doi.org/10.3389/fmars.2016.00089.
Liu, X., Millero, F.J., 2002. The solubility of iron in seawater. Mar. Chem. 77, 43-54. https://doi.org/10.1016/s0304-4203(01)00074-3.
Llanos-Rivera, A., Herrera, G., Bernal, P., 2004. Food size selectivity and diet overlap in larvae of Clupeiform species from central Chile. Cah. Biol. Mar. 45, 1-8.
Ludwig, G.M., 2002. The effects of increasing organic and inorganic fertilizer on water quality, primary production, zooplankton, and sunshine bass, Morone chrysops×M. saxatilis, fingerling production. J. Appl. Aquac. 12, 1-29. https://doi.org/10.1300/J028v12n02_01.
Lundholm, N., Hansen, P.J., Kotaki, Y., 2004. Effect of pH on growth and domoic acid production by potentially toxic diatoms of the genera Pseudo-nitzschia and Nitzschia. Mar. Ecol. Prog. Ser. 273, 1-15. https://doi.org/10.3354/meps273001.
Mészáros, L., van der Meulen, F., Jongbloed, G., El Serafy, G., 2021. Climate change induced trends and uncertainties in phytoplankton spring bloom dynamics. Front. Mar. Sci. 8. https://doi.org/10.3389/fmars.2021.669951.
Ma, Z., Qin, J.G., Hutchinson, W., Chen, B.N., 2013. Food consumption and selectivity by larval yellowtail kingfish Seriola lalandi cultured at different live feed densities. Aquac. Nutr. 19, 523-534. https://doi.org/10.1111/anu.12004.
Madhu, K., Madhu, R., Retheesh, T., 2012. Broodstock development, breeding, embryonic development and larviculture of spine-cheek anemonefish, Premnas biaculeatus (Bloch, 1790). Indian J. Fish. 59, 65-75.
Madhu, K., Madhu, R., Retheesh, T., 2016. Spawning, embryonic development and larval culture of redhead dottyback Pseudochromis dilectus Lubbock, 1976 under captivity. Aquaculture. 459, 73-83. https://doi.org/10.1016/j.aquaculture.2016.03.017.
Mæhre, H.K., Hamre, K., Elvevoll, E.O., 2013. Nutrient evaluation of rotifers and zooplankton: feed for marine fish larvae. Aquac. Nutr. 19, 301-311. https://doi.org/10.1111/j.1365-2095.2012.00960.x.
Makareviciute-Fichtner, K., Matthiessen, B., Lotze, H.K., Sommer, U., 2020. Decrease in diatom dominance at lower Si:N ratios alters plankton food webs. J. Plankton Res. 42, 411-424. https://doi.org/10.1093/plankt/fbaa032.
Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J., Wincker, P., Iudicone, D., de Vargas, C., Bittner, L., Zingone, A., Bowler, C., 2016. Insights into global diatom distribution and diversity in the world's ocean. Proc. Natl. Acad. Sci. U S A. 113, 1516-1525. https://doi.org/10.1073/pnas.1509523113.
Mansouri, A., Lurie, A.A., 1993. Concise review: methemoglobinemia. Am. J. Hematol. 42, 7-12. https://doi.org/10.1002/ajh.2830420104.
Martin-Jézéquel, V., Hildebrand, M., Brzezinski, M.A., 2000. Silicon metabolism in diatoms: implications for growth. J. Phycol. 36, 821-840. https://doi.org/10.1046/j.1529-8817.2000.00019.x.
Martin, J.H., 1990. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography. 5, 1-13. https://doi.org/10.1029/PA005i001p00001.
Martin, J.H., Fitzwater, S.E., 1988. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature. 331, 341-343. https://doi.org/10.1038/331341a0.
Mauchline, J., 1998. Biology of calanoid copepods, the. advances in marine biology, volume 33. Elsevier Science & Technology, Amsterdam, Netherlands, pp. 720.
McMartin, D., 2017. What are the differences between a full-scale, pilot-scale and bench-scale constructed treatment wetlands? Retrieved from: https://www.researchgate.net/post/What-are-the-differences-between-a-full-scale-pilot-scale-and-bench-scale-constructed-treatment-wetlands/58ee272a96b7e4e1b656302f/citation/download.
Meade, J.W., 1985. Allowable ammonia for fish culture. Progress Fish Cult. 47, 135-145. https://doi.org/10.1577/1548-8640(1985)47<135:Aaffc>2.0.Co;2.
Millero, F.J., 1998. Solubility of Fe(III) in seawater. Earth Planet. Sci. Lett. 154, 323-329. https://doi.org/10.1016/s0012-821x(97)00179-9.
Moorhead, J.A., Zeng, C., 2010. Development of captive breeding techniques for marine ornamental fish: a review. Rev. Fish. Sci. 18, 315-343. https://doi.org/10.1080/10641262.2010.516035.
Moorhead, J.A., Zeng, C., 2011. Breeding of the forktail blenny Meiacanthus atrodorsalis: broodstock management and larval rearing. Aquaculture. 318, 248-252. https://doi.org/10.1016/j.aquaculture.2011.05.018.
Muller-Feuga, A., Moal, J., Kaas, R., 2003. The microalgae of aquaculture. In: Støttrup, J.G., McEvoy, L.A. (Eds.), Live feeds in marine aquaculture. Wiley-Blackwell, New Jersey, U.S.A., pp. 206-252. https://doi.org/10.1002/9780470995143.ch6.
Munk, P., 1997. Prey size spectra and prey availability of larval and small juvenile cod. J. Fish Biol. 51, 340-351.
https://doi.org/10.1111/j.1095-8649.1997.tb06107.x.
Myers, J.J., Soderberg, R.W., Kirby, J.M., Marcinko, M.T., 1996. Production of walleye, Stizostedion vitreum, in earthen ponds fertilized with organic and inorganic fertilizers and stocked at three rates. J. Appl. Aquac. 6, 11-19. https://doi.org/10.1300/J028v06n02_02.
Naas, K.E., N˦ss, T., Harboe, T., 1992. Enhanced first feeding of halibut larvae (Hippoglossus hippoglossus L.) in green water. Aquaculture. 105, 143-156. https://doi.org/10.1016/0044-8486(92)90126-6.
Nagano, N., Iwatsuki, Y., Kamiyama, T., Nakata, H., 2000a. Effects of marine ciliates on survivability of the first-feeding larval surgeonfish, Paracanthurus hepatus: laboratory rearing experiments. Hydrobiologia. 432, 149-157. https://doi.org/10.1023/a:1004094825739.
Nagano, N., Iwatsuki, Y., Kamiyama, T., Shimizu, H., Nakata, H., 2000b. Ciliated protozoans as food for first-feeding larval grouper, Epinephelus septemfasciatus: laboratory experiment. Plankton Biol. Ecol. 47, 93-99.
Nazar, A.K.A., Rengarajan, J., G Tamilmani, G.T., Sakthivel, M.S., Chellappa, K., Palsamy, R., Anbarasu, M., Sirajudeen, S., Vadivel, B., Jayasingh, J., Gopakumar, G., 2012. Larviculture and seed production of the silver pompano, Trachinotus blochii (LaCépède, 1801) for the first time in India. Indian J. Fish. 59, 83-87.
Nguenga, D., Breine, J., Sulem Yong, S., Teugels, G., OHevier, F., 1997. Effect of animal manure and chemical fertilizer on the growth and survival of Tilapia cameronensis Holly in Cameroon. Aquac. Res. 28, 231-234. https://doi.org/10.1046/j.1365-2109.1997.00847.x.
Nimer, N., Merrett, M., 1992. Calcification and utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi Lohmann. New Phytol. 121, 173-177. https://doi.org/https://doi.org/10.1111/j.1469-8137.1992.tb01102.x.
Nixon, S.W., 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia. 41, 199-219. https://doi.org/10.1080/00785236.1995.10422044.
Nixon, S.W., Ammerman, J.W., Atkinson, L.P., Berounsky, V.M., Billen, G., Boicourt, W.C., Boynton, W.R., Church, T.M., Ditoro, D.M., Elmgren, R., Garber, J.H., Giblin, A.E., Jahnke, R.A., Owens, N.J.P., Pilson, M.E.Q., Seitzinger, S.P., 1996. The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry. 35, 141-180. https://doi.org/10.1007/bf02179826.
Ohman, M.D., Runge, J.A., 1994. Sustained fecundity when phytoplankton resources are in short supply: omnivory by Calanus finmarchicus in the Gulf of St. Lawrence. Limnol. Oceanogr. 39, 21-36. https://doi.org/10.4319/lo.1994.39.1.0021.
Olivotto, I., Holt, S.A., Carnevali, O., Holt, G.J., 2006. Spawning, early development, and first feeding in the lemonpeel angelfish Centropyge flavissimus. Aquaculture. 253, 270-278. https://doi.org/10.1016/j.aquaculture.2004.12.009.
Olivotto, I., Cardinali, M., Barbaresi, L., Maradonna, F., Carnevali, O., 2003. Coral reef fish breeding: the secrets of each species. Aquaculture. 224, 69-78. https://doi.org/10.1016/s0044-8486(03)00207-2.
Olivotto, I., Tokle, N.E., Nozzi, V., Cossignani, L., Carnevali, O., 2010. Preserved copepods as a new technology for the marine ornamental fish aquaculture: A feeding study. Aquaculture. 308, 124-131. https://doi.org/10.1016/j.aquaculture.2010.08.033.
Olivotto, I., Planas, M., Simões, N., Holt, G.J., Avella, M.A., Calado, R., 2011. Advances in breeding and rearing marine ornamentals. J. World Aquac. Soc. 42, 135-166. https://doi.org/10.1111/j.1749-7345.2011.00453.x.
Østergaard, P., Munk, P., Janekarn, V., 2004. Contrasting feeding patterns among species of fish larvae from the tropical Andaman Sea. Mar. Biol. 146, 595-606. https://doi.org/10.1007/s00227-004-1458-8.
Padmaja Divya, S., Thangappan Ajith Kumar, T., Rajasekaran, R., Balasubramanian, T., 2011. Larval rearing of clownfish using Brachionus plicatilis rotifer as starter food. Sci. Asia. 37.
https://doi.org/10.2306/scienceasia1513-1874.2011.37.179.
Palmer, P.J., Burke, M.J., Palmer, C.J., Burke, J.B., 2007. Developments in controlled green-water larval culture technologies for estuarine fishes in Queensland, Australia and elsewhere. Aquaculture. 272, 1-21. https://doi.org/10.1016/j.aquaculture.2007.06.018.
Pan, Y.-J., Wang, W.-L., Hwang, J.-S., Souissi, S., 2021. Effects of epibiotic diatoms on the productivity of the Calanoid copepod Acartia tonsa (Dana) in intensive aquaculture systems. Front. Mar. Sci. 8. https://doi.org/10.3389/fmars.2021.728779.
Pančić, M., Torres, R.R., Almeda, R., Kiørboe, T., 2019. Silicified cell walls as a defensive trait in diatoms. Proc. Royal Soc. B. 286. https://doi.org/10.1098/rspb.2019.0184.
Park, I.S., Choi, H.J., Noh, C.H., Myoung, J.G., Park, H.J., Goo, I.B., 2013. Induced morphological changes in larval rock bream, Oplegnathus fasciatus, under starvation. Dev. Reprod. 17, 399-407. https://doi.org/10.12717/DR.2013.17.4.399.
Park, J., Daniels, H.V., Cho, S.H., 2013. Nitrite toxicity and methemoglobin changes in southern flounder, Paralichthys lethostigma, in brackish water. J. World Aquac. Soc. 44, 726-734. https://doi.org/10.1111/jwas.12064.
Parra, G., Yúfera, M., 2000. Feeding, physiology and growth responses in first-feeding gilthead seabream (Sparus aurata L.) larvae in relation to prey density. J. Exp. Mar. Biol. Ecol. 243, 1-15.
https://doi.org/10.1016/s0022-0981(99)00106-9.
Parra, G., Yúfera, M., 2002. Tolerance response to water pH in larvae of two marine fish species, gilthead seabream, Sparus aurata (L.) and Senegal sole, Solea senegalensis (Kaup), during development. Aquac. Res. 33, 747-752. https://doi.org/10.1046/j.1365-2109.2002.00713.x.
Parsons, T.R., Harrison, P.J., 1983. Nutrient cycling in marine ecosystems. In: Lange, O.L., Nobel, P.S., Osmond, C.B., Ziegler, H. (Eds) physiological plant ecology IV. Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-68156-1_4.
Pathak, M., Lakra, W., Krishna Reddy, A., Chadha, N., Tiwari, V., Srivastava, P., 2019. Growth and survival of silver pompano Trachinotus blochii (Lacepede, 1801) at different salinities in inland saline ground water. Indian J. Anim. Sci. 89, 581-587.
Paytan, A., McLaughlin, K., 2007. The oceanic phosphorus cycle. Chem. Rev. 107, 563-576. https://doi.org/10.1021/cr0503613.
Pedersen, F.M., Hansen, P.J., 2003. Effects of high pH on a natural marine planktonic community. Mar. Ecol. Prog. Ser. 260, 19-31. https://doi.org/10.3354/meps260019.
Pedrazzani, A.S., Pham, N.K., Lin, J., Neto, A.O., 2014. Reproductive behavior, embryonic and early larval development of the red head goby, Elacatinus puncticulatus. Anim. Reprod. Sci. 145, 69-74. https://doi.org/10.1016/j.anireprosci.2013.12.013.
Peña, R., Moguel-Hernandez, I., Haro-Ballesteros, G.M., 2021. Morphological and biochemical effects of food deprivation during the early development of Pacific red snapper Lutjanus peru. J. Fish. Biol. 98, 1349-1362. https://doi.org/10.1111/jfb.14669.
Pereira-Davison, E., Callan, C.K., 2018. Effects of photoperiod, light intensity, turbidity and prey density on feed incidence and survival in first feeding yellow tang (Zebrasoma flavescen)(Bennett). Aquac. Res. 49, 890-899. https://doi.org/10.1111/are.13535.
Pierce, R., Turner, J., 1992. Ecology of plankton ciliates in marine food webs. Rev. Aquat. Sci. 6, 139-181.
Pierce, R.H., Weeks, J.M., Prappas, J.M., 1993. Nitrate toxicity to five species of marine fish. J. World Aquac. Soc. 24, 105-107.
https://doi.org/10.1111/j.1749-7345.1993.tb00156.x.
Pillay, T.V.R., Kutty, M.N., 2009. Aquaculture : principles and practices. Wiley-Blackwell, New Jersey, U.S.A., 640 pp.
Platt, T., Fuentes-Yaco, C., Frank, K.T., 2003. Marine ecology: spring algal bloom and larval fish survival. Nature. 423, 398-399. https://doi.org/10.1038/423398b.
Plaβmann, T., Maier, G., Stich, H.B., 1997. Predation impact of Cyclops vicinus on the rotifer community in lake constance in spring. J. Plankton. Res. 19, 1069-1079. https://doi.org/10.1093/plankt/19.8.1069.
Pomeroy, R.S., Parks, J.E., Balboa, C.M., 2006. Farming the reef: is aquaculture a solution for reducing fishing pressure on coral reefs? Mar. Policy. 30, 111-130. https://doi.org/10.1016/j.marpol.2004.09.001.
Porter, C.W., Maciorowski, A.F., 1984. Spotted seatrout fingerling production in saltwater ponds. J. World Aquac. Soc. 15, 222-232. https://doi.org/10.1111/j.1749-7345.1984.tb00157.x.
Pruder, G.D., 1978. Effect of pH, carbon dioxide, oxygen, and light on the growth of Thalassiosira pseudonana (Hustedt) hasle and heimdal clone 3H, an important food for bivalve molluscan mariculture. University of Delaware, Ann Arbor, U.S.A., 113 pp.
Pyle, R., 2001. Pomacanthidae: angelfishes. In: Carpenter, K.E., Niem, V.H. (Eds.), FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Volume 5. Bony fishes part 3 (Menidae to Pomacentridae). FAO, Rome, Italy, pp. 3266-3286.
Qin, J., Culver, D.A., 1992. The survival and growth of larval walleye, Stizostedion vitreum, and trophic dynamics in fertilized ponds. Aquaculture. 108, 257-276. https://doi.org/10.1016/0044-8486(92)90111-w.
Qin, J.G., 2012. Management strategy 1: manipulation of pond nutrient ratios. In: Mischke, C.C. (Ed.) aquaculture pond fertilization. Wiley-Blackwell, New Jersey, U.S.A. https://doi.org/10.1002/9781118329443.ch7.
Rønnestad, I., Yúfera, M., Ueberschär, B., Ribeiro, L., Saele, Ø., Boglione, C., 2013. Feeding behaviour and digestive physiology in larval fish: current knowledge, and gaps and bottlenecks in research. Rev. Aquac. 5, 59-98. https://doi.org/10.1111/raq.12010.
Rabalais, N.N., Turner, R.E., Díaz, R.J., Justić, D., 2009. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 66, 1528-1537. https://doi.org/10.1093/icesjms/fsp047.
Randall, D.J., Hoar, W.S., 1969. Fish physiology. Academic press, New York, U.S.A., 464 pp.
Randall, J.E., 1995. Coastal fishes of Oman. University of Hawaii press, Honolulu, U.S.A., 439 pp.
Ranjan, R., 2017. Prioritized species for mariculture in india. ICAR - Central Marine Fisheries Research Institute, 43-48.
Raven, J.A., 1970. Exogenous inorganic carbon sources in plant photosynthesis. Biol. Rev. 45, 167-220. https://doi.org/10.1111/j.1469-185X.1970.tb01629.x.
Raven, J.A., 1980. Nutrient transport in microalgae. Adv. Microb. Physiol. 21, 47-226. https://doi.org/10.1016/s0065-2911(08)60356-2.
Raven, J.A., Evans, M.C.W., Korb, R.E., 1999. The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth. Res. 60, 111-150. https://doi.org/10.1023/a:1006282714942.
Redfield, A.C., 1934. On the proportions of organic derivatives in sea water and their relation to the composition of plankton. University press of Liverpool, Liverpool, U.K., pp. 176-192.
Redfield, A.C., 1958. The biological control of chemical factors in the environment. Sci. Prog. 11, 150-170.
Reynalte-Tataje, D.A., Baldisserotto, B., Zaniboni-Filho, E., 2015. The effect of water pH on the incubation and larviculture of curimbatá Prochilodus lineatus (Valenciennes, 1837) (Characiformes: Prochilodontidae). Neotrop. Ichthyol. 13, 179-186. https://doi.org/10.1590/1982-0224-20130127.
Roberts, R.J., 2001. Fish pathology. W.B. Saunders, London, U.K., 492 pp.
Rocha, R.J., Ribeiro, L., Costa, R., Dinis, M.T., 2008. Does the presence of microalgae influence fish larvae prey capture? Aquac. Res. 39, 362-369. https://doi.org/10.1111/j.1365-2109.2007.01746.x.
Round, F.E., Crawford, R.M., Mann, D.G., 1990. The diatoms : biology and morphology of the genera biology & morphology of the genera. Cambridge University press, New York, U.S.A., 747 pp.
Rouse, D.B., Webster, C.D., Radwin, I.A., 1992. Enhancement of the fatty acid composition of the Nematode Panagrellus Redivivus using three different media. J. World Aquac. Soc. 23, 89-95.
https://doi.org/10.1111/j.1749-7345.1992.tb00755.x.
Rubin, A.J., Elmaraghy, M.A., 1977. Studies on the toxicity of ammonia, nitrate and their mixtures to the common guppy. Water Res. 11, 927-935. https://doi.org/10.1016/0043-1354(77)90079-3.
Rueler, J.G., Ades, D.R., 1987. The role of iron nutrition in photosynthesis and nitrogen assimilation in Scenedesmus quadricauda (Chlorophyceae). J. Phycol. 23, 452-457. https://doi.org/10.1111/j.1529-8817.1987.tb02531.x.
Ruijing, W., Xiansen, L., Zhuang, Z., Johannessen, A., 2007. The point of no return and pectoral angle of Japanese anchovy (Engraulis japonicus) larvae during growth and starvation. Acta Oceanol. Sin. 26, 144-152.
Russo, T., Boglione, C., De Marzi, P., Cataudella, S., 2009. Feeding preferences of the dusky grouper (Epinephelus marginatus, Lowe 1834) larvae reared in semi-intensive conditions: a contribution addressing the domestication of this species. Aquaculture. 289, 289-296. https://doi.org/10.1016/j.aquaculture.2009.01.021.
Ruyet, J.P.-L., Chartois, H., Quemener, L., 1995. Comparative acute ammonia toxicity in marine fish and plasma ammonia response. Aquaculture. 136, 181-194. https://doi.org/10.1016/0044-8486(95)01026-2.
Ruyet, J.P.-L., Galland, R., Le Roux, A., Chartois, H., 1997. Chronic ammonia toxicity in juvenile turbot (Scophthalmus maximus). Aquaculture. 154, 155-171. https://doi.org/10.1016/s0044-8486(97)00052-5.
Ruyet, J.P.-L., Boeuf, G., Infante, J.Z., Helgason, S., Le Roux, A., 1998. Short-term physiological changes in turbot and seabream juveniles exposed to exogenous ammonia. Comp. Biochem. Physiol. 119, 511-518. https://doi.org/10.1016/s1095-6433(97)00458-3.
Saravanan, R., Vijayanand, P., Vagelli, A.A., Murugan, A., Shanker, S., Rajagopal, S., Balasubramanian, T., 2013. Breeding and rearing of the two striped cardinalfish, Apogon quadrifasciatus (Cuvier, 1828) in captive condition. Anim. Reprod. Sci. 137, 237-244. https://doi.org/10.1016/j.anireprosci.2013.01.017.
Saltwaterfish, 2021. https://www.saltwaterfish.com/product-pilot-fish-eastern-asia
(accessed 29 December 2021).
Sargent, J., McEvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., Tocher, D., 1999. Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture. 179, 217-229. https://doi.org/10.1016/s0044-8486(99)00191-x.
Satoh, N., Takaya, Y., Takeuchi, T., 2009. The effect of docosahexaenoic and eicosapentaenoic acids in live food on the development of abnormal morphology in hatchery-reared brown sole Pseudopleuronectes herzensteini. Fish Sci. 75, 1001-1006. https://doi.org/10.1007/s12562-009-0125-x.
Scarano, G., Saroglia, M.G., Gray, R.H., Tibaldi, E., 1984. Hematological responses of sea bass Dicentrarchus Labrax to sublethal nitrite exposures. Trans. Am. Fish. Soc. 113, 360-364.
https://doi.org/10.1577/1548-8659(1984)113<360:Hrosbd>2.0.Co;2.
Scheffer, M., Carpenter, S., Young, B., 2005. Cascading effects of over-fishing marine systems. Trends Ecol. Evol. 20, 579-581. https://doi.org/10.1016/j.tree.2005.08.018.
Schmitz, G., Ecker, J., 2008. The opposing effects of n-3 and n-6 fatty acids. Prog. Lipid Res. 47, 147-155. https://doi.org/10.1016/j.plipres.2007.12.004.
Seitzinger, S., Harrison, J.A., Bohlke, J.K., Bouwman, A.F., Lowrance, R., Peterson, B., Tobias, C., Van Drecht, G., 2006. Denitrification across landscapes and waterscapes: a synthesis. Ecol. Appl. 16, 2064-2090. https://doi.org/10.1890/1051-0761(2006)016[2064:Dalawa]2.0.Co;2.
Shan, X., Lin, M., 2014. Effects of algae and live food density on the feeding ability, growth and survival of miiuy croaker during early development. Aquaculture. 428-429, 284-289. https://doi.org/10.1016/j.aquaculture.2014.03.021.
Shao, K.T., 2021. Taiwan fish database. Web electronic publication. http://fishdb.sinica.edu.tw (accessed 29 December 2021).
Shao, L., Zeng, C., 2020. Survival, growth, ingestion rate and foraging behavior of larval green mandarin fish (Synchiropus splendidus) fed copepods only versus co-fed copepods with rotifers. Aquaculture. 520. https://doi.org/10.1016/j.aquaculture.2020.734958.
Shaw, G.W., Pankhurst, P.M., Battaglene, S.C., 2006. Effect of turbidity, prey density and culture history on prey consumption by greenback flounder Rhombosolea tapirina larvae. Aquaculture. 253, 447-460. https://doi.org/10.1016/j.aquaculture.2005.09.025.
Shirota, A., 1970. Studies on the mouth size of fish larvae. Nippon Suisan Gakkaishi. 36, 353-368. https://doi.org/10.2331/suisan.36.353.
Siikavuopio, S.I., Sæther, B.-S., 2006. Effects of chronic nitrite exposure on growth in juvenile Atlantic cod, Gadus morhua. Aquaculture. 255, 351-356. https://doi.org/10.1016/j.aquaculture.2005.11.058.
Smith-Vaniz, W.F., 1995. Carangidae. Jureles, pámpanos, cojinúas, zapateros, cocineros, casabes, macarelas, chicharros, jorobados, medregales, pez pilota. In: Fischer, W., Krupp, F., Schneider, W., Sommer, C., Carpenter, K.E., Niem, V. (Eds.), Guia FAO para identification de especies para lo fines de la pesca. Pacifico Centro-Oriental. FAO, Rome, Italy, pp. 940-986.
Smith-Vaniz, W.F., 1984. Carangidae. In: Fischer, W., Bianchi, G. (Eds.), FAO species identification sheets for fishery purposes. Western Indian Ocean fishing area 51. FAO, Rome, Italy.
Soderberg, R.W., Kirby, J.M., Marcinko, M.T., 2000. Lack of response of juvenile walleyes to increased levels of fertilization or liming in soft-water ponds. N. Am. J. Aquac. 62, 26-32.
https://doi.org/10.1577/1548-8454(2000)062<0026:Lorojw>2.0.Co;2.
Sommer, U., 1998. Silicate and the functional geometry of marine phytoplankton. J. Plankton Res. 20, 1853-1859. https://doi.org/10.1093/plankt/20.9.1853.
Sommer, U., 2009. Copepod growth and diatoms: insensitivity of Acartia tonsa to the composition of semi-natural plankton mixtures manipulated by silicon:nitrogen ratios in mesocosms. Oecologia. 159, 207-215. https://doi.org/10.1007/s00442-008-1193-9.
Sommer, U., Hansen, T., Stibor, H., Vadstein, O., 2004. Persistence of phytoplankton responses to different Si:N ratios under mesozooplankton grazing pressure: a mesocosm study with NE Atlantic plankton. Mar. Ecol. Prog. Ser. 278, 67-75. https://doi.org/10.3354/meps278067.
Speekmann, C.L., Hyatt, C.J., Buskey, E.J., 2006. Effects of Karenia brevis diet on RNA:DNA ratios and egg production of Acartia tonsa. Harmful Algae. 5, 693-704. https://doi.org/10.1016/j.hal.2006.03.002.
Su, H.M., Su, M.S., Liao, I.C., 1997. Collection and culture of live foods for
aquaculture in Taiwan. In: Hagiwara, A., Snell, T.W., Lubzens, E., Tamaru, C.S. (Eds.), Live food in aquaculture. Developments in hydrobiology. Springer, Dordrecht, Netherlands, pp. 37-40.
https://doi.org/10.1007/978-94-017-2097-7_6.
Suzuki K., Hioki S., Tanaka Y., Iwasa K., 1979. Spawning behavior, eggs, larvae, and sex reversal of two pomacanthine fish, Genicanthus lamarck and G. semifasciatus, in the aquarium. Journal of the Faculty of Marine Science and Technology, Tokai University. 12, 149-165.
Svobodová, Z., Vykusová, B., 1991. Diagnostics, prevention and therapy of fish diseases and intoxications : manual for international training course on fresh-water fish diseases and intoxications: diagnostics, prophylaxis and therapy. Research institute of fish culture and hydrobiology, Vodnany, Czechoslovakia.
Taraldsvik, M., Myklestad, S., 2000. The effect of pH on growth rate, biochemical composition and extracellular carbohydrate production of the marine diatom Skeletonema costatum. Eur. J. Phycol. 35, 189-194. https://doi.org/10.1080/09670260010001735781.
Teng, S.-K., El-Zahr, C., Al-Abdul-Elah, K., Almatar, S., 1999. Pilot-scale spawning and fry production of blue-fin porgy, Sparidentex hasta (Valenciennes), in Kuwait. Aquaculture. 178, 27-41.
https://doi.org/10.1016/s0044-8486(99)00039-3.
Tesson, B., Hildebrand, M., 2010. Dynamics of silica cell wall morphogenesis in the diatom Cyclotella cryptica: substructure formation and the role of microfilaments. J. Struct. Biol. 169, 62-74. https://doi.org/10.1016/j.jsb.2009.08.013.
Tew, K.S., Conroy, J.D., Culver, D.A., 2006. Effects of lowered inorganic phosphorus fertilization rates on pond production of percid fingerlings. Aquaculture. 255, 436-446. https://doi.org/10.1016/j.aquaculture.2006.01.003.
Tew, K.S., Meng, P.-J., Lin, H.-S., Chen, J.-H., Leu, M.-Y., 2013. Experimental evaluation of inorganic fertilization in larval giant grouper (Epinephelus lanceolatus Bloch) production. Aquac. Res. 44, 439-450. https://doi.org/10.1111/j.1365-2109.2011.03051.x.
Tew, K.S., Chang, Y.-C., Meng, P.-J., Leu, M.-Y., Glover, D.C., 2016. Towards sustainable exhibits - application of an inorganic fertilization method in coral reef fish larviculture in an aquarium. Aquac. Res. 47, 2748-2756. https://doi.org/10.1111/are.12725.
Thoresen, S.S., Clayton, J.R., Ahmed, S.I., 1984. The effect of short-term fluctuations in pH on NO3- uptake and intracellular constituents in Skeletonema costatum (Grev.) Cleve. J. Exp. Mar. Biol. Ecol. 83, 149-157. https://doi.org/10.1016/0022-0981(84)90042-x.
Tian, H.Y., Zhang, D.D., Xu, C., Wang, F., Liu, W.B., 2015. Effects of light intensity on growth, immune responses, antioxidant capability and disease resistance of juvenile blunt snout bream Megalobrama amblycephala. Fish Shellfish Immunol. 47, 674-680. https://doi.org/10.1016/j.fsi.2015.08.022.
Tice, B.J., Soderberg, R.W., Kirby, J.M., Marcinko, M.T., 1996. Growth and survival of walleyes reared in ponds fertilized with organic or inorganic materials. The progressive fish-culturist. 58, 135-139.
https://doi.org/10.1577/1548-8640(1996)058<0135:Gasowr>2.3.Co;2.
Tiselius, P., Borg, M.A., Hansen, B.W., Hansen, P.J., Nielsen, T.G., Vismann, B., 2008. High reproduction, but low biomass: mortality estimates of the copepod Acartia tonsa in a hyper-eutrophic estuary. Aquat. Biol. 2, 93-103. https://doi.org/10.3354/ab00043.
Tocher, D.R., 2010. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac. Res. 41, 717-732.
https://doi.org/10.1111/j.1365-2109.2008.02150.x.
Tomas, C.R., 1997. Identifying marine phytoplankton. Academic Press, San Diego, U.S.A., pp. 858.
Tortell, P.D., Maldonado, M.T., Granger, J., Price, N.M., 1999. Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microbiol. Ecol. 29, 1-11. https://doi.org/10.1111/j.1574-6941.1999.tb00593.x.
Tsuda, A., Takeda, S., Saito, H., Nishioka, J., Nojiri, Y., Kudo, I., Kiyosawa, H., Shiomoto, A., Imai, K., Ono, T., Shimamoto, A., Tsumune, D., Yoshimura, T., Aono, T., Hinuma, A., Kinugasa, M., Suzuki, K., Sohrin, Y., Noiri, Y., Tani, H., Deguchi, Y., Tsurushima, N., Ogawa, H., Fukami, K., Kuma, K., Saino, T., 2003. A mesoscale iron enrichment in the western subarctic Pacific induces a large centric diatom bloom. Science. 300, 958-961. https://doi.org/10.1126/science.1082000.
Tsunogai, S., Watanabe, Y., 1983. Role of dissolved silicate in the occurrence of a phytoplankton bloom. J. Oceanogr. Soc. Jpn. 39, 231-239. https://doi.org/10.1007/bf02070393.
Turner, R.E., Qureshi, N., Rabalais, N.N., Dortch, Q., Justic, D., Shaw, R.F., Cope, J., 1998. Fluctuating silicate:nitrate ratios and coastal plankton food webs. Proc. Natl. Acad. Sci. U S A. 95, 13048-13051. https://doi.org/10.1073/pnas.95.22.13048.
van der Meeren, T., Mangor-Jensen, A., Pickova, J., 2007. The effect of green water and light intensity on survival, growth and lipid composition in Atlantic cod (Gadus morhua) during intensive larval rearing. Aquaculture. 265, 206-217. https://doi.org/10.1016/j.aquaculture.2007.01.042.
van der Meeren, T., Olsen, R.E., Hamre, K., Fyhn, H.J., 2008. Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture. 274, 375-397. https://doi.org/10.1016/j.aquaculture.2007.11.041.
Vargas, C.A., Martínez, R.A., Cuevas, L.A., Pavez, M.A., Cartes, C., GonzÁlez, H.E., Escribano, R., Daneri, G., 2007. The relative importance of microbial and classical food webs in a highly productive coastal upwelling area. Limnol. Oceanogr. 52, 1495-1510. https://doi.org/10.4319/lo.2007.52.4.1495.
Vitousek, P., Howarth, R., 1991. Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry. 13. https://doi.org/10.1007/bf00002772.
von Heijne, G., Rees, D., 2008. Membranes: reading between the lines. Curr. Opin. Struct. Biol. 18, 403-405. https://doi.org/10.1016/j.sbi.2008.06.003.
Walne, P.R., 1979. Culture of bivalve molluscs : 50 years' experience at Conwy. Fishing news books, Farnham, Surrey, U.K., 189 pp.
Watanabe, W.O., Ellis, S.C., Ellis, E.P., Lopez, V.G., Bass, P., Ginoza, J., Moriwake, A., 1996. Evaluation of first-feeding regimens for larval nassau grouper Epinephelus straitus and preliminary, pilot-scale culture through metamorphosis. J. World Aquac. Soc. 27, 323-331. https://doi.org/10.1111/j.1749-7345.1996.tb00615.x.
Watson, A., Liss, P., Duce, R., 1991. Design of a small-scale in situ iron fertilization experiment. Limnol. Oceanogr. 36, 1960-1965. https://doi.org/10.4319/lo.1991.36.8.1960.
Weirich, C.R., Riche, M., 2006. Acute tolerance of juvenile florida pompano, Trachinotus carolinus L., to ammonia and nitrite at various salinities. Aquac. Res. 37, 855-861. https://doi.org/10.1111/j.1365-2109.2006.01502.x.
Williamson, C.E., Butler, N.M., 1986. Predation on rotifers by the suspension-feeding calanoid copepod Diaptomus pallidus. Limnol. Oceanogr. 31, 393-402. https://doi.org/10.4319/lo.1986.31.2.0393.
Winder, M., Cloern, J.E., 2010. The annual cycles of phytoplankton biomass. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 3215-3226. https://doi.org/10.1098/rstb.2010.0125.
Wurts, W., 2003. Daily pH cycle and ammonia toxicity. World Aquaculture. 34, 20-21.
Wylezich, C., Karpov, S.A., Mylnikov, A.P., Anderson, R., Jurgens, K., 2012. Ecologically relevant choanoflagellates collected from hypoxic water masses of the Baltic Sea have untypical mitochondrial cristae. BMC Microbiol. 12, 271. https://doi.org/10.1186/1471-2180-12-271.
Xu, H., Song, W., Warren, A., Al-Rasheid, K.A.S., Al-Farraj, S.A., Gong, J., Hu, X., 2008. Planktonic protist communities in a semi-enclosed mariculture pond: structural variation and correlation with environmental conditions. J. Mar. Biol. Assoc. U K. 88, 1353-1362. https://doi.org/10.1017/s0025315408002129.
Yúfera, M., Darias, M.J., 2007. The onset of exogenous feeding in marine fish larvae. Aquaculture. 268, 53-63. https://doi.org/10.1016/j.aquaculture.2007.04.050.
Yang, J., Löder, M.G.J., Wiltshire, K.H., 2014. A survey of ciliates at the long-term sampling station “Helgoland Roads”, North Sea. Helgol. Mar. Res. 68, 313-327. https://doi.org/10.1007/s10152-014-0392-5.
Yasuda, F., Tominaga, Y., 1976. A new pomacanthid fish, Chaetodontoplus caeruleopunctatus, from the Philippines. Jpn. J. Ichthyol. 23, 130-132.
Yin, M.C., Blaxter, J.H.S., 1986. Morphological changes during growth and starvation of larval cod (Gadus morhua L.) and flounder (Platichthys flesus L.). J. Exp. Mar. Biol. Ecol. 104, 215-228. https://doi.org/10.1016/0022-0981(86)90106-1.
Yokoyama, M., Takeuchi, T., Park, G.S., Nakazoe, J., 2001. Hepatic cysteinesulphinate decarboxylase activity in fish. Aquac. Res. 32, 216-220. https://doi.org/10.1046/j.1355-557x.2001.00017.x.
Young, B.C., Hussain Alfaggeh, R., AlMoutiri, I., 2020. Larviculture of snubnose pompano under conditions of high salinity. N. Am. J. Aquac. 83, 38-40. https://doi.org/10.1002/naaq.10173.
Zeng, C., Shao, L., Ricketts, A., Moorhead, J., 2018. The importance of copepods as live feed for larval rearing of the green mandarin fish Synchiropus splendidus. Aquaculture. 491, 65-71. https://doi.org/10.1016/j.aquaculture.2018.03.011.
Zhimiao, Z., Xinshan, S., Yufeng, Z., Yanping, X., Yuhui, W., Junfeng, W., Denghua, Y., 2017. Effects of iron and calcium carbonate on the variation and cycling of carbon source in integrated wastewater treatments. Bioresour. Technol. 225, 262-271. https://doi.org/10.1016/j.biortech.2016.11.074.
Zhimiao, Z., Xiao, Z., Zhufang, W., Xinshan, S., Mengqi, C., Mengyu, C., Yinjiang, Z., 2019. Enhancing the pollutant removal performance and biological mechanisms by adding ferrous ions into aquaculture wastewater in constructed wetland. Bioresour. Technol. 293, 122003. https://doi.org/10.1016/j.biortech.2019.122003.
Zingel, P., Paaver, T., Karus, K., Agasild, H., Nõges, T., 2012. Ciliates as the crucial food source of larval fish in a shallow eutrophic lake. Limnol. Oceanogr. 57, 1049-1056. https://doi.org/10.4319/lo.2012.57.4.1049.
Zingel, P., Agasild, H., Karus, K., Buholce, L., Noges, T., 2019. Importance of ciliates as food for fish larvae in a shallow sea bay and a large shallow lake. Eur. J. Protistol. 67, 59-70. https://doi.org/10.1016/j.ejop.2018.10.004.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 墾丁沿岸海域營養鹽和浮游植物群聚之時空變異
2. 南灣湧升現象對不同大小之浮游植物及營養鹽之影響
3. 利用無機營養鹽模擬春季水華現象對珊瑚礁魚類仔魚初期活存之影響
4. 無機氮、磷施肥法對養殖疊波蓋刺魚、擬刺尾鯛及鷹金䱵仔魚初期活存影響之研究
5. 銀鱗鯧的胚胎、仔稚魚發育及對氨氮急毒性耐受性之研究
6. 銀鱗鯧稚魚對亞硝酸鹽急毒性耐受性之研究
7. 藍帶荷包魚(Chaetodontoplus septentrionalis)的仔稚魚發育、微細構造及首次攝餌之研究
8. 養殖密度、換水率及添加光合菌(Rhodobium sp.)和藻水對於羅氏沼蝦(Macrobrachium rosenbergii)的成長、活存及水質因子之影響
9. 裂唇魚(Labroides dimidiatus)的自然產卵和初期生活史之研究
10. 擬刺尾鯛(Paracanthurus hepatus)的自然產卵和初期生活史之研究
11. 延遲首次攝食對尖翅燕魚[Platax teira (Forsskål, 1775)]的仔魚成長及活存之影響
12. 虎斑烏賊 (Sepia pharaonis Ehrenberg, 1831) 的初期生活史及其亞幼生對氨氮急毒性耐受性之研究
13. 人工環境中疊波蓋刺魚(Pomacanthus semicirculatus)的自然產卵和初期生活史之研究
14. 淡水馴養的銀鱗鯧稚魚暴露於亞硝酸中之急毒性及亞致死濃度對其形質、離子調節、逆境與能量代謝反應之影響
15. 帶紋斑節海龍 (Dunckerocampus dactyliophorus )的人工繁殖及初期生活史之研究
 
* *