帳號:guest(18.224.30.42)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:吳芷吟
作者(英文):Chih-Yin Wu
論文名稱:比較塑膠微纖維及天然微纖維攝入在中南美白對蝦之累積及對行為影響
論文名稱(英文):Accumulation and behavioral effects of ingested plastic and natural microfibers in the whiteleg shrimp Litopenaeus vannamei
指導教授:陳德豪
指導教授(英文):Te-Hao Chen
口試委員:陳德豪
柯風溪
許瑞峯
口試委員(英文):Te-Hao Chen
Fung-Chi Ko
Ruei-Feng Shiu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610863002
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:83
關鍵詞:微塑膠天然纖維泳動行為
關鍵詞(英文):microplasticsnatural fibersshrimpswimming behavior
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏收藏:0
塑膠微纖維是海洋環境中最豐富污染物之一,已普遍地被多種海洋生物所攝入,但生物所攝入的微纖維不全然是塑膠所製成,普遍存在環境中的天然纖維也廣泛地被生物攝入,但在探討纖維對於海洋環境可能有害污染時往往會忽略天然纖維所造成的風險。本實驗使用聚酯纖維(PET)以及天然棉纖維作為材料,以全球廣泛養殖物種且居住於沿海塑膠污染熱點地區的中南美白對蝦(白蝦,Litopenaeus vannamei)做為實驗物種,評估兩種纖維對白蝦所造成有害風險差異。急性暴露微纖維後,在36小時淨化時間中透過排遺收集回收攝入之纖維,連續收集 24小時後純棉纖維排出率已高於塑膠纖維,36小時後兩者纖維排出率皆高達98%,但在腸胃道的殘留量塑膠纖維大於純棉纖維。純棉纖維總攝入量與白蝦體重間有正相關性,在塑膠纖維則無此相關性,可能具有選擇性避免攝入。本實驗用纖維不受白蝦消化道機制所影響,經消化後纖維物理形態不改變,且纖維長度不影響纖維排出所需時間。急性暴露微纖維下,12小時淨化時間後白蝦已將鰓中纖維幾乎完全排出。長期暴露7天下,兩種纖維在白蝦的腸、胃、鰓的累積皆不會隨暴露時間增加而上升。行為實驗中,急性暴露下高濃度塑膠纖維(20000根/L)傾向減少泳動行為,高濃度天然纖維則增加泳動行為;長期暴露於低濃度(200根/L)及高濃度(20000根/L)天然纖維使最高泳速下降。綜觀研究結果,白蝦對兩種纖維做出相異的攝食策略以及不同的排出率,兩種纖維雖不會累積在白蝦體內,但皆造成泳動行為改變等亞致死效應,純棉纖維表現出與塑膠纖維不同模式的生物毒性,若評估微纖維對環境危害風險時,應將天然纖維視為污染物。
Microplastics are one of the most abundant and persistent contaminants in the marine environment, which are commonly ingested by marine organisms. However, the microfibers ingested are not all made of plastic. Natural fibers are ubiquitous in the environment and are also easily ingested by organisms. However, when discussing the pollution of fibers to the marine environment, the harm caused by natural fibers is often ignored. There is a lack of literature comparing the effects of ingestion of microplastic fibers and natural microfibers on marine life. This study will expose Litopenaeus vannamei, which are widely farmed worldwide and also living in coastal hot spots of plastic pollution, to either polyester or natural cotton fibers. After a short-term exposure to microfibers, the feces were collected in a 36-hr depuration period to retrieve the ingested fibers. After 24 hours of continuous collection, the discharge rate of cotton fiber was higher than that of plastic fiber. After 36 hours the discharge rate of both type of microfibers was as high as 98%, but the amount of residual fibers in the digestive tract was higher in the plastic group. In addition, it was also found that there was a positive correlation between the intake of cotton fibers and the weight of white shrimp. However, there was no such correlation for plastic fibers, suggesting a selective avoidance of ingesting plastic fibers by the shrimp. The fibers used in this experiment were not affected by the mechanism of the digestive tract of white shrimp. The physical form of the fibers did not change after digestion, and the fiber length did not affect the time required for excretion. After a short-term exposure to microfibers, the white shrimp had almost completely excreted the fibers from the gills in the 12-hr depuration period. After a long-term exposure for 7 days, the accumulation of the two types of fiber in the foregut, mid-hindgut, and gills of the white shrimp did not increase with the increase of exposure time. In the behavioral experiment, acute exposure to high-concentration plastic fibers (20,000 fibers/L) reduced swimming activity, while high concentration of cotton fibers increased swimming activity. Long-term exposure to low-concentration (200 fibers/L) and high-concentration (20,000 fibers/L) cotton fibers both decreased the maximum swimming speed. Our results show that although the two types of fiber did not accumulate in the white shrimp, they did cause sublethal effects such as changes in swimming behavior. Cotton fibers exhibit a different pattern of biotoxicity than plastic fibers, and natural fibers should be considered as contaminants when assessing the risk of microfibers to the environment.
摘要 i
Abstract iii
目錄 v
表目錄 ix
圖目錄 xi
第一章 前言 1
1.1 海洋中塑膠纖維污染 1
1.2 海洋中天然纖維污染 3
1.3 甲殼類生物攝入微纖維 6
1.3.1 塑膠纖維 6
1.3.2 天然纖維 8
1.4 生態毒理行為學 9
1.5 實驗物種 10
1.6 實驗目標 11
第二章 研究材料與方法 13
2.1 實驗動物 13
2.2 微纖維前處理 14
2.2.1 塑膠微纖維製備 14
2.2.2 天然微纖維製備 14
2.3 纖維形質分析 15
2.3.1 纖維材質鑑定 15
2.3.2 纖維表面微細構造觀察 15
2.3.3 纖維計數 15
2.3.4 纖維長度 16
2.4 微纖維暴露實驗 17
2.4.1 微纖維於消化道排出時間及情形(Exp. I) 17
2.4.2 急性暴露後體內各部位微纖維累積情形 (Exp. II) 18
2.4.3 長期暴露後體內各部位微纖維累積情形 (Exp. III) 21
2.4.4 長期暴露後行為影響 (Exp. IV) 21
2.5 生物體解剖 25
2.6 生物體樣本消化及過濾 26
2.7 污染控制 27
2.8 統計分析 28
第三章 結果 29
3.1 實驗生物 29
3.2 纖維性質 30
3.2.1 塑膠PET纖維 30
3.2.2 天然純棉纖維 34
3.3 攝入纖維數與體重間相關性分析(Exp. I) 38
3.3.2 塑膠PET纖維 40
3.3.3 天然純棉纖維 42
3.4 急性暴露下消化道中纖維排出情形(Exp. I) 44
3.5 急性暴露後消化道纖維滯留情形(Exp. I) 46
3.6 排遺中纖維形質(Exp. I) 48
3.7 急性暴露後鰓中纖維排出情形(Exp. II) 51
3.8 長期暴露後體內纖維累積量(Exp. III) 53
3.9 泳動行為分析(Exp. IV) 55
第四章 討論 57
4.1 白蝦習性及存活率 57
4.2 白蝦對於微纖維的攝食行為 59
4.3 微纖維排出 62
4.3.1 消化道 62
4.3.2 鰓 64
4.4 長期暴露 66
4.4.1 累積情形 66
4.4.2 行為分析 67
第五章 結論與未來展望 71
參考文獻 73
姚興川, 2014. 紡織材料與科技原理(上冊). 台灣區毛紡織工業同業公會, 台灣.
童一軒, 2021. 聚丙烯微塑膠於中南美白隊蝦攝入後之宿命及對行為影響. 國立東華大學海洋生物研究所碩士論文.
Abbasi, S., Soltani, N., Keshavarzi, B., Moore, F., Turner, A., Hassanaghaei, M., 2018. Microplastics in different tissues of fish and prawn from the Musa Estuary, Persian Gulf. Chemosphere 205, 80-87.
Alimi, O.S., Farner Budarz, J., Hernandez, L.M., Tufenkji, N., 2018. Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environ Sci Technol 52, 1704-1724.
Aminabhavi, T.M., Balundgi, R.H., Cassidy, P.E., 1990. A review on biodegradable plastics. Polym-Plast Technol 29, 235-262.
Anderson, R.L., Watson, W. H., Chabot, C. C., 2013. Sublethal behavioral and physiological effects of the biomedical bleeding process on the American horseshoe crab, Limulus polyphemus. Biol Bull 225, 137-151.
Ange, K., 1995. Starvation resistance in larvae of a semiterrestrial crab, Sesarma curacaoense (Decapoda: Grapsidae). J Exp Mar Biol Ecol 187, 161-174.
Anger, K., Torres, G., Charmantier-Daures, M., Charmantier, G., 2008. Adaptive diversity in congeneric coastal crabs: Ontogenetic patterns of osmoregulation match life-history strategies in Armases spp (Decapoda, Sesarmidae). J Exp Mar Biol Ecol 367, 28-36.
Au, S.Y., Bruce, T.F., Bridges, W.C., Klaine, S.J., 2015. Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ Toxicol Chem 34, 2564-2572.
Azzarello, M.Y., Vleet, E.Z., 1987. Marine birds and plastic pollution. Mar Ecol Prog Series 37, 295-303.
Bardera, G., Owen, M.A.G., Pountney, D., Alexander, M.E., Sloman, K.A., 2019. The effect of short-term feed-deprivation and moult status on feeding behaviour of the Pacific white shrimp (Litopenaeus vannamei). Aquaculture 511.
Barnes, D.K., Galgani, F., Thompson, R.C., Barlaz, M., 2009. Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc Lond B Biol Sci 364, 1985-1998.
Barrows, A.P.W., Cathey, S.E., Petersen, C.W., 2018. Marine environment microfiber contamination: Global patterns and the diversity of microparticle origins. Environ Pollut 237, 275-284.
Barshaw, D.E., Lavalli, K.L., Spanier, E.,, 2003. Offense versus defense: responses of three morphological types of lobsters to predation. Mar. Ecol. Prog. Ser. 256, 171-182.
Bauer, F., 1999. Gill-cleaning mechanisms of a dendrobranchiate shrimp, Rimapenaeus similis (Decapoda, Penaeidae): Description and experimental testing of function. J Morphol 242, 125-139.
Bauer, R.T., 1975. Grooming behavior and morphology of the caridean shrimp Pandalus danae Stimpson (Decapoda: Natantia: Pandalidae). Zoo J Soc- Linn 56, 45-71.
Beiras, R., 2018. Sublethal toxicity at the level of organism. Mar Pollut, pp. 233-245.
Bergmann, M., 2001. Survival of decapod crustaceans discarded in the Nephrops fishery of the Clyde Sea area, Scotland. 58, 163-171. ICES J Mar Sci.
Bhattacharya, S.S., Chaudhari, S.B., 2014. Study on structural, mechanical and functional properties of polyester silica nanocomposite fabric. Int. J. Pure Appl. Sci. Technol.
Boddeke, R., 1983. Survival strategies of penaeid shrimps and their significance for shrimp culture. Proc. First Intl. Conf. Warmwater Aquaculture.(Eds. Roger, GL, Day, R., Lim, A), pp. 514-523.
Bordbar, L., Kapiris, K., Kalogirou, S., Anastasopoulou, A., 2018. First evidence of ingested plastics by a high commercial shrimp species (Plesionika narval) in the eastern Mediterranean. Mar Pollut Bull 136, 472-476.
Borrelle, S., Jeremy, R., Kara, L.L., 2020. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution Science 369.
Browne, M.A., 2010. Spatial patterns of plastic debris along estuarine shorelines. Environ. Sci. Technol.
Browne, M.A., Crump, P., Niven, S.J., Teuten, E., Tonkin, A., Galloway, T., Thompson, R., 2011. Accumulation of microplastic on shorelines woldwide: sources and sinks. Environ Sci Technol 45, 9175-9179.
Carmichael, A., 2015. Man-made fibers continue to grow. Text World 165, 20-22.
Carney Almroth, B.M., Astrom, L., Roslund, S., Petersson, H., Johansson, M., Persson, N.K., 2018. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environ Sci Pollut Res Int 25, 1191-1199.
Carpenter, E.J., Anderson, S.J., Harvey, G.R., Miklas, H.P., Peck, B.B., 1972. Polystyrene spherules in coastal waters. Science 178, 749-750.
Cau, A., Avio, C.G., Dessì, C., Follesa, M.C., Moccia, D., Regoli, F., Pusceddu, A., 2019. Microplastics in the crustaceans Nephrops norvegicus and Aristeus antennatus: Flagship species for deep-sea environments? Environ Pollut 255.
Cavey, M.J., Goodman, S.H., 1990. Organization of a phyllobranchiate gill from the green shore crab Carcinus maenas (Crustacea, Decapoda). Cell Tissue Res 260, 495-505.
Ceccaldi, H.J., 1989. Anatomy and physiology of digestive tract of Crustaceans Decapods reared in aquaculture. Actes de colloques Ifremer, Tahiti, French Polynesia, 20 Feb - 4 Mar 1989, n°9, 243-259.
Chae, Y., Kim, D., Choi, M.J., Cho, Y., An, Y.J., 2019. Impact of nano-sized plastic on the nutritional value and gut microbiota of whiteleg shrimp Litopenaeus vannamei via dietary exposure. Environ Int 130, 104848.
Chamas, A., Moon, H., Zheng, J., Qiu, Y., Tabassum, T., Jang, J.H., Abu-Omar, M., Scott, S.L., Suh, S., 2020. Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8, 3494-3511.
Chen, K.J., Chen, M.C., Chen, T.H., 2021. Plastic ingestion by fish in the coastal waters of the Hengchun Peninsula, Taiwan: Associated with human activity but no evidence of biomagnification. Ecotoxicol Environ Saf 213, 112056.
Chen, M.C., Chen, T.H., 2020. Spatial and seasonal distribution of microplastics on sandy beaches along the coast of the Hengchun Peninsula, Taiwan. Mar Pollut Bull 151, 110861.
Chen, Q., Gundlach, M., Yang, S., Jiang, J., Velki, M., Yin, D., Hollert, H., 2017. Quantitative investigation of the mechanisms of microplastics and nanoplastics toward zebrafish larvae locomotor activity. Sci Total Environ 584-585, 1022-1031.
Chen, T.H., Chou, S.M., Tang, C.H., Chen, C.Y., Meng, P.J., Ko, F.C., Cheng, J.O., 2016a. Endocrine disrupting effects of domestic wastewater on reproduction, sexual behavior, and gene expression in the brackish medaka Oryzias melastigma. Chemosphere 150, 566-575.
Chen, T.H., Lin, C.C., Meng, P.J., 2014. Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio). J Hazard Mater 277, 134-140.
Chen, T.H., Wu, Y.T., Ding, W.H., 2016b. UV-filter benzophenone-3 inhibits agonistic behavior in male Siamese fighting fish (Betta splendens). Ecotoxicology 25, 302-309.
Cole, M., 2016. A novel method for preparing microplastic fibers. Sci Rep 6, 34519.
Cole, M., Lindeque, P., Halsband, C., Galloway, T.S., 2011. Microplastics as contaminants in the marine environment: a review. Mar Pollut Bull 62, 2588-2597.
Cui, R., Kim, S.W., An, Y.J., 2017. Polystyrene nanoplastics inhibit reproduction and induce abnormal embryonic development in the freshwater crustacean Daphnia galeata. Sci Rep 7, 12095.
D'Costa, A.H., 2022. Microplastics in decapod crustaceans: Accumulation, toxicity and impacts, a review. Sci Total Environ 832, 154963.
Davidson, K., Dudas, S.E., 2016. Microplastic ingestion by wild and cultured manila clams (Venerupis philippinarum) from Baynes Sound, British Columbia. Arch Environ Contam Toxicol 71, 147-156.
De Falco, F., Di Pace, E., Cocca, M., Avella, M., 2019. The contribution of washing processes of synthetic clothes to microplastic pollution. Sci Rep 9, 6633.
De Falco, F., Gullo, M.P., Gentile, G., Di Pace, E., Cocca, M., Gelabert, L., Brouta-Agnesa, M., Rovira, A., Escudero, R., Villalba, R., Mossotti, R., Montarsolo, A., Gavignano, S., Tonin, C., Avella, M., 2018. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environ Pollut 236, 916-925.
De Lima, P.c.P., Pontes, C.S., Arruda, M.d.F.t., 2009. Activity pattern of the marine shrimp Litopenaeus vannamei (Boone 1931) in laboratory as a function of different feeding frequencies. Aquac Res 41, 53-60.
Desforges, J.P., Galbraith, M., Ross, P.S., 2015. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Arch Environ Contam Toxicol 69, 320-330.
Duan, Y., Xiong, D., Wang, Y., Zhang, Z., Li, H., Dong, H., Zhang, J., 2021. Toxicological effects of microplastics in Litopenaeus vannamei as indicated by an integrated microbiome, proteomic and metabolomic approach. Sci Total Environ 761, 143311.
Dugassa, H., Gaetan, D.G., 2018. Biology of white leg shrimp, Penaeus vannamei: Review. World Fis Mar Sci 10, 05-17.
El-Saftawy, A.A., Elfalaky, A., Ragheb, M.S., Zakhary, S.G., 2014. Electron beam induced surface modifications of PET film. Radiat Phy Chem 102, 96-102.
Eom, H.-J., Nam, S.-E., Rhee, J.-S., 2020. Polystyrene microplastics induce mortality through acute cell stress and inhibition of cholinergic activity in a brine shrimp. Mol Cell Toxicol 16, 233-243.
Esquivel, C.O., Blaisdell, F.W., 1986. Why small caliber vascular grafts fail: a review of clinical and experimental experience and the significance of the interaction of blood at the interface. J Surg Res 41, 1-15.
FAO., 2016. Penaeus vannamei. Cultured Aquatic Species Information Programme.
Focken, U., Groth, A., Coloso, M., Becker, K., 1998. Contribution of natural food and supplemental feed to the gut content of Penaeus monodon Fabricius in a semi-intensive pond system in the Philippines. Aquaculture 164, 105-116.
Franco, A.R., Ferreira, J.G., Nobre, A.M., 2006. Development of a growth model for penaeid shrimp. Aquaculture 259, 268-277.
Gago, J., Carretero, O., Filgueiras, A.V., Vinas, L., 2018. Synthetic microfibers in the marine environment: A review on their occurrence in seawater and sediments. Mar Pollut Bull 127, 365-376.
Garm, E.H., Høeg, J.T., 2003. Role of Maxilla 2 and Its Setae during Feeding in the Shrimp Palaemon adspersus (Crustacea: Decapoda). Biol Bull, 204, 126-137.
Gray, A.D., Weinstein, J.E., 2017. Size- and shape-dependent effects of microplastic particles on adult daggerblade grass shrimp (Palaemonetes pugio). Environ Toxicol Chem 36, 3074-3080.
Gregory, M.R., 1978. Accumulation and distribution of virgin plastic granules on New Zealand beaches. N. Z. J. Mar. Freshwater Res. 12, 399-414.
Gregory, M.R., 1996. Plastic ‘scrubbers’ in hand cleansers: a further (and minor) source for marine pollution identified. Mar Pollut Bull 32, 867-871.
Gross, W.J., 1957. An analysis of response to osmotic stress in selected decapod Crustacea. Biolol Bull 112, 43-62.
Gunzo, k., Teodora, U., Yong1, A.S.K., 2018. Sensory systems and feeding behaviour of the giant freshwater prawn, Macrobrachium rosenbergii, and the marine whiteleg shrimp, Litopenaeus vannamei. Borneo J Mar Scie Aquac 80 - 91.
Halstead, J.E., Smith, J.A., Carter, E.A., Lay, P.A., Johnston, E.L., 2018. Assessment tools for microplastics and natural fibres ingested by fish in an urbanised estuary. Environ Pollut 234, 552-561.
Hariharan, G., Purvaja, R., Anandavelu, I., Robin, R.S., Ramesh, R., 2022. Ingestion and toxic impacts of weathered polyethylene (wPE) microplastics and stress defensive responses in whiteleg shrimp (Penaeus vannamei). Chemosphere 300, 134487.
Heales, D.S., Vance, D.J., Loneragan, N.R., 1996. Field observations of moult cycle, feeding behaviour, and diet of small juvenile tiger prawns Penaeus semisulcatus in the Embley River, Australia. Mar Ecol Prog Ser 145, 43-51.
Hofsten, B.V., Edberg, N., 1972. Estimating the rate of degradation of cellulose fibers in water. Nord Society Oikos 23.
Hsieh, S.L., Wu, Y.C., Xu, R.Q., Chen, Y.T., Chen, C.W., Singhania, R.R., Dong, C.D., 2021. Effect of polyethylene microplastics on oxidative stress and histopathology damages in Litopenaeus vannamei. Environ Pollut 288, 117800.
Huang, W., Wang, X., Chen, D., Xu, E.G., Luo, X., Zeng, J., Huan, T., Li, L., Wang, Y., 2021. Toxicity mechanisms of polystyrene microplastics in marine mussels revealed by high-coverage quantitative metabolomics using chemical isotope labeling liquid chromatography mass spectrometry. J Hazard Mater 417, 126003.
Ji, L.N., 2013. Study on Preparation process and properties of polyethylene terephthalate (PET). Appl Mech Mater 312, 406-410.
Kassenbeck, P., 1970. Bilateral structure of cotton fibers as revealed by enzymatic degradation. Text Res J 40, 330-334.
Kim, L., Kim, S.A., Kim, T.H., Kim, J., An, Y.J., 2021. Synthetic and natural microfibers induce gut damage in the brine shrimp Artemia franciscana. Aquat Toxicol 232, 105748.
Klein, K., Hess, S., Nungess, S., Schulte-Oehlmann, U., Oehlmann, J., 2021a. Particle shape does not affect ingestion and egestion of microplastics by the freshwater shrimp Neocaridina palmata. Environ Sci Pollut Res Int 28, 62246-62254.
Klein, K., Hess, S., Schulte-Oehlmann, U., Oehlmann, J., 2021b. Locomotor behavior of Neocaridina palmata: a study with leachates from UV-weathered microplastics. PeerJ 9, e12442.
Korez, S., Gutow, L., Saborowski, R., 2020. Coping with the "dirt": brown shrimp and the microplastic threat. Zoology (Jena) 143, 125848.
Kuo, F.J., Huang, H.W., 2014. Strategy for mitigation of marine debris: analysis of sources and composition of marine debris in northern Taiwan. Mar Pollut Bull 83, 70-78.
Ladewig, S.M., Bao, S., Chow, A.T., 2015. Natural Fibers: A missing link to chemical pollution dispersion in aquatic environments. Environ Sci Technol 49, 12609-12610.
Leads, R.R., Burnett, K.G., Weinstein, J.E., 2019. The effect of microplastic ingestion on survival of the grass Shrimp Palaemonetes pugio (Holthuis, 1949) challenged with Vibrio campbellii. Environ Toxicol Chem 38, 2233-2242.
Lenz, R., Enders, K., Nielsen, T.G., 2016. Microplastic exposure studies should be environmentally realistic. Proc Natl Acad Sci U S A 113, E4121-4122.
Lili, L., Frey, M., Browning, K., 2010. Biodegradability study on cotton and polyester fabrics.
Limonta, G., Mancia, A., Benkhalqui, A., Bertolucci, C., Abelli, L., Fossi, M.C., Panti, C., 2019. Microplastics induce transcriptional changes, immune response and behavioral alterations in adult zebrafish. Sci Rep 9, 15775.
Liu, H., Obendorf, S.K., Leonard, M.J., Young, T.J. and Incorvia, M.J. , 2005. Adsorption of aroma chemicals on cotton fabric from aqueous systems. J Surfact Deterg 8, 311-317.
Liu, T.K., Wang, M.W., Chen, P., 2013. Influence of waste management policy on the characteristics of beach litter in Kaohsiung, Taiwan. Mar Pollut Bull 72, 99-106.
Lovett, D., Felder, D., 1989. Ontogeny of gut morphology in the white shrimp Penaeus setiferus (Decapoda, Penaeidae). Journal of Morphology 201, 253-272.
Lovett, D., Felder, D., 1990. Navigation ontogeny of kinematics in the gut of the white shrimp Penaeus Setiferus (Decapoda: Penaeidae). J Crustacean Biol 10, 53-68.
Lusher, A., Hollman, P., Mendoza-Hill, J., 2017. Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety. FAO Fisheries and Aquaculture Technical Paper, 615.
Lusher, A.L., McHugh, M., Thompson, R.C., 2013. Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel. Mar Pollu Bull 67, 94-99.
Martin, G.G., M. Quigley, M. Quintero and H. Khosrovian, 2000. Elimination of sequestered material from the gills of decapod crustaceans. J Crustacean Biol 20, 209-217.
Martin, J., Lusher, A., Thompson, R.C., Morley, A., 2017. The deposition and accumulation of microplastics in marine sediments and bottom water from the Irish Continental Shelf. Sci Rep 7, 10772.
Mathalon, A., Hill, P., 2014. Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Mar Pollut Bull 81, 69-79.
Mattsson, K., Jocic, S., Doverbratt, I., Hansson, L.-A., 2018. Nanoplastics in the aquatic environment. Microplastic Contamination in Aquatic Environments, pp. 379-399.
Mattsson, K., Johnson, E.V., Malmendal, A., Linse, S., Hansson, L.A., Cedervall, T., 2017. Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Sci Rep 7, 11452.
Middlemiss, K.L., Urbina, M.A., Wilson, R.W., 2015. Microbial proliferation on gill structures of juvenile European lobster (Homarus gammarus) during a moult cycle. Helgoland Marine Research 69, 401-410.
Miller, R.Z., Watts, A.J.R., Winslow, B.O., Galloway, T.S., Barrows, A.P.W., 2017. Mountains to the sea: River study of plastic and non-plastic microfiber pollution in the northeast USA. Mar Pollut Bull 124, 245-251.
Napper, I.E., Thompson, R.C., 2016. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Mar Pollut Bull 112, 39-45.
Obbard, R.W., Sadri, S., Wong, Y.Q., Khitun, A.A., Baker, I., Thompson, R.C., 2014. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth's Future 2, 315-320.
Ogle, J.T., Beaugez, K., 1991. Food preference of Penaeus vannamei. Gulf Research Reports 8.
Orr, R.S., Weiss, L. C., Humphreys, G. C., Mares, T., & Grant, J. N. , 1954. Degradation of cotton fibers and yarns by heat and moisture. Text Res J 24, 399-406.
Pearson, T.H., 1980. Marine pollution effects of pulp and paper industry wastes. Biologische Anstalt Helgoland 33, 340-365.
Pisani, X.G., Lompre, J.S., Pires, A., Greco, L.L., 2022. Plastics in scene: A review of the effect of plastics in aquatic crustaceans. Environ Res 212, 113484.
Pontes, C.S., Arruda, M.d.F., Augusto de Lara Menezes, A., Pereira de Lima, P., 2006. Daily activity pattern of the marine shrimp Litopenaeus vannamei (Boone 1931) juveniles under laboratory conditions. Aquac Res 37, 1001-1006.
Portella, E.H., Romanzini, D., Angrizani, C.C., Amico, S.C., Zattera, A.J., 2016. Influence of stacking sequence on the mechanical and dynamic mechanical properties of cotton/glass fiber reinforced polyester composites. Mater Res19, 542-547.
Qiang, L., Cheng, J., 2019. Exposure to microplastics decreases swimming competence in larval zebrafish (Danio rerio). Ecotoxicol Environ Saf 176, 226-233.
Remy, F., Collard, F., Gilbert, B., Compere, P., Eppe, G., Lepoint, G., 2015. When microplastic is not plastic: The ingestion of artificial cellulose fibers by macrofauna living in seagrass macrophytodetritus. Environ Sci Technol 49, 11158-11166.
Rist, S., Baun, A., Hartmann, N.B., 2017. Ingestion of micro- and nanoplastics in Daphnia magna - Quantification of body burdens and assessment of feeding rates and reproduction. Environ Pollut 228, 398-407.
Robles-Romo, A., Zenteno-Savín, T., Racotta, I.S., 2016. Bioenergetic status and oxidative stress during escape response until exhaustion in whiteleg shrimp Litopenaeus vannamei. J Exp Mar Bio Ecol 478, 16-23.
Rosato, A., Barone, M., Negroni, A., Brigidi, P., Fava, F., Xu, P., Candela, M., Zanaroli, G., 2020. Microbial colonization of different microplastic types and biotransformation of sorbed PCBs by a marine anaerobic bacterial community. Sci Total Environ 705, 135790.
Saborowski, R., Paulischkis, E., Gutow, L., 2019. How to get rid of ingested microplastic fibers? A straightforward approach of the Atlantic ditch shrimp Palaemon varians. Environ Pollut 254, 113068.
Sanchez-Vidal, A., Thompson, R.C., Canals, M., de Haan, W.P., 2018. The imprint of microfibres in southern European deep seas. PLoS One 13, 0207033.
Santos, R.G., Machovsky-Capuska, G.E., Andrades, R., 2021. Plastic ingestion as an evolutionary trap: Toward a holistic understanding. Science 373, 56-60.
Sanudin, N., Tuzan, A.D., Yong, A.S.K., 2014. Feeding activity and growth performance of shrimp post larvae Litopenaeus vannamei under light and dark condition. J Agric Sci 6.
Sarasamma, S., Audira, G., Siregar, P., Malhotra, N., Lai, Y.H., Liang, S.T., Chen, J.R., Chen, K.H., Hsiao, C.D., 2020. Nanoplastics cause neurobehavioral impairments, reproductive and oxidative damages, and biomarker responses in zebrafish: Throwing up alarms of wide spread health risk of exposure. Int J Mol Sci 21.
Savoca, S., Matanović, K., D'Angelo, G., Vetri, V., Anselmo, S., Bottari, T., Mancuso, M., Kužir, S., Spanò, N., Capillo, G., Di Paola, D., Valić, D., Gjurčević, E., 2021. Ingestion of plastic and non-plastic microfibers by farmed gilthead sea bream (Sparus aurata) and common carp (Cyprinus carpio) at different life stages. Sci Total Environ 782.
Shiu, R.F., Vazquez, C.I., Chiang, C.Y., Chiu, M.H., Chen, C.S., Ni, C.W., Gong, G.C., Quigg, A., Santschi, P.H., Chin, W.C., 2020. Nano- and microplastics trigger secretion of protein-rich extracellular polymeric substances from phytoplankton. Sci Total Environ 748, 141469.
Sorensen, L., Rogers, E., Altin, D., Salaberria, I., Booth, A.M., 2020. Sorption of PAHs to microplastic and their bioavailability and toxicity to marine copepods under co-exposure conditions. Environ Pollut 258, 113844.
Stanton, T., Johnson, M., Nathanail, P., MacNaughtan, W., Gomes, R.L., 2019. Freshwater and airborne textile fibre populations are dominated by 'natural', not microplastic, fibres. Sci Total Environ 666, 377-389.
Suman, T.Y., Jia, P.P., Li, W.G., Junaid, M., Xin, G.Y., Wang, Y., Pei, D.S., 2020. Acute and chronic effects of polystyrene microplastics on brine shrimp: First evidence highlighting the molecular mechanism through transcriptome analysis. J Hazard Mater 400, 123220.
Sun, S., Jin, Y., Luo, P., Shi, X., 2022. Polystyrene microplastics induced male reproductive toxicity and transgenerational effects in freshwater prawn. Sci Total Environ 842, 156820.
Sun, T., Zhan, J., Li, F., Ji, C., Wu, H., 2021. Environmentally relevant concentrations of microplastics influence the locomotor activity of aquatic biota. J Hazard Mater 414, 125581.
Thompson, C., Olsen, Y., Mitchell, P., Davis, A., Rowland, S., John, A., McGonigle, D., Russell, A., 2004. Lost at sea: where is all the plastic? Science 304, 838.
Vance, I., Stanley, S.O., Brown, C.M., 1979. A microscopical investigation of the bacterial degradation of wood pulp in a simulated marine environment. Microbiology 114, 69-74.
Varadharajan, D.P., N., 2012. Food and feeding habits of aquaculture candidate a potential crustacean of pacific white shrimp Litopenaeus Vannamei, South East Coast of India. J Aqua Res 04.
Vianello, A., Boldrin, A., Guerriero, P., Moschino, V., Rella, R., Sturaro, A., Da Ros, L., 2013. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuari Coast Shelf S 130, 54-61.
Von Moos, N., Burkhardt-Holm, P., Kohler, A., 2012. Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis after an experimental exposure. Environ Sci Technol 46, 11327-11335.
Vu, E., Berkowitz, A., Krasne, F.B., 1997. Postexcitatory inhibition of the crayfish lateral giant neuron: A mechanism for sensory temporal filtering. J Neurosci. 22, 8867-8879.
Vu, E., Lee, S., Krasne, F.B., 1993. The mechanism of tonic inhibition of crayfish escape behavior: Distal inhibition and its functional significance. J Neurosci 10, 4379-4393.
Wagner, M., 2014. Microplastics in freshwater ecosystems: what we know and what we need to know. Environ Sci Eur 26.
Walther, B.A., Kunz, A., Hu, C.S., 2018. Type and quantity of coastal debris pollution in Taiwan: A 12-year nationwide assessment using citizen science data. Mar Pollut Bull 135, 862-872.
Wang, X., Liu, L., Zheng, H., Wang, M., Fu, Y., Luo, X., Li, F., Wang, Z., 2020. Polystyrene microplastics impaired the feeding and swimming behavior of mysid shrimp Neomysis japonica. Mar Pollut Bull 150, 110660.
Wang, Z., Fan, L., Wang, J., Zhou, J., Ye, Q., Zhang, L., Xu, G., Zou, J., 2021. Impacts of microplastics on three different juvenile shrimps: Investigating the organism response distinction. Environ Res 198, 110466.
Watts, A.J.R., Urbina, M. A., Corr, S., Lewis, C., & Galloway, T. S., 2015. Ingestion of plastic microfibers by the crab Carcinus maenas and its effect on food consumption and energy balance. Environ. Sci. Technol 49, 14597 - 14604.
Weiss, B., 1988. Behavior as an early indicator of pesticide toxicity. Toxicol Ind Health 4, 351-360.
Welden, N.A.C., Cowie, P.R., 2016a. Environment and gut morphology influence microplastic retention in langoustine, Nephrops norvegicus. Environ Pollut 214, 859-865.
Welden, N.A.C., Cowie, P.R., 2016b. Long-term microplastic retention causes reduced body condition in the langoustine, Nephrops norvegicus. Environ Pollut 218, 895-900.
Woodall, L.C., Robinson, L.F., Rogers, A.D., Narayanaswamy, B.E., Paterson, G.L.J., 2015. Deep-sea litter: a comparison of seamounts, banks and a ridge in the Atlantic and Indian Oceans reveals both environmental and anthropogenic factors impact accumulation and composition. Front Mar Sci 2.
Wright, S.L., Thompson, R.C., Galloway, T.S., 2013. The physical impacts of microplastics on marine organisms: A review. Environ Pollut 178, 483-492.
Wu, F., Wang, Y., Leung, J.Y.S., Huang, W., Zeng, J., Tang, Y., Chen, J., Shi, A., Yu, X., Xu, X., Zhang, H., Cao, L., 2020. Accumulation of microplastics in typical commercial aquatic species: A case study at a productive aquaculture site in China. Sci Total Environ 708, 135432.
Yin, J., Li, J.Y., Craig, N.J., Su, L., 2022. Microplastic pollution in wild populations of decapod crustaceans: A review. Chemosphere 291, 132985.
Yin, L., Chen, B., Xia, B., Shi, X., Qu, K., 2018. Polystyrene microplastics alter the behavior, energy reserve and nutritional composition of marine jacopever (Sebastes schlegelii). J Hazard Mater 360, 97-105.
Yin, L., Liu, H., Cui, H., Chen, B., Li, L., Wu, F., 2019. Impacts of polystyrene microplastics on the behavior and metabolism in a marine demersal teleost, black rockfish (Sebastes schlegelii). J Hazard Mater 380, 120861.
You, K., Yang, H., Liu, Y., Liu, S., Zhou, Y., Zhang, T., 2006. Effects of different light sources and illumination methods on growth and body color of shrimp Litopenaeus vannamei. Aquaculture 252, 557-565.
Yu, X., Zhang, X., Duan, Y., Zhang, P., Miao, Z., 2010. Effects of temperature, salinity, body length, and starvation on the critical swimming speed of whiteleg shrimp, Litopenaeus vannamei. Comp Biochem Physiol A Mol Integr Physiol 157, 392-397.
Zhang, P., Zhang, X., Li, J., Huang, G., 2007. The effects of temperature and salinity on the swimming ability of whiteleg shrimp, Litopenaeus vannamei. Comp Biochem Physiol A Mol Integr Physiol 147, 64-69.
Zhang, S., Wang, J., Liu, X., Qu, F., Wang, X., Wang, X., Li, Y., Sun, Y., 2019. Microplastics in the environment: A review of analytical methods, distribution, and biological effects. Trends Anal. Chem 111, 62-72.
Zhang, Y., Wolosker, M.B., Zhao, Y., Ren, H., Lemos, B., 2020. Exposure to microplastics cause gut damage, locomotor dysfunction, epigenetic silencing, and aggravate cadmium (Cd) toxicity in Drosophila. Sci Total Environ 744, 140979.
Zhao, S., Zhu, L., Li, D., 2016. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers. Sci Total Environ 550, 1110-1115.
Zupin, Z., Dimitrovski, K., 2010. Mechanical properties of fabrics from cotton and biodegradable yarns bamboo, SPF, PLA in weft. J Eng Fibers Fabr.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *