帳號:guest(18.225.234.108)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:王俊博
作者(英文):Jyun-Bo Wang
論文名稱:人工環境中淡斑荷包魚(Chaetodontoplus caeruleopunctatus) (Yasuda & Tominaga, 1976)及福氏刺尻魚(Centropyge vrolikii) (Bleeker, 1853)的自然產卵及初期生活史之比較研究
論文名稱(英文):Comparative studies on the natural spawning and early life history of the bluespotted angelfish, Chaetodontoplus caeruleopunctatus (Yasuda & Tominaga, 1976) and pearlscale angelfish, Centropyge vrolikii (Bleeker, 1853) in captivity
指導教授:呂明毅
張桂祥
指導教授(英文):Ming-Yih Leu
Kwee-Siong Tew
口試委員:楊順德
呂明毅
張桂祥
口試委員(英文):Shun-De Yang
Ming-Yih Leu
Kwee-Siong Tew
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610863004
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:139
關鍵詞:蓋刺魚科淡斑荷包魚福氏刺尻魚自然產卵仔稚魚發育骨骼發生學人工繁殖
關鍵詞(英文):PomacanthidaeChaetodontoplus caeruleopunctatusCentropyge vrolikiinatural spawninglarval and juvenile developmentosteological ontogenycaptive breeding
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
淡斑荷包魚(Chaetodontoplus caeruleopunctatus)和福氏刺尻魚(Centropyge vrolikii)為海水觀賞魚中常見的物種之一,分布在熱帶及亞熱帶的珊瑚礁海域中,然而因為目前對於其初期生活史的研究所知有限,導致這些魚類在海水觀賞魚市場仍以野生捕撈為主。本研究利用人工繁殖的方式分別探討淡斑荷包魚及福氏刺尻魚的自然產卵及初期發育,利用光學顯微鏡、解剖顯微鏡及掃描式電子顯微鏡觀察胚胎及仔稚魚之形態發育,並探討其初期骨骼發育。另外,分別實驗不同溫度及鹽度對魚卵的孵化率及畸形率之影響,並探討仔魚的生存活力指數(survival activity index, SAI)。淡斑荷包魚與福氏刺尻魚的卵皆為浮性卵。淡斑荷包魚平均卵徑為0.85 ± 0.02 mm,油球徑為0.180 - 0.205 mm,在水溫27.0 ± 0.1 ℃,鹽度33.5 ± 0.1 psu,受精到孵化共耗時16小時45分鐘。剛孵化仔魚,體全長(total length, LT)為2.51 ± 0.05 mm,體表具有許多黑色素胞。孵化後第二天(2 days post hatch, 2 dph)的仔魚為2.95 ± 0.06 mm LT,具備攝食能力。8 dph時,仔魚為4.48 ± 0.19 mm LT,開始進入脊索上屈期。30 dph時,稚魚為15.18 ± 0.81 mm LT,鰭條達成魚定數。37 dph時,稚魚為15.93 ± 0.63 mm LT,眼後有明顯可見的黃色色帶從額頭延伸到胸口處,背鰭、臀鰭及尾鰭出現黃色,所有魚苗開始沉降進入底棲期,220 dph時,稚魚為41.10 ± 3.66 mm LT,體側黃色色帶逐漸消失。在骨骼發育上,9 dph時,吻部骨骼、前鰓蓋骨及主匙骨開始骨化;12 dph時,脊椎骨、背鰭鰭條、臀鰭鰭條骨化;15 dph時,腹鰭鰭條骨化;21 dph時,尾鰭和胸鰭骨化。在掃描式電子顯微鏡的觀察下,受精卵表面光滑且無紋路,卵門孔徑為7.2 µm,壁孔平均分散在卵膜表面,孔徑為0.21 µm,密度約48 個/100 µm^(2 );在6 dph時,牙齒發育;7 dph時,鰓蓋棘刺出現;9 dph時,腹鰭和背鰭、臀鰭鰭條發育。在溫度與鹽度實驗中發現,最適合孵化溫度為24 ℃,最適合孵化鹽度為33 psu。在SAI的實驗中發現,溫度27 ℃有最高的SAI值,並顯著高於其他處理組(P < 0.05 ),鹽度33 psu有最高的SAI值,且顯著高於27、39 psu處理組 (P < 0.05 )。
福氏刺尻魚平均卵徑為0.69 ± 0.02 mm,油球徑為0.149 - 0.172 mm,在水溫27.0 ± 0.1 ℃,鹽度33.5 ± 0.1 psu,受精到孵化共耗時13小時30分鐘。剛孵化的仔魚為1.95 ± 0.03 mm LT,鰭膜上下有規則分布的黑色素胞,油球為黃綠色。2 dph時,仔魚為2.41 ± 0.04 mm LT,具備攝食能力。10 dph時,仔魚為4.04 ± 0.12 mm LT,開始進入脊索上屈期。30 dph時,稚魚為13.43 ± 2.59 mm LT,鰭條達成魚定數,且身體背部為綠色。130 dph時,稚魚為22.30 ± 2.51 mm LT,背鰭、臀鰭及尾鰭開始變黑。200 dph時,稚魚為29.75 ± 4.51 mm LT,體色前半部呈白珍珠色。在骨骼發育上,14 dph時,脊椎骨骨化;21 dph時,頭部骨骼和各部位鰭條骨化。在掃描式電子顯微鏡的觀察下,受精卵表面光滑且無紋路,卵門孔徑為6.6 µm,壁孔平均分散在卵膜表面,孔徑為0.16 µm,密度約42 個/100 µm^(2 );在7 dph時,牙齒發育,10 dph時,鰓蓋棘刺發育,腹鰭發育。在溫度與鹽度實驗中發現,最適合孵化溫度為27.0 ℃,最適合孵化鹽度為33.0 psu。在SAI的實驗中發現,溫度27 ℃有最高的SAI值,並顯著高於21、33 ℃ (P < 0.05 ),鹽度33 psu有最高的SAI值,並顯著高於27、36及39 psu處理組(P < 0.05 )。綜合比較發現,刺尻魚屬物種相對於荷包魚屬物種有更小的卵徑、體長及口徑,而在骨骼發育上,淡斑荷包魚的硬骨發生似乎較福氏刺尻魚更早。
The bluespotted angelfish (Chaetodontoplus caeruleopunctatus) and the pearlscale angelfish (Centropyge vrolikii) are one of the popular species of marine ornamental fishes. These species distributed in tropical and subtropical coral reefs. However, because the knowledge on their early life history are particularly limited, they are still mainly wild-caught in the marine ornamental fish market. In this study, we investigated and analyzed the natural spawning and early development of C. caeruleopunctatus and C. vrolikii by captive breeding. Embryonic, larval and juvenile development of these species were described and illustrated by using light microscope, dissecting microscope and scanning electron microscopy (SEM), and the early osteological development of these species were studied. In addition, the effects of different temperatures and salinities on hatching rate and deformity rate of eggs were tested separately, and we also discussed the survival activity index (SAI) of larvae. Fertilized eggs of C. caeruleopunctatus and C. vrolikii were spherical and pelagic. Mean diameter of C. caeruleopunctatus eggs was 0.85 ± 0.02 mm, oil globule was 0.180 - 0.205 mm, embryonic development took 16 hours and 45 minutes from fertilization to hatch at 27.0 ± 0.1 ℃ and 33.5 ± 0.1 psu. The newly hatched larvae were 2.51 ± 0.05 mm in total length (LT), with many melanophores on the body surface. Larvae of two days post hatch (dph) were 2.95 ± 0.06 mm LT, had the ability to catch and feed on. At 8 dph, larvae were 4.48 ± 0.19 mm LT, began the flexion stage. At 30 dph, juveniles were 15.18 ± 0.81 mm LT, had the adult complement of rays and spines. At 37 dph, juveniles were 15.93 ± 0.63 mm LT, a vertical yellow band was visible behind the eye extending from the forehead to the chest, dorsal fin, anal fin and caudal fin appeared yellow colour. The juvenile habitat shifted from the middle layers to the tank bottom. At 220 dph, were 41.10 ± 3.66 mm LT, the yellow band began to disappear. For the skeletal ontogeny of C. caeruleopunctatus, jaw, preopercle and cleithrum showed ossification at 9 dph; vertebral centra, dorsal fin and anal fin showed ossification at 12 dph; pelvic fin showed offisication at 15 dph; caudal fin and pectoral fin ossification completed at 21 dph. Under SEM, the egg surface was smooth, micropyle was about 7.2 µm in diameter. Pores were evenly dispersed on the surface of the egg with a density about 48/100 µm^(2 ), and the size was 0.21 µm in diameter. At 6 dph, the teeth were observed. At 7 dph, operculum spines were observed. At 9 dph, pelvic fins, dorsal fin and anal fin were observed. In the temperature and salinity experiment, 24 ℃ and 33 psu had the highest hatching rate. The best SAI temperature treatment was 27 ℃, which was higher than other treatments (P < 0.05), the best SAI salinity treatment was 33 psu, which was higher than 27 and 39 psu treatments (P < 0.05).
Mean diameter of C. vrolikii eggs was 0.69 ± 0.02 mm, oil globule was 0.149 - 0.172 mm, embryonic development took 13 hours and 30 minutes from fertilization to hatching at 27.0 ± 0.1 ℃ and 33.5 ± 0.1 psu. The newly hatched larvae were 1.95 ± 0.03 mm LT, with regularly distributed melanophores on the top and bottom of the fin membrane, oil globules appeared yellow-green colour. Larvae of 2 dph were 2.41 ± 0.04 mm LT, had the ability to catch and feed on. At 10 dph, larvae were 4.04 ± 0.12 mm LT, begin the flexion stage. At 30 dph, juveniles were 13.43 ± 2.59 mm LT, had the adult complement of rays and spines, green colour were visible on the back. At 130 dph, juveniles were 22.30 ± 2.51 mm LT, dorsal fin, anal fin and caudal fin began to turn black. At 200 dph, juveniles were 29.75 ± 4.51 mm LT, the half front part of the body colour appeared white pearl. For the skeletal ontogeny of C. vrolikii, vertebral centra showed ossification at 14 dph; skull and all fins offisication completed at 21 dph. Under SEM, the egg surface was smooth, micropyle was about 6.6 µm in diameter. Pores were evenly dispersed on the surface of the egg with a density about 42/100 µm^(2 ), and the size was 0.16 µm in diameter. At 7 dph, the teeth were observed. At 10 dph, operculum spines and pelvic fins were observed. In the temperature and salinity experiment, 27 ℃ and 33 psu had the highest hatching rate. The best SAI temperature treatment was 27 ℃, which was higher 21 and 33 ℃ treatments (P < 0.05 ), the best SAI salinity treatment was 33 psu, which was higher than 27, 36 and 39 psu treatments (P < 0.05 ).The comparison showed that the species of genus Centropyge have smaller egg diameter, body length and mouth gap than the species of genus Chaetodontoplus. In terms of early osteological development, C. caeruleopunctatus seems to ossified earlier than C. vrolikii.
謝辭 I
摘要 III
Abstract V
第一章 前言 1
1.1 緒言 1
1.2 文獻回顧 1
1.2.1 海水觀賞魚市場現況 1
1.2.2 魚類生活史研究 2
1.2.3 仔稚魚培育 3
1.2.4 微細構造觀察 5
1.2.5 骨骼發育研究 6
1.2.6 溫度與鹽度對於魚類出其發育之影響 7
1.2.7 蓋刺魚科 8
1.2.8 蓋刺魚科生殖生物學研究 9
1.2.9 荷包魚屬的淡斑荷包魚(C. caeruleopunctatus) 9
1.2.10 刺尻魚屬的福氏刺尻魚(C. vrolikii) 10
1.3 研究目的 11
第二章 材料與方法 13
2.1 實驗設計 13
2.2 親魚培育 13
2.2.1 親魚取得、照顧 13
2.2.2 親魚飼養環境 14
2.2.3 魚卵收集及紀錄 15
2.3 水質監測 15
2.3.1 溫度 15
2.3.2 溶氧量 15
2.3.3 鹽度 16
2.3.4 pH值 16
2.3.5 氨氮 16
2.3.6 亞硝酸鹽 16
2.4 魚卵及仔稚魚的培育與觀察 17
2.4.1 胚胎發育觀察 17
2.4.2 餌料生物培養 17
2.4.3 仔稚魚培育及形質測量 18
2.5 利用掃描式電子顯微鏡觀察卵和仔稚魚表面微細構造 18
2.5.1 固定 18
2.5.2 脫水 19
2.5.3 臨界乾燥 19
2.5.4 離子覆膜 20
2.5.5 掃描式電子顯微鏡 20
2.6 仔稚魚的透明骨骼染色 20
2.7 溫度與鹽度對於仔魚孵化率、畸形率及SAI的影響 21
2.7.1 不同溫度對仔魚孵化率、畸形率及SAI的影響 22
2.7.2 不同鹽度對仔魚孵化率、畸形率及SAI之影響 22
2.8 統計分析 23
第三章 結果 25
3.1 淡斑荷包魚之自然產卵、胚胎及仔稚魚發育 25
3.1.1 自然產卵 25
3.1.2 胚胎發育 25
3.1.3 仔稚魚發育 26
3.1.4 仔稚魚行為觀察 30
3.1.5 卵黃囊與油球吸收 30
3.3.6 仔稚魚成長觀察 31
3.1.7 仔魚口徑發育 32
3.1.8 淡斑荷包魚卵和仔稚魚微細構造觀察 32
3.1.8.1 魚卵微細構造 32
3.1.8.2 仔稚魚微細構造 32
3.1.9 淡斑荷包魚骨骼發育 33
3.2 不同溫度與鹽度對淡斑荷包魚孵化率、畸形率及SAI的影響 34
3.2.1 不同溫度對淡斑荷包魚孵化率和畸形率的影響 34
3.2.2 不同溫度對淡斑荷包魚SAI的影響 34
3.2.3 不同鹽度對淡斑荷包魚孵化率和畸形率的影響35
3.2.4 不同鹽度對淡斑荷包魚SAI的影響 35
3.3 福氏刺尻魚之自然產卵、胚胎及仔稚魚發育 36
3.3.1 自然產卵 36
3.3.2 胚胎發育 36
3.3.3 仔稚魚發育 37
3.3.4 仔稚魚行為觀察 41
3.3.5 卵黃囊與油球吸收 42
3.3.6 仔稚魚成長觀察 42
3.3.7 仔魚口徑發育 43
3.3.8 福氏刺尻魚卵和仔稚魚微細構造觀察 43
3.3.8.1 魚卵微細構造 43
3.3.8.2 仔稚魚微細構造 44
3.3.9 福氏刺尻魚骨骼發育 44
3.4 不同溫度與鹽度對福氏刺尻魚孵化率、畸形率及SAI的影響 45
3.4.1 不同溫度對福氏刺尻魚孵化率和畸形率的影響 45
3.4.2 不同溫度對福氏刺尻魚SAI的影響 45
3.4.3 不同鹽度對福氏刺尻魚孵化率和畸形率的影響 46
3.4.4 不同鹽度對福氏刺尻魚SAI的影響 46
3.5 育苗活存率 46
第四章 討論 49
4.1 親魚培育與產卵 49
4.1.1 產卵槽水體容積 49
4.1.2 親魚性別比與性轉換 50
4.1.3 親魚飼育水溫與光週期 50
4.2 胚胎及仔稚魚發育 51
4.2.1 卵徑大小 51
4.2.2 卵黃囊與油球消耗 52
4.2.3 仔魚首次攝食 53
4.2.4 仔稚魚成長 54
4.2.5 仔稚魚行為觀察 56
4.2.6 仔稚魚沉降 57
4.3 微細構造 58
4.3.1 卵 58
4.3.2 仔稚魚 59
4.3.2.1 神經丘 59
4.3.2.2 棘刺 60
4.3.2.3 牙齒 61
4.4 骨骼發育 61
4.5 溫度與鹽度對魚卵及仔魚影響 62
第五章 結論 65
參考文獻 67
附錄 137
Aburto-Oropeza, O., Sala, E., Sánchez-Ortiz, C., 2000. Feeding behavior, habitat use, and abundance of the angelfish Holacanthus passer (Pomacanthidae) in the southern Sea of Cortés. Environ. Biol. Fish. 57, 435-442. https://doi.org/10.1023/A:1007606813500.
Andrews, C., 1990. The ornamental fish trade and fish conservation. J. Fish Biol. 37, 53-59. https://doi.org/10.1111/j.1095-8649.1990.tb05020.x.
Arai, H., 1994. Spawning behavior and early ontogeny of a pomacanthid fish, Chaetodontoplus duboulayi, in an aquarium. J Ichthyol. 41, 181-187. https://doi.org/10.11369/jji1950.41.181.
Aristizabal, E., Suárez, J., Vega, A., Bargas, R., 2009. Egg and larval quality assessment in the Argentinean red porgy (Pagrus pagrus). Aquaculture 287, 329-334. https://doi.org/10.1016/j.aquaculture.2008.10.044.
Baensch, F., Tamaru, C.S., 2009a. Spawning and development of larvae and juveniles of the rare blue Mauritius angelfish, Centropyge debelius (1988), in the hatchery. J. World Aquacult. Soc. 40, 425-439. http://dx.doi.org/10.1111/j.1749-7345.2009.00273.x.
Baensch, F., Tamaru, C.S, 2009b. Captive hybridization of two geographically isolated pygmy angelfish species, Centropyge fisheri and Centropyge resplendens. J. Fish Biol. 75,
2571-2584. https://doi.org/10.1111/j.1095-8649.2009.02452.x.
Baensch, F., 2017. Dwarf angelfish. Marine Ornamental Species Aquaculture, 279-298. https://doi.org/10.1002/9781119169147.ch16.
Bartley, D. M.,1999. Marine ranching: a global perspective. Howell, B. R., E. Moksness, and T. Svasand, editors. Stock enhancement and Sea Ranching. Oxford, England Fishing News Books. pp.79–90.
Bauer Jr, J., Bauer, S., 1981. Reproductive biology of pigmy angelfishes of the genus Centropyge (Pomacanthidae). Bull. Mar. Sci. 31, 495-513.
Bellwood, D.R., van Herwerden, L., Konow, N., 2004. Evolution and biogeography of marine angelfishes (Pisces: Pomacanthidae). Mol. Phylogenet. Evol. 33, 140-155. http://dx.doi.org/10.1016/j.ympev.2004.04.015.
Berlinsky, D.L., Taylor, J.C., Howell, R.A., Bradley, T.M., Smith, T.I., 2004. The effects of temperature and salinity on early life stages of black sea bass Centropristis striata. J. World Aquacult. Soc. 35, 335-344. http://dx.doi.org/10.1111/j.1749-7345.2004.tb00097.x.
Bermudes, M., Ritar, A.J., 1999. Effects of temperature on the embryonic development of the striped trumpeter (Latris lineata Bloch and Schneider, 1801). Aquaculture 176, 245-255.
http://dx.doi.org/10.1016/S0044-8486(99)00117-9.
Bird, N.C., Webb, J.F., 2014. Heterochrony, modularity, and the functional evolution of the mechanosensory lateral line canal system of fishes. EvoDevo 5, 1-22. http://dx.doi.org/10.1186/2041-9139-5-21.
Blaxter, J., 1992. The effect of temperature on larval fishes. Neth. J. Zool. http://dx.doi.org/10.1163/156854291X00379.
Borgerson, L.A., Clemens, B., Bowden, K., Gunckel, S.L., 2014. Fish life history analysis project: methods for scale analysis. Oregon Department of Fish and Wildlife Corvalis. http://dx.doi.org/10.3996/042015-JFWM-044.S2.
Brown, N., Shields, R., Bromage, N., 2006. The influence of water temperature on spawning patterns and egg quality in the Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 261, 993-1002.
http://dx.doi.org/10.1016/j.aquaculture.2006.08.025.
Burgess, A.I., Callan, C.K., 2018. Effects of supplemental wild zooplankton on prey preference, mouth gape, osteological development and survival in first feeding cultured larval yellow tang (Zebrasoma flavescens). Aquaculture. 495, 738-748. http://dx.doi.org/10.1016/j.aquaculture.2018.06.046.
Burgess, W.E., 1974. Evidence for the elevation to family status of the angelfishes (Pomacanthidae), previously considered to be a subfamily of the butterflyfish family, Chaetodontidae.
Cahu, C., Infante, J.Z., Peres, A., Quazuguel, P., Le Gall, M., 1998. Algal addition in sea bass (Dicentrarchus labrax) larvae rearing: effect on digestive enzymes. Aquaculture. 161, 479-489. https://doi.org/10.1016/S0044-8486(97)00295-0
Calado, R., Olivotto, I., Oliver, M.P., Holt, J., 2017. Marine ornamental species aquaculture. Wiley Online Library. http://dx.doi.org/10.1002/9781119169147
Callan, C.K., 2007. Assessment of the flame angelfish (Centropyge loriculus) as a model speciesin studies on egg and larval quality in marine fishes, Ph.D. Thesis, University of Maine.
Callan, C.K., Laidley, C.W., 2010. The effects of water source and secondary water treatment on flame angelfish Centropyge loriculus (Günther) reproduction. Aquac. Res. 41, e537-e544.
http://dx.doi.org/10.1111/j.1365-2109.2010.02525.x.
Callan, C.K., Laidley, C.W., Forster, I.P., Liu, K.M., Kling, L.J., Place, A.R., 2012. Examination of broodstock diet effects on egg production and egg quality in flame angelfish (Centropyge loriculus). Aquac. Res. 43, 696-705. http://dx.doi.org/10.1111/j.1365-2109.2011.02877.x.
Callan, C.K., Laidley, C.W., Kling, L.J., Breen, N.E., Rhyne, A.L., 2014. The effects of dietary HUFA level on flame angelfish (Centropyge loriculus) spawning, egg quality and early larval characteristics. Aquac. Res. 45, 1176-1186. http://dx.doi.org/10.1111/are.12063.
Callan, C.K., Burgess, A.I., Rothe, C.R., Touse, R., 2018. Development of improved feeding methods in the culture of yellow tang, Zebrasoma flavescens. J. World Aquacult. Soc. 49, 493-503. http://dx.doi.org/10.1111/jwas.12496.
Cassiano, E.J., Wittenrich, M.L., Waltzek, T.B., Steckler, N.K., Barden, K.P., Watson, C.A., 2015. Utilizing public aquariums and molecular identification techniques to address the larviculture potential of Pacific blue tangs (Paracanthurus hepatus), semicircle angelfish (Pomacanthus semicirculatus), and bannerfish (Heniochus sp.). Aquac. Int. 23, 253-265. http://dx.doi.org/10.1007/s10499-014-9813-3.
Cheng, M. J., Jiang, Y. Y., Ho, Y. S., Chang, W. B., Peng, J. J., Chen, W. Y., 2012. Early osteological development of the spine-cheek anemonefish (Premnas biaculeatus) in Taiwan. J. Taiwan Fish. Res. 20, 37-48.
Crisp, J.A., Partridge, G.J., D’Souza, F.M., Tweedley, J.R., Moheimani, N.R., 2017. Effects of temperature and salinity on larval survival and development of the western school prawn Metapenaeus dalli. Int Aquat Res. 9, 1-10. http://dx.doi.org/10.1007/s40071-016-0151-0.
de Lima, A.F., Makrakis, M.C., Andrade, F.F., Kashiwaqui, E.A.L., Gimenes, M.d.F., Makrakis, S., 2017. Feeding selectivity in early life stages of Rhamdia voulezi under experimental conditions. Aquac. Res. 48, 1618-1628. http://dx.doi.org/10.1111/are.12996.
Devi, S., 2008. Screening, isolation and laboratory scale culture of microalgae for biodiesel production. M. Phil Dissertation, Delhi University, Delhi, India.
DiBattista, J.D., Waldrop, E., Bowen, B.W., Schultz, J.K., Gaither, M.R., Pyle, R.L., Rocha, L.A., 2012. Twisted sister species of pygmy angelfishes: discordance between taxonomy, coloration, and phylogenetics. Coral Reefs. 31, 839-851. http://dx.doi.org/10.1007/s00338-012-0907-y.
DiMaggio, M.A., Cassiano, E.J., Barden, K.P., Ramee, S.W., Ohs, C.L., Watson, C.A., 2017. First record of captive larval culture and metamorphosis of the Pacific blue tang, Paracanthurus hepatus. J. World Aquacult. Soc. 48, 393-401. http://dx.doi.org/10.1111/jwas.12426.
Ditty, J.G., Shaw, R.F., Cope, J.S., 1994. A re-description of Atlantic spadefish larvae, Chaetodipterus faber(family: Ephippidae), and their distribution, abundance, and seasonal occurrence in the northern Gulf of Mexico. Fish. Bull. 92, 262-274.
Donelson, J., Munday, P., McCormick, M., Pankhurst, N., Pankhurst, P., 2010. Effects of elevated water temperature and food availability on the reproductive performance of a coral reef fish. Mar. Ecol. Prog. Ser. 401, 233-243. https://doi.org/10.3354/meps08366.
Eckhard Witten, P., Leonor Cancela, M., 2012. Interdisciplinary approaches in fish skeletal biology. J. Appl. Ichthyol. 28, 297-299.
http://dx.doi.org/10.1111/j.1439-0426.2012.02015.x.
El-Sayed, H.S., Ibrahim, H.A., Beltagy, E.A., Khairy, H.M., 2014. Effects of short term feeding of some marine microalgae on the microbial profile associated with Dicentrarchus labrax post larvae. Egypt. J. Aquat. Biol. Fish. 40, 251-260. http://dx.doi.org/10.1016/j.ejar.2014.08.001.
Emata, A.C., Borlongan, I.G., 2003. A practical broodstock diet for the mangrove red snapper, Lutjanus argentimaculatus. Aquaculture 225, 83-88. http://dx.doi.org/10.1016/S0044-8486(03)00279-5.
Fablet, R., Le Josse, N., 2005. Automated fish age estimation from otolith images using statistical learning. Fish. Res. 72, 279-290.
http://dx.doi.org/10.1016/j.fishres.2004.10.008.
Fishelson, L., 1996. Skin morphology and cytology in marine eels adapted to different lifestyles. Anat. Rec. 246, 15-29.
http://dx.doi.org/10.1002/(SICI)1097-0185(199609)246:1%3C15::AID-AR3%3E3.0.CO;2-E.
Froese, R. and D. Pauly. Editors. 2021. FishBase. World Wide Web electronic publication.www.fishbase.org, ( 06/2021 ).
Fraser, M., Anderson, T., De Nys, R., 2004. Ontogenic development of the spine and spinal deformities in larval barramundi (Lates calcarifer) culture. Aquaculture 242, 697-711. http://dx.doi.org/10.1016/j.aquaculture.2004.09.018.
Furuita, H., Tanaka, H., Yamamoto, T., Shiraishi, M., Takeuchi, T., 2000. Effects of n− 3 HUFA levels in broodstock diet on the reproductive performance and egg and larval quality of the Japanese flounder, Paralichthys olivaceus. Aquaculture 187, 387-398.
http://dx.doi.org/10.1016/S0044-8486(00)00319-7.
Gavaia, P.J., Dinis, M.T., Cancela, M., 2002. Osteological development and abnormalities of the vertebral column and caudal skeleton in larval and juvenile stages of hatchery-reared Senegal sole (Solea senegalensis). Aquaculture 211, 305-323.
http://dx.doi.org/10.1016/S0044-8486(02)00167-9.
Gisbert, E., Conklin, D., Piedrahita, R., 2004. Effects of delayed first feeding on the nutritional condition and mortality of California halibut larvae. J. Fish Biol. 64, 116-132. https://doi.org/10.1111/j.1095-8649.2004.00289.x.
Gwo, H.H., 2008. Morphology of the fertilizable mature egg in the Acanthopagrus latus, A. schlegeli and Sparus sarba (Teleostei: Perciformes: Sparidae). J. Microsc. 232, 442-452. https://doi.org/10.1111/j.1365-2818.2008.02139.x.
Haffter, P., Granato, M., Brand, M., Mullins, M.C., Hammerschmidt, M., Kane, D.A., Odenthal, J., Van Eeden, F., Jiang, Y.-J., Heisenberg, C.-P., 1996. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development. 123, 1-36.
https://doi.org/10.1242/dev.123.1.1.
Hamaguchi, Y., Sakai, Y., Takasu, F., Shigesada, N., 2002. Modeling spawning strategy for sex change under social control in haremic angelfishes. Behav. Ecol. 13, 75-82. http://dx.doi.org/10.1093/beheco/13.1.75
Harris, M., 2012. Comparative genetics of postembryonic development as a means to understand evolutionary change. J. Appl. Ichthyol. 28, 306-315.
Harris, M., Henke, K., Hawkins, M., Witten, P., 2014. Fish is Fish: the use of experimental model species to reveal causes of skeletal diversity in evolution and disease. J. Appl. Ichthyol. 30, 616-629.
http://dx.doi.org/10.1111/jai.12533.
Herbing, I.H.V., Miyake, T., Hall, B.K., Boutilier, R.G., 1996. Ontogeny of feeding and respiration in larval Atlantic cod Gadus morhua (Teleostei, Gadiformes): I. Morphology. J. Morphol. 227, 15-35.
https://doi.org/10.1002/(SICI)1097-4687(199601)227:1<15::AID-JMOR2>3.0.CO;2-O.
Hioki, S., 1999. Characteristics of eggs and larvae of twelve angelfishes belong to the genus Centropyge (Teleostei, Pomacanthidae) with special reference to their subgeneric relationships. Sci. Rep. Mus., Tokai Univ.. 1, 1-36.
Hioki, S., Suzuki, K., 1987. Reproduction and early development of the angelfish, Centropyge interruptus, in an aquarium. J. Facult. Mar. Sci. Tech., Tokai Univ. 24, 133–140.
Hioki, S., Suzuki, K., 1995. Spawning behavior, eggs, and larvae of the anglefish Chaetodontoplus mesoleucus, in the aquarium. J. Sch. Mar. Sci. Tech., Tokai University. 39, 195-205.
Hioki, S., Suzuki, K., Tanaka, Y., 1982. Spawning behavior, egg and larval development, and sex succession of the hermaphroditic pomacanthine, Genicanthus melanospilos, in the aquarium. J. Facult. Mar. Sci. Technol., Tokai Univ. 15, 359-366.
Hioki, S., Suzuki, K., Tanaka, Y., 1990. Development of eggs and larvae in the angelfish, Centropyge ferrugatus. J. Ichthyol. 37, 34-38.
https://doi.org/10.11369/jji1950.37.34.
Hioki, S., Tanaka, Y., Suzuki, K., 1995. Reproductive behavior, eggs, larvae, and sexuality of two angelfishes, Genicanthus watanabei and G. bellus, in an aquarium. J. Sch. Mar. Sci. Technol. Tokai Univ. 40, 151-171.
Hoff, F.H., 1996. Conditioning, spawning and rearing of fish with emphasis on marine clownfish. Aquaculture Consultants, Incorporated.
Holt, G.J., Riley, C.M., 2001. Laboratory spawning of coral reef fishes: effects of temperature and photoperiod. Proceedings of the 28th US-Japan Natural Resources Aquaculture Panel: Spawning and Maturation of Aquaculture Species. UJNR Technical Report, 33-38.
Holt, G.J., 2003. Research on culturing the early life history stages of marine ornamental species. In: Marine Ornamental Species: Collection, Culture and Conservation (eds. by J.C. Cato & C.L. Brown), pp 251–254. Iowa State Press, Ames, IA, USA. http://dx.doi.org/10.1002/9780470752722.ch17.
Houde, E., 1974. Effects of temperature and delayed feeding on growth and survival of larvae of three species of subtropical marine fishes. Mar. Biol. 26, 271-285. http://dx.doi.org/10.1007/BF00389257.
Howell, B., Day, O., Ellis, T., Baynes, S., 1998. Early life stages of farmed fish. In ‘Biology of Farmed Fish’.(Eds KD Black and AD Pickering.) pp. 27–66. Sheffield Academic Press: Sheffield.
Hsiao, C.-D., Shen, K.-N., Chen, C.-H., Chang, C.-W., 2016. The complete mitochondrial genome of the Vermiculated angelfish (Chaetodontoplus mesoleucus)(Perciformes: Pomacanthidae). Mitochondrial DNA Part A. 27, 4124-4125. http://dx.doi.org/10.3109/19401736.2014.1003874.
Jaramillo, R., Garrido, O., Goicoechea, O., Molinari, E., 2015. Comparative study of ultrastructural changes on morphology of chorion during development of two salmonid species (Salmo salar and Oncorhynchus kisutch). Glob. J. Mar. Sci. 1, 1-9.
Job, S.D., Bellwood, D.R., 2000. Light sensitivity in larval fishes: implications for vertical zonation in the pelagic zone. Limnol. Oceanogr. 45, 362-371. http://dx.doi.org/10.4319/lo.2000.45.2.0362.
Johnson, E., Werner, R., 1986. Scanning electron microscopy of the chorion of selected freshwater fishes. J. Fish Biol. 29, 257-265. http://dx.doi.org/10.1111/j.1095-8649.1986.tb04943.x.
Kaatz, S.E., Morris, J.E., Rudacille, J.B., Johnson, J.A., Clayton, R.D., 2011. Role of organic fertilizers in walleye (Sander vitreus) production in plastic‐lined culture ponds. Aquac. Res. 42, 490-498. http://dx.doi.org/10.1111/j.1365-2109.2010.02644.x.
Kang'ombe, J., Brown, J.A., Halfyard, L.C., 2006. Effect of using different types of organic animal manure on plankton abundance, and on growth and survival of Tilapia rendalli (Boulenger) in ponds. Aquac. Res. 37, 1360-1371. http://dx.doi.org/10.1111/j.1365-2109.2006.01569.x.
Katharios, P., Seth-Smith, H.M., Fehr, A., Mateos, J.M., Qi, W., Richter, D., Nufer, L., Ruetten, M., Soto, M.G., Ziegler, U., 2015. Environmental marine pathogen isolation using mesocosm culture of sharpsnout seabream: striking genomic and morphological features of novel Endozoicomonas sp. Sci. Rep. 5, 1-13. http://dx.doi.org/10.1038/srep17609.
Kaviani, E., Shabanipour, N., Mirnategh, S., 2013. Light and electron microscope structural study of the zona radiata in the oocyte of zebrafish (Danio rerio). Microscopy. 62, 377-382. http://dx.doi.org/10.1093/jmicro/dfs086.
Kawabe, K., Kohno, H., 2009. Morphological development of larval and juvenile blacktip grouper, Epinephelus fasciatus. Fish Sci. 75, 1239-1251. http://dx.doi.org/10.1007/s12562-009-0128-7.
Kelley, S., 1995. Pigmentation, squamation and the osteological development of larval and juvenile gray angelfish, Pomacanthus arcuatus (Pomacanthidae: Pisces). Bull. Mar. Sci. 56, 826-848.
Kinne, O., 1963. The effects of temperature and salinity on marine and brackish water animals. I. Temperature. Oceanogr. Mar. Biol. Ann. Rev. 1, 301-340.
Kinne, O., 1964. The effects of temperature and salinity on marine and brackish water animals: 2. Salinity and temperature-salinity combinations. Oceanogr. Mar. Biol: an annual Rev. 2, 281-339.
Lam, T., 1982. Applications of endocrinology to fish culture. Can. J. Fish. Aquat. Sci. 39, 111-137. https://doi.org/10.1139/f82-013.
Léger, P., Vanhaecke, P., Sorgeloos, P., 1983. International study on Artemia XXIV. Cold storage of live Artemia nauplii from various geographical sources: Potentials and limits in aquaculture. Aquac. Eng. 2, 69-78. http://dx.doi.org/10.1016/0144-8609(83)90006-7.
Léger, P., Naessens-Foucquaert, E., Sorgeloos, P., 1987b. International study on Artemia. XXXV. Techniques to manipulate the fatty acid profile in Artemia nauplii and the effect on its nutritional effectiveness for the marine crustacean Mysidopsis bahia (M.). In: Sorgeloos, P., Bengtson, D.A., Decleir, W., Jaspers, E. (Eds.), Artemia Research and its Applications. vol. 3. Universa Press, Wetteren, Belgium, pp. 556 Ecology, Culturing, Use in Aquaculture http://dx.doi.org/10.1111/j.1749-7345.1985.tb00216.x.
Lavens, P., Sorgeloos, P., 1996. Manual on the production and use of live food for aquaculture. Food and Agriculture Organization (FAO).
Léger, P., 1987. The nutritional value of Artemia: a review: In: Sorgeloos P, Bengtson DA, Declier W, Jasper E (eds) Artemia research and its Applications. Universa Press, Wetteren, Belgium.
Leu, M.Y., Sune, Y.H., Meng, P.J., 2015. First results of larval rearing and development of the bluestriped angelfish Chaetodontoplus septentrionalis (Temminck & Schlegel) from hatching through juvenile stage with notes on its potential for aquaculture. Aquac. Res. 46, 1087-1100.
https://doi.org/10.1111/are.12265.
Leu, M.Y., Liou, C.H., Wang, W.H., Yang, S.D., Meng, P.J., 2009. Natural spawning, early development and first feeding of the semicircle angelfish [Pomacanthus semicirculatus (Cuvier, 1831)] in captivity. Aquac. Res. 40, 1019-1030. https://doi.org/10.1111/j.1365-2109.2009.02192.x.
Leu, M.Y., Meng, P.J., Huang, C.S., Tew, K.S., Kuo, J., Liou, C.H., 2010. Spawning behaviour, early development and first feeding of the bluestriped angelfish [Chaetodontoplus septentrionalis (Temminck & Schlegel, 1844)] in captivity. Aquac. Res. 41, e39-e52.
http://dx.doi.org/10.1111/j.1365-2109.2009.02454.x.
Li, Y., Wu, C., Yang, J., 2000. Comparative ultrastructural studies of the zona radiata of marine fish eggs in three genera in Perciformes. J. Fish Biol. 56, 615-621. https://doi.org/10.1111/j.1095-8649.2000.tb00759.x.
Lin, S.-H., 2020. Natural spawning and early life history of the Queensland yellowtail angelfish, Chaetodontoplus meredithi (Kuiter, 1990) in captivity. Master’s thesis, National Dong Hwa University, Hualien, Taiwan.
Lobel, P.S., 1978. Diel, lunar, and seasonal periodicity in the reproductive behavior of the pomacanthid fish, Centropyge potteri, and some other reef fishes in Hawaii.
Lutnesky, M., 1988. Sexual dimorphism, dichromatism, and protogynous hermaphroditism in the pomacanthid angelfish, Centropyge potteri. Pac. Sci. 42, 126.
Lutnesky, M., 1989. Stimulation, inhibition and induction of “early” sex change in the pomacanthid angelfish, Centropyge potteri. Pac. Sci. 43, 196-197. https://doi.org/10.1007/BF00005025
Lutnesky, M., 1991. A temporal-polygyny-threshold model and spawning in the pomacanthid angelfish Centropyge potteri. Pac. Sci. 45, 97-98.
Ma, Z., 2014. Food ingestion, prey selectivity, feeding incidence, and performance of yellowtail kingfish Seriola lalandi larvae under constant and varying temperatures. Aquac. Int. 22, 1317-1330.
http://dx.doi.org/10.1007/s10499-013-9749-z.
Madhu, N.V., Jyothibabu, R., Maheswaran, P.A., Jayaraj, K.A., Achuthankutty, C.T., 2012. Enhanced chlorophyll a and primary production in the northern Arabian Sea during the spring intermonsoon due to green Noctiluca scintillans bloom. Mar. Biol. Res. 8, 182-188.
https://doi.org/10.1080/17451000.2011.605143.
Mekkawy, I.A., Osman, A.G., 2006. Ultrastructural studies of the morphological variations of the egg surface and envelopes of the African catfish Clarias gariepinus (Burchell, 1822) before and after fertilisation with a discussion of fertilisation mechanism. Sci. Mar. 70, 23-40.
http://dx.doi.org/10.3989/scimar.2006.70s223.
Mendonça, R.C., Chen, J.Y., Zeng, C., Tsuzuki, M.Y., 2020. Embryonic and early larval development of two marine angelfish, Centropyge bicolor and Centropyge bispinosa. Zygote. 28, 196-202.
http://dx.doi.org/10.1017/S0967199419000789.
Mendonca, R.C., Ikebata, S.P., Araújo‐Silva, S.L., Manhaes, J.V., Tsuzuki, M.Y., 2020. Effect of temperature on hatching success of flameback pygmy angelfish Centropyge aurantonotus eggs. Aquac. Res. 51, 1303-1306.
http://dx.doi.org/10.1111/are.14443.
Mihelakakis, A., Kitajima, C., 1994. Effects of salinity and temperature on incubation period, hatching rate, and morphogenesis of the silver sea bream, Sparus sarba (Forskål, 1775). Aquaculture 126, 361-371 .
http://dx.doi.org/10.1016/0044-8486(94)90052-3.
Modrell, M.S., Bemis, W.E., Northcutt, R.G., Davis, M.C., Baker, C.V., 2011. Electrosensory ampullary organs are derived from lateral line placodes in bony fishes. Nat. Commun. 2, 1-10. http://dx.doi.org/10.1038/ncomms1502.
Moe Jr, M., 1976. Rearing Atlantic angelfish. Mar. Aqua.. 7, 17-26.
Mohammed, A.; Abdullah, A., 2018. Scanning electron microscopy (SEM): A review. In Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—HERVEX, Băile Govora, Romania, 7–9 November 2018; Matache, G., Popescu, A.-M., Hristea, A., Eds.; Hydraulics and Pneumatics Research Institute: Băile Govora, Romania. 77–85.
Moorhead, J.A., Zeng, C., 2010. Development of captive breeding techniques for marine ornamental fish: a review. Rev. Fish. Sci. 18, 315-343 .
http://dx.doi.org/10.1080/10641262.2010.516035.
Moyer, J.T., Nakazono, A., 1978. Population Structure, Reproductive Behavior and Protogynous Hermaphroditism in the Angelfish. Centropyge interruptus at Miyake-jima, Japan. J. Ichthyol. 25, 25-39.
Moyer, J.T., Zaiser, M.J., 1984. Early sex change: a possible mating strategy of Centropyge angelfishes (Pisces: Pomacanthidae). J. Ethol. 2, 63-67. http://dx.doi.org/10.1007/BF02348208.
Moyer, J.T., Thresher, R.E., Colin, P.L., 1983. Courtship, spawning and inferred social organization of American angelfishes (Genera Pomacanthus, Holacanthus and Centropyge; Pomacanthidae). Environ. Biol. Fishes. 9, 25-39. http://dx.doi.org/10.1007/BF00001056.
Mukai, Y., KABAYASHI, H., 1991. Morphological studies on the cupulae of free neuromasts along with the growth of larvae in cyprinid fish. Nippon Suisan Gakkaishi 57, 1339-1346. https://doi.org/10.2331/suisan.57.1339.
Mukai, Y., Kobayashi, H., 1995. Development of free neuromasts with special reference to sensory polarity in larvae of the willow shiner, Gnathopogon elongatus caerulescens (Teleostei, Cyprinidae). Zool. Sci. 12, 125-131.
http://dx.doi.org/10.2108/zsj.12.125.
Munk, P., 1997. Prey size spectra and prey availability of larval and small juvenile cod. J. Fish Biol. 51, 340-351.
http://dx.doi.org/10.1111/j.1095-8649.1997.tb06107.x.
Mushiake, K., Sekiya, S., 1993. A trial of evaluation of activity in striped jack, Pseudocaranx dentex larvae. Suisan Zoshoku 41, 155 – 160 (in Japanese, with English abstract) https://doi.org/10.11233/aquaculturesci1953.41.155.
Neori, A., 2011. “Green water” microalgae: the leading sector in world aquaculture. J. Appl. Phycol. 23, 143-149. http://dx.doi.org/10.1007/s10811-010-9531-9.
Olivotto, I., Holt, S.A., Carnevali, O., Holt, G.J., 2006. Spawning, early development, and first feeding in the lemonpeel angelfish Centropyge flavissimus. Aquaculture 253, 270-278.
http://dx.doi.org/10.1016/j.aquaculture.2004.12.009.
Olivotto, I., Tokle, N., Nozzi, V., Cossignani, L., Carnevali, O., 2010. Preserved copepods as a new technology for the marine ornamental fish aquaculture: A feeding study. Aquaculture 308, 124-131.
http://dx.doi.org/10.1016/j.aquaculture.2010.08.033.
Olivotto, I., Avella, M., Sampaolesi, G., Piccinetti, C., Ruiz, P.N., Carnevali, O., 2008. Breeding and rearing the longsnout seahorse Hippocampus reidi: rearing and feeding studies. Aquaculture 283, 92-96.
http://dx.doi.org/10.1016/j.aquaculture.2008.06.018.
Olivotto, I., Planas, M., Simões, N., Holt, G.J., Avella, M.A., Calado, R., 2011. Advances in breeding and rearing marine ornamentals. J. World Aquacult. Soc. 42, 135-166.
https://doi.org/10.1111/j.1749-7345.2011.00453.x.
Ostrowski, A.C., Laidley, C.W., 2001. Application of marine foodfish techniques in marine ornamental aquaculture: reproduction and larval first feeding. Aqua. Sci. Cons. 3, 191-204.
Otsuka, M., Nagai, S.-i., 1997. Neuromast formation in the prehatching embryos of the cod fish, Gadus macrocephalus Tilesius. Zool. Sci. 14, 475-481.http://dx.doi.org/10.2108/zsj.14.475.
Palmer, P.J., Burke, M.J., Palmer, C.J., Burke, J.B., 2007. Developments in controlled green-water larval culture technologies for estuarine fishes in Queensland, Australia and elsewhere. Aquaculture 272, 1-21.
http://dx.doi.org/10.1016/j.aquaculture.2007.06.018.
Park, J.Y., Oh, M.K., Kim, C.H., Kang, E.J., Beon, M.S., 2008. Morphology and distribution of the minute tubercles on the skin surface of larvae in the Korean endemic bitterling, Acheilognathus somjinensis (Pisces, Cyprinidae), with its larval growth. Anim. Cells Syst. (Seoul). 12, 297-304.
http://dx.doi.org/10.1080/19768354.2008.9647185.
Planas, M., Cunha, I., 1999. Simple techniques for labelling prey and gut content analysis in short-term feeding experiments with fish larvae. Aquat. Liv. Resour. 12, 145-149. http://dx.doi.org/10.1016/S0990-7440(99)80023-0.
Pyle, R., 2001. Pomacanthidae: angelfishes. FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. 5, 3266-3286.
Randall, J.E., Rocha, L.A., 2009. Chaetodontoplus poliourus, a new angelfish (Perciformes: Pomacanthidae) from the tropical western Pacific. Raff. Bull. Zool. 57, 511-520.
Reitan, K.I., Rainuzzo, J.R., Øie, G., Olsen, Y., 1993. Nutritional effects of algal addition in first-feeding of turbot (Scophthalmus maximus L.) larvae. Aquaculture 118, 257-275. http://dx.doi.org/10.1016/0044-8486(93)90461-7.
Reitan, K.I., Rainuzzo, J.R., Øie, G., Olsen, Y., 1997. A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155, 207-221.
http://dx.doi.org/10.1016/S0044-8486(97)00118-X.
Reynolds, I.D., Iennings, S., Dulvy, N.K., 2001. Life histories of fishes and population responses to exploitation. Conservation of Exploited Species. Cambridge (United Kingdom): Cambridge.
Rhyne, A.L., Tlusty, M.F., Schofield, P.J., Kaufman, L., Morris Jr, J.A., Bruckner, A.W., 2012. Revealing the appetite of the marine aquarium fish trade: the volume and biodiversity of fish imported into the United States. PloS one. 7, e35808. http://dx.doi.org/10.1371/journal.pone.0035808
Riehl, R., 1978. Bestimmungsschlüssel der wichtigsten deutschen Süsswasser-Teleosteer anhand ihrer Eier. Arch Hydrobiol. 83, 200–212.
Riehl, R., 1993. Surface morphology and micropyle as a tool for identifying fish eggs by scanning electron microscopy. Eur. Microsc. Anal. 5, 29-31.
Sakai, Y., Karino, K., Kuwamura, T., Nakashima, Y., Maruo, Y., 2003. Sexually dichromatic protogynous angelfish Centropyge ferrugata (Pomacanthidae) males can change back to females. Zool. Sci. 20, 627-633.
http://dx.doi.org/10.2108/zsj.20.627.
Scott, A., Baynes, S., 1978. The effect of unicellular algae on survival and growth of turbot larvae (Scophthalmus maximus L.), Symposium on Finfish Nutrition and Feed Technology, Hamburg (Germany, FR), at 20 Jun 1978.
Shao, K.T., Yang, J.S., Chen, K.C., Lee, Y.S., 2001. An Identification Guide of Marine Fish Eggs from Taiwan. Institute of Zoology, Academia Sinica, Taipei, Taiwan.
Shao, K.-T., 2021. Taiwan Fish Database. WWW Web electronic publication. http://fishdb.sinica.edu.tw, (2021-10-24).
Shapiro, F., 2008. Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater. 15, e76.
http://dx.doi.org/10.22203/eCM.v015a05.
Shen, K.-N., Ho, H.-C., Chang, C.-W., 2012. The Blue Velvet Angelfish Centropyge deborae sp. nov., a New Pomacanthid from the Fiji Islands, Based on Genetic and Morphological Analyses. Zool. Stud. 51, 415-423.
Shen, K.-N., Chang, C.-W., Delrieu-Trottin, E., Borsa, P., 2017. Lemonpeel (Centropyge flavissima) and yellow (C. heraldi) pygmy angelfishes each consist of two geographically isolated sibling species. Mar. Biodiv. 47, 831-845. http://dx.doi.org/10.1007/s12526-016-0509-y.
Shimma, H., Tsujigado, A., 1981. Some biochemical quality of bred scorpaenoid fish, Sebastiscus marmoratus, and activities of their larvae. Bull. Nat. Res. Inst. Aquac. 2, 11–20.
Sune, Y.-H., 2011. Larval Development, Microstructures and First Feeding of the Bluestriped Angelfish, Chaetodontoplus septentrionalis (Temminck & Schlegel, 1844). Master’s thesis, National Dong Hwa University, Hualien, Taiwan.
Suzuki, K., 1979. Spawning behavior, k eggs, larvae, and sex reversal of two pomacanthine fishes, Genicanthus lamarck and G. semifasciatus, in the aquarium. J. Fac. Mar. Sci. Tech., Tokai Univ. 12, 149-165.
Song, J., Parenti, L.R., 1995. Clearing and staining whole fish specimens for simultaneous demonstration of bone, cartilage, and nerves. Copeia, 114-118.
Swanson, C., 1996. Early development of milkfish: effects of salinity on embryonic and larval metabolism, yolk absorption and growth. J. Fish Biol. 48, 405-421. http://dx.doi.org/10.1111/j.1095-8649.1996.tb01436.x
Tanaka, H., Kagawa, H., Ohta, H., 2001. Production of leptocephali of Japanese eel (Anguilla japonica) in captivity. Aquaculture 201, 51-60.
https://doi.org/10.1016/S0044-8486(01)00553-1.
Tai, K.-Y., 2010. Early development and microstructures of Tiera batfish, Platax teira (Forsskål, 1775). Master’s thesis, National Dong Hwa University, Hualien, Taiwan.
Tew, K.S., Meng, P.J., Lin, H.S., Chen, J.H., Leu, M.Y., 2013. Experimental evaluation of inorganic fertilization in larval giant grouper (Epinephelus lanceolatus Bloch) production. Aquac. Res. 44, 439-450. https://doi.org/10.1111/j.1365-2109.2011.03051.x.
Thresher, R.E., 1985. Distribution, abundance, and reproductive success in the coralreef fish Acanthochromis polyacanthus. Ecology. 66, 1139-1150.
https://doi.org/10.2307/1939166.
Tice, B.J., Soderberg, R.W., Kirby, J.M., Marcinko, M.T., 1996. Growth and survival of walleyes reared in ponds fertilized with organic or inorganic materials. Prog Fish Cult. 58, 135-139.
http://dx.doi.org/10.1577/15488640(1996)058%3C0135:GASOWR%3E2.3.CO;2.
Turingan, R.G., Beck, J.L., Krebs, J.M., Licamele, J.D., 2005. Development of feeding mechanics in marine fish larvae and the swimming behavior of zooplankton prey: implications for rearing marine fishes. In: Lee, C.-S., O'Bryen, P.J., Marcus, N.H. (Eds.), Copepods in Aquaculture. Wiley Blackwell, Oxford, U.K., pp. 119-132.
http://dx.doi.org/10.1002/9780470277522.ch10.
Valentin, F.N., do Nascimento, N.F., da Silva, R.C., Fernandes, J.B.K., Giannecchini, L.G., Nakaghi, L.S.O., 2015. Early development of Betta splendens under stereomicroscopy and scanning electron microscopy. Zygote 23, 247-256. http://dx.doi.org/10.1017/S0967199413000488.
Vallin, L., Nissling, A., 2000. Maternal effects on egg size and egg buoyancy of Baltic cod, Gadus morhua: implications for stock structure effects on recruitment. Fish. Res. 49, 21-37. https://doi.org/10.1016/S0165-7836(00)00194-6.
Wang, P.-H., Natural spawning and early life history of the semicircle angelfish, Pomacanthus semicirculatus (Cuvier, 1831) in captivity. Master’s thesis, National Dong Hwa University, Hualien, Taiwan.
Webb, J.F., Shirey, J.E., 2003. Postembryonic development of the cranial lateral line canals and neuromasts in zebrafish. Dev. Dyn. 228, 370-385. http://dx.doi.org/10.1002/dvdy.10385.
Wittenrich, M.L., Rhody, N.R., Turingan, R.G., Main, K.L., 2009. Coupling osteological development of the feeding apparatus with feeding performance in common snook, Centropomus undecimalis, larvae: Identifying morphological constraints to feeding. Aquaculture 294, 221-227.
http://dx.doi.org/10.1016/j.aquaculture.2009.06.006.
Wittenrich, M.L., Turingan, R.G., 2011. Linking functional morphology and feeding performance in larvae of two coral-reef fishes. Environ. Biol. Fish. 92, 295-312 http://dx.doi.org/10.1007/s10641-011-9840-0.
Wittenrich, M.L., Turingan, R.G., Creswell, R.L., 2007. Spawning, early development and first feeding in the gobiid fish Priolepis nocturna. Aquaculture 270, 132-141. http://dx.doi.org/10.1016/j.aquaculture.2007.03.025.
Woltering, J.M., Holzem, M., Schneider, R.F., Nanos, V., Meyer, A., 2018. The skeletal ontogeny of Astatotilapia burtoni–a direct-developing model system for the evolution and development of the teleost body plan. BMC Dev. Biol. 18, 1-23. http://dx.doi.org/10.1186/s12861-018-0166-4.
Yang, Z., Chen, Y., 2005. Effect of temperature on incubation period and hatching success of obscure puffer Takifugu obscurus (Abe) eggs. Aquaculture 246, 173-179. http://dx.doi.org/10.1016/j.aquaculture.2004.12.030.
Yasuda, F., Tominaga, Y., 1976. A new pomacanthid fish, Chaetodontoplus caeruleopunctatus, from the Philippines. J. Ichthyol. 23, 130-132. https://doi.org/10.11369/jji1950.23.130.




(此全文20241026後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 比較不同的無機營養鹽施肥對海水神仙魚類仔魚的生長及存活之影響
2. 裂唇魚(Labroides dimidiatus)的自然產卵和初期生活史之研究
3. 人工環境中黃足笛鯛(Lutjanus fulvus) (Forster, 1801)的自然產卵及初期生活史之研究
4. 人工環境中黑身荷包魚Chaetodontoplus melanosoma (Bleeker, 1853)的自然產卵與初期生活史之研究
5. 人工環境中梅氏荷包魚(Chaetodontoplus meredithi)的自然產卵及初期生活史之研究
6. 銀鱗鯧的胚胎、仔稚魚發育及對氨氮急毒性耐受性之研究
7. 銀鱗鯧稚魚對亞硝酸鹽急毒性耐受性之研究
8. 藍帶荷包魚(Chaetodontoplus septentrionalis)的仔稚魚發育、微細構造及首次攝餌之研究
9. 養殖密度、換水率及添加光合菌(Rhodobium sp.)和藻水對於羅氏沼蝦(Macrobrachium rosenbergii)的成長、活存及水質因子之影響
10. 擬刺尾鯛(Paracanthurus hepatus)的自然產卵和初期生活史之研究
11. 延遲首次攝食對尖翅燕魚[Platax teira (Forsskål, 1775)]的仔魚成長及活存之影響
12. 虎斑烏賊 (Sepia pharaonis Ehrenberg, 1831) 的初期生活史及其亞幼生對氨氮急毒性耐受性之研究
13. 人工環境中疊波蓋刺魚(Pomacanthus semicirculatus)的自然產卵和初期生活史之研究
14. 淡水馴養的銀鱗鯧稚魚暴露於亞硝酸中之急毒性及亞致死濃度對其形質、離子調節、逆境與能量代謝反應之影響
15. 帶紋斑節海龍 (Dunckerocampus dactyliophorus )的人工繁殖及初期生活史之研究
 
* *