帳號:guest(18.118.189.37)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:許富銘
作者(英文):Fu-Ming Xu
論文名稱:人工環境中藍豬齒魚Choerodon azurio (Jordan & Snyder, 1901)的初期生活史研究
論文名稱(英文):Studies on the early life history of the auzrio tuskfish, Choerodon azurio (Jordan & Snyder, 1901) in captivity
指導教授:呂明毅
張桂祥
指導教授(英文):Ming-Yih Leu
Kwee-Siong Tew
口試委員:楊順德
呂明毅
張桂祥
口試委員(英文):Shun-De Yang
Ming-Yih Leu
Kwee-Siong Tew
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610863005
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:90
關鍵詞:藍豬齒魚初期發育溫度鹽度骨骼發生學仔稚魚培育
關鍵詞(英文):Choerodon azurioEarly developmentTemperatureSalinityOsteological ontogenyLarviculture
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
藍豬齒魚(Choerodon azurio )為廣泛分布於西太平洋的魚類,本研究主要觀察藍豬齒魚的初期發育,然而,因缺乏相關的養殖方案,養殖其脆弱的仔稚魚階段仍然是主要障礙。迄今為止,僅有6種隆頭魚科魚類在學術期刊上有正式紀錄。藍豬齒魚分別於3、4、12及38 dph (days post hatching, dph)出現首次攝食、泳鰾、脊索上屈期及稚魚期,活存率34.23%。本研究進行了溫度(19、23及27°C)和鹽度(29、33及37 psu)雙因子對受精卵孵化率、剛孵化仔魚畸形率及生存活力指數的交互影響實驗,各組三重複。藍豬齒魚受精卵為球型之浮性卵,卵徑為1.09 ± 0.03 mm (mean ± SD),油球徑為0.24 ± 0.00 mm;於26.2 ±0.2°C水溫下,孵化時間耗時22小時45分鐘。剛孵化的仔魚,體全長為3.01 ± 0.32 mm LT,具有27 (13 + 14) 條肌節,單一油球位於卵黃囊前端。仔魚在3 dph時(3.27 ± 0.47 mm LT )卵黃囊已消耗完畢並開口攝食,口徑大小為297 ± 0.05 μm,具有24條肌節;38 dph時(12.6 ± 0.4 mm LT),各鰭條數達成魚之定數,完成便態進入稚魚期。初期攝食骨骼發育在17 dph頂骨開始骨化,21-46 dph 仔魚上下頷之骨骼和咽齒開始骨化,此時攝食能力增強,有助於碾碎和破壞獵物結構,增加捕食和吸收營養能力;在11.87 mm 時各鰭條開始骨化。在電子顯微鏡的觀察下,受精卵表面光滑,壁孔密度約125個/100 μm2,卵門為圓柱狀;神經丘在仔魚剛孵化時出現,隨著仔魚成長持續增加;3 dph時,眼部、口部及胸鰭發育;12 dph時,體表出現鱗片覆蓋,上頷開始出現牙齒;14 dph下頷牙齒和尾鰭發育。在溫鹽交互實驗中,鹽度33.0 psu × 溫度23.0°C之水質條件孵化率和SAI值顯著高於其他組別(P < 0.05);在鹽度29.0 psu × 溫度19.0°C之畸形率顯著高於其他組別(P < 0.05)。本研究不只能提供藍豬齒魚人工繁養殖的重要資訊,也能減輕現今野外採捕對族群的壓力。
Azurio tuskfish, Choerodon azurio is a widely distributed throughout in the western Pacific species. However, culture of their fragile larval stage culture is still a major bottleneck due to the lack of protocols supporting survival. To date, only six wrasse species have been formal records on the scholarly journals. C. azurio first feeding, swimblader inflation, flexion, amd juvenile stage at 3, 4, 12 and 38 days post hatching (dph) larvae with 34.23% survival rate. Interaction experiment of temperature (19, 23 and 27°C) and salinity (29, 33 and 37 psu) on fertilized eggs hatching rate, newly hatched larval deformity rate and survival activity index (SAI) were also demonstrated, and all treatment in triplicate. Eggs were pelagic and spherical, 1.09 ± 0.03 mm in diameter(mean ± SD), diameter of oil globules was 0.24 ± 0.00 mm. Embryonic development lasted 22 h 45min at 26.2 ± 0.2°C. The newly hatched larvae were 3.01 ± 0.32 mm LT with 27 (13 + 14) myomeres and had an oil globule in the ventroanterior of the yolk sac. The 3 dph were 3.27 ± 0.47 mm LT with 297 ± 0.05 μm in gape height with 24 (10 + 14) myomeres. Transformation of larvae to the juvenile stage was completed at 38 dph (12.6 ± 0.4 mm LT), all fins had the adult complement of rays and spines. For the skeletal ontogeny of feeding apparatus in C. azurio at 17 dph, larvae parietal begin to ossify. At 21-41 dph larvae, the maxilla and mandible began to ossified, helping to crush and destroy the structure of the prey and increase the feeding efficiency. At 11.87 mm LT, all fins ray began to ossify. Under scanning electron microscope, the fertilized egg membrane was smooth.The distribution density of pores was about 125/100 μm2, the micropyle was cylinder shape. The neuromasts appeared at newly hatched larvae; at 3 dph, formation of the pectoral fins, mouth and eyes were observed; at 12 dph, the scale covered the whole body and the upper jaw formation of teeth were observed; at 14 dph, the caudal fin and the lower jaw formation of teeth were observed. At the effects of temperature and salinity interaction experiment the results showed that at salinity 33.0 psu × 23.0 °C treatment group, the hatching rate and SAI was significantly higher than most of the treatment, (P < 0.05), the deformity rate at 29.0 psu × 19.0 °C was significantly higher than most of the treatment (P < 0.05). This study provide important information on the breeding of C. azurio, and reduce the wild catch pressure on the ethnic groups in the field.

摘要 iii
Abstract v
第一章 前言 1
1.1 序言 1
1.2文獻回顧 1
1.2.1 珊瑚礁魚類的食用市場 1
1.2.2 豬齒魚屬的貿易市場 2
1.2.3 隆頭魚科(Labridae) 2
1.2.4 隆頭魚科的生殖生物學 3
1.2.5隆頭魚科的初期生活史 4
1.2.6隆頭魚科的人工培育研究 4
1.2.7藍豬齒魚(Choerodon azurio) 5
1.2.8 魚類的生活史和培育 6
1.2.9 掃描式電子顯微鏡 7
1.2.10 不同溫度和鹽度對魚類初期發育的影響 7
1.2.11 骨骼發育 8
1.3 研究目的 10
第二章 材料與方法11
2.1實驗設計 11
2.2受精卵的收集 11
2.3餌料生物的培育 11
2.3.1 培養方法 12
2.4仔稚魚培育 12
2.4.1 餌料生物供給 12
2.4.2 水質檢測 12
2.5魚卵與仔稚魚的觀察 14
2.5.1 胚胎發育觀察 14
2.5.2 仔稚魚發育觀察 14
2.6仔稚魚骨骼發育觀察 14
2.6.1 透明骨骼製作 14
2.6.2 標本拍攝與觀察 15
2.7魚卵和仔魚形態的掃描式電子顯微鏡觀察 15
2.7.1 固定 15
2.7.2 脫水 16
2.7.3 臨界乾燥 16
2.7.4 離子覆膜 16
2.7.5 掃描式電子顯微鏡的觀察 17
2.8 不同溫度和鹽度交互對藍豬齒魚孵化率、畸形率及SAI的影響 17
2.8.1 不同溫度和鹽度交互對孵化率及剛孵化仔魚畸形率的影響 17
2.8.2 不同溫度和鹽度交互對仔魚SAI的影響 17
2.9 統計分析 18
第三章 結果 19
3.1 魚卵的孵化率統計19
3.2 藍豬齒魚胚胎和仔稚魚發育的觀察19
3.2.1 胚胎的發育 19
3.2.2 仔稚魚的發育 20
3.2.3 卵黃囊和油球的消耗觀察 22
3.2.4 仔稚魚發育 23
3.2.5 仔魚口徑發育 23
3.2.6 仔稚魚的行為觀察 24
3.2.7 藍豬齒魚苗的育成率 24
3.3 魚卵和仔稚魚的掃描式電子顯微鏡觀察 24
3.3.1 魚卵微細構造 24
3.3.2 仔魚的微細構造 25
3.4 骨骼發育觀察 26
3.4.1 頭部和口部骨骼 26
3.4.2 脊椎骨 27
3.4.3 鰭部骨骼 27
3.5 不同溫度和鹽度交互對藍豬齒魚孵化率、畸形率及SAI之影響 28
第四章 討論 31
4.1 仔魚初期發育 31
4.1.1 藍豬齒魚的初期發育 31
4.1.2 卵黃囊、油球消耗觀察 32
4.1.3 仔稚魚的成長 33
4.2 魚卵微細構造觀察 33
4.3 仔稚魚微細構造觀察 34
4.3.1 神經丘 34
4.3.2 牙齒 34
4.3.3 鱗片 34
4.4 骨骼發育 35
4.4.1 攝食骨骼發育 35
4.4.2 脊椎骨 35
4.4.3 尾部骨骼發育 36
4.5 不同溫度和鹽度對藍豬齒魚孵化率、畸形率及SAI之影響 36
第五章 結論 39
參考文獻 41
附錄 85
1. 許筱青 (2012) 裂唇魚 (Labroides dimidiatus) 的自然產卵和初期生活史研究。國立東華大學海洋生物多樣性及演化研究所碩士論文。
2. 邱沛盛 (2015) 人工環境中二種不同產卵模式的珊瑚礁魚類自然產卵、初期發育及仔稚魚培育-以飾妝銜蝦虎及鷹金䱵為例。國立東華大學海洋生物研究所碩士論文。
3. 邱沛盛、張仁謀 (2019) 虱目魚仔魚在不同鹽度下的生存活力判定。水試專訊。66(4),14-17.
4. 林聖閎 (2019) 人工環境中梅氏荷包魚(Chaetodontoplus meredithi)的自然產卵及初期生活史之研究。立東華大學海洋生物研究所碩士論文。
5. 呂紹隆 (2019) 人工環境中黃足笛鯛( Lutjanus fulvus)的自然產卵及初期生活史之研究。國立東華大學海洋生物研究所碩士論文。
6. 戴克遠 (2010) 尖翅燕魚 (Platax teira) 的初期發育與微細構造之研究。國立屏東科技大學水產養殖研究所碩士論文。
7. 蘇奕彰 (2010) 眼斑海葵魚初期骨骼發育以及鹽度與餌料對其存活及生長之影響。國立東華大學海洋生物多樣性及演化研究所碩士論文。
8. 沈世傑 (1981).台灣魚類誌 國立台灣大學動物學系印行。12:45-47。
9. 邵廣昭 (2021). 台灣魚類資料庫 網路電子版 version 2021/4。網址: https://fishdb.sinica.edu.tw。
10. 邵廣昭、楊瑞森、陳康青、李源鑫 (2001) 台灣海域魚卵圖鑑。中央研究院,台北。
11. Akatsu, S., Al-Abdul-Elah, K.M., Teng, S.K., 1983. Effects of salinity and water temperature on the survival and growth of brown-spotted grouper larvae (Epinephelus tauvina Serranidae). J. World Maric. Soc. 14, 624–635. https://doi.org/10.1111/j.1749-7345.1983.tb00115.x.
12. Aristazabal, E.O., 2005. Morphological development of the mouth and improvement in feeding ability in the early larval stages of red porgy, Pagruspagrus (L.). Rev. Invest. Dfesarro. Pesq. 17, 43-53.
http://hdl.handle.net/1834/1560.
13. Arratia, G., Schultze, H.-P., Casciotta, J., 2001. Vertebral column and associated elements in dipnoans and comparison with other fishes: development and homology. J. Morphol. 250, 101 – 172. https://10.1002/jmor.1062.
14. Baensch, F., 2016. Exploring aquarium wrasse aquaculture and breeding success with the ornate wrasse. Coral 13, 38–50.
15. Ben-Belhassen, B., Abbassian, A., 2019. Food outlook biannual report on global food markets. FAO. http://www.fao.org/giews/reports/food-outlook/es/.
16. Bellwood, D.R., Hughes, T.P., Folke, C., Nystrom, M., 2004. Confronting the coral reef crisis, Nature. 429, 6994, 827–833. http://10.1038/nature02691.
17. Biota Aquariums, 2019. Biota’s captive-bred red coris wrasse. Reef to rainforest,Website:https://www.reef2rainforest.com/2019/12/30/video-biotas-captive-bred-red-coris-wrasse/
18. Blaxter, J.H.S., Hempel, G., 1963. The Influence of Egg Size on Herring Larvae (Clupea harengus L.). ICES J. Mar. Sci. 28, 211–240. http://doi:10.1093/icesjms/28.2.211.
19. Boglione, C., Gavaia, P., Koumoundouros, G., Gisbert, E., Moren, M., Fontagné, S., Witten, P.E., 2013. Skeletal anomalies in reared European fish larvae and juveniles. Part 1: Normal and anomalous skeletogenic processes. Rev. Aquac. 5, 99–120. https://doi.org/10.1111/raq.12015.
20. Bromage, N., Bruce, M., Basavaraja, N., Rana, K., Shields, R., Young, C., Gamble, J., 1994. Egg quality determinants in finfish the role of overripening with special reference to the timing of stripping in the Atlantic Halibut Hippoglossus hippoglossus. J. World. Aquac. Soc. 25, 13–21. https://doi.org/10.1111/j.1749-7345.1994.tb00799.x.
21. Carton, A.G., 2005. The impact of light intensity and algal-induced turbidity on first-feeding Seriola lalandi larvae. Aquac. Res. 36, 1588–1594. https://doi.org/10.1111/j.1365-2109.2005.01383.x.
22. Çelik, İ., Çelik, P., Cirik, Ş., Gürkan, M., Hayretdağ, S., 2011. Embryonic and larval development of black skirt tetra (Gymnocorymbus ternetzi,Boulenger, 1895) under laboratory conditions. Aquac. Res. 43, 1260–1275. https://doi.org/10.1111/j.1365-2109.2011.02930.x.
23. Chiu, P.-S., Leu, M.-Y., Meng, P.-J., 2019. Year-round natural spawning, early development, and the effects of temperature, salinity and prey density on captive ornate goby Istigobius ornatus (Rüppell, 1830) larval survival. Aquac. Res. https://doi:10.1111/are.13880.
24. Chiu, P.-S., Leu, M.-Y., 2021. Captive spawning, early development and larviculture of the dwarf hawkfish, Cirrhitichthys falco ( Randall, 1963) with experimental evaluation of the effects of temperature, salinity and initial prey on hatching success and first feeding. Aquaculture 542. https://doi.org/10.1016/j.aquaculture.2021.736866.
25. Colin, P.L., 1982. Spawning and larval development of the hogfish ( Lachnolaimus maximus) (Pisces: Labridae). Fish. Bull. 80, 853–862.
26. Colin, P.L., Bell, L.J., 1991. Aspects of the spawning of labrid and scarid fishes (Pisces: Labroidei) at Enewetak Atoll, Marshall Islands with notes on other families. Environ. Biol. Fishes. 31, 229–260. https://doi.org/10.1007/BF00000690.
27. Dee, L.E., Karr, K.A., Landesberg, C.J., Thornhill, D.J., 2019. Assessing vulnerability of fish in the U.S. marine aquarium trade. Front. Mar. Sci. 5, 1-9. https://doi.org/10.3389/fmars.2018.00527.
28. Degidio, J.-M.L.A., Yanong, R.P.E., Ohs, C.L., Watson, C.A., Cassiano, E.J., Barden, K., 2018. First feeding parameters of the milletseed butterflyfish Chaetodon miliaris. Aquac. Res. 49, 1087–1094. https://doi.org/10.1111/are.13558.
29. DeLaurier, A., 2018. Evolution and development of the fish jaw skeleton, Dev. Biol. 8, e337, https://doi:10.1002/wdev.337.
30. Denny, C.M., Schiel, D.R., 2002. Reproductive biology and population structure of the banded wrasse, Notolabrus fucicola (Labridae) around Kaikoura, New Zealand. N. Z. J. Mar. Freshwater Res. 36, 555–563. https://doi.org/10.1080/00288330.2002.9517111.
31. Donoghue, P.C.J., Sansom, I.J., Downs, J.P., 2006. Early evolution of vertebrate skeletal tissues and cellular interactions, and the canalization of skeletal development. J. Exp. Zool. B Mol. Dev. Evol. 306, 278–294. https://doi.org/10.1002/jez.b.21090.
32. Dower, J.F., Miller, T.J., Leggett, W.C., 1997. The role of microscale turbulence in the feeding ecology of larval fish. Adv. Mar. Biol. 31, 211-220. https://doi.org/10.1016/s0065-2881(08)60223-0.
33. Dulčić, J., Kožul, V., Kraljević, M., Skaramuca, B., Glamuzina, B., Re, P., 1999. Embryonic and larval development of the brown wrasse Labrus merula (Pisces: Labridae). J. Mar. Biol. Assoc. U.K. 79, 327-332. https://doi.org/10.1017/S0025315498000368.
34. Ebisawa, A., Kanashiro, K., Kyan, T., Motonaga, F., 1995. Aspects of reproduction and sexuality in the black-spot tuskfish, Choerodon schoenleinii. Japan. J. Ichthyol. 42, 121-130. https://doi.org/10.11369/jji1950.42.121.
35. Estévez, A., Papandroulakis, N., Wille, M., Sorgeloos, P., 2019. Organic aquaculture impacts and future developments. Early life stages and weaning. Organic Aquaculture, Chapter 5. https://doi.org/10.1007/978-3-030-05603-2.
36. FAO, 2014. The state of world fisheries and aquaculture 2014. Rome. http://www.fao.org/3/i3720e/i3720e.
37. FAO, 2012.The State of World Fisheries and Aquaculture 2012. Rome, FAO. http://www.fao.org/3/i2727e/i2727e.
38. Fjelldal, P., Hansen, T., Breck, O., Ørnsrud, R., Lock, E.J., Waagbø, R., Wargelius, A., Witten, P.E., 2012. Vertebral deformities in farmed Atlantic salmon (Salmo salar L.) - etiology and pathology. J. Appl. Ichthyol. 28, 433–440. https://doi.org/10.1111/j.1439-0426.2012.01980.x.
39. Fortier, L., Harries, R.P., 1989. Optimal foraging density-dependent competition in marine fish larvae. Mar. Ecol-Prog. Ser. 51, 19–33. https://doi.org/10.3354/meps051019.
40. Fricke, R., Eschmeyer, W.N., Van der Laan, R., 2020. Eschmeyer's catalog of fishes: genera, specips, referens.
Website:http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.
41. Froehlich, H.E., Gentry, R.R. Halpern, B.S., 2017. Conservation aquaculture: shifting the narrative and paradigm of aquaculture’s role in resource management. Biol. Conserv. 215, 162–168. https://doi.org/10.1016/j.biocon.2017.09.012.
42. Giffard-Mena, I., Hernández-Montiel, Á.H., Pérez-Robles, J. David-True, C., 2020. Effects of salinity on survival and plasma osmolarity of Totoaba macdonaldi eggs, larvae, and juveniles. J. Exp. Mar. Biol. Ecol. 526, 1-7. https://doi.org/10.1016/j.jembe.2020.151339.
43. Govoni, J.J., Boehlert, G.W., Watanabe, Y., 1986. The physiology of digestion in fish larvae. Environ. Biol. Fishes. 16, 59–77. https://doi.org/10.1007/BF00005160.
44. Gracia-López, V., Kiewek-Martı́nez, M., Maldonado-Garcı́a, M., 2004. Effects of temperature and salinity on artificially reproduced eggs and larvae of the leopard grouper Mycteroperca rosacea. Aquaculture 237, 485–498. https://doi.org/10.1016/j.aquaculture.2004.04.018.
45. Groover, E.M., Alo, M.M., Ramee, S.W., Lipscomb, T.N., Degidio, J.-M.L.A., Dimaggio, M.A., 2021. Development of early larviculture protocols for the melanurus wrasse Halichoeres melanurus. Aquaculture, 530, 735682. https://doi.org/10.1016/j.aquaculture.2020.735682.
46. Gwo, H.H., 2008. Morphology of the fertilizable mature egg in the Acanthopagrus latus, A. schlegeli and Sparus sarba (Teleostei: perciformes: sparidae). J. Microsc. 232, 442–452.
https://doi.org/10.1111/j.1365-2818.2008.02139.x.
47. Han, K.H., Lim, S.K., Kim, K.S., Kim, C.W., Yoo, D.J., 2001. Osteological development of the larvae and juveniles of Sebasticus tertius (Barsukov et Chen) in Korea. Korean. J. Ichthyol. 13, 63-68.
48. Hansen, T.K., Falk-Petersen, I.B., 2001. The influence of rearing temperature on early development and growth of spotted wolfish Anarhichas minor (Olafsen). Aquac. Res. 32, 369–378.
https://doi.org/10.1046/j.1365-2109.2001.00567.x.
49. Hart, R.P., Purser, G.J., 1995. Effects of salinity and temperature on eggs and yolk sac larvae of the greenback flounder (Rhombosolea tapirina, Gu¨nter, 1862). Aquaculture 136, 221– 230. https://doi.org/10.1016/0044-8486(95)01061-0.
50. He, T., Xiao, Z.Z., Liu, Q.H., Ma, D.Y., Xu, S.H., Xiao, Y.S., Li, J., 2011. Stages of rock bream oplegnathus fasciatus (Temminck et Schlegel 1844): embryonic development. Aquac. Res. 42, 1764–1777. https://doi.org/10.1111/j.1365-2109.2010.02774.x.
51. Hirai, A., 1988. Fine structures of the micropyles of pelagic eggs of some marine fishes. Japan. J. Ichthyol. 35, 351-357. https://doi.org/10.11369/jji1950.35.351.
52. Hirai, N., Koiso, M., Teruya, K., Kobayashi, M., Takebe, T., Sato, T., Okuzawa, K., Hagiwara, A., 2013. Success of seed production of humphead wrasse Cheilinus undulatus with improvement of spawning induction, feeding, and rearing conditions, Proceedings of the 40th U.S.-Japan Aquaculture Panel Symposium. January, 107–111. https://pdfs.semanticscholar.org/93e5/01ce50fd12a4e80ab5ae14674921a407fb43.pdf#page=113.
53. Houde, E.D., 2001. Fish larvae, Encycl. Ocean. Sci. 928–938, https://doi.org/10.1006/rwos.2001.0026.
54. Houde, E.D., 2008. Emerging from Hjort’s Shadow. J. Northwest. Atl. Fish. Sci.41, 53–70. https://doi.org/10.2960/J.v41.m634.
55. Herbing, I.H.V., Miyake, T., Hall, B.K., Boutilier, R.G., 1996. Ontogeny of feeding and respiration in larval Atlantic cod Gadus morhua (Teleostei, Gadiformes): I. Morphol. J. Morphol. 227, 15-35. https://doi.org/10.1002/(sici)1097-4687(199601)227:1<37::aid-jmor3>3.0.co;2-m.
56. Imsland, A.K.D., Danielsen, M., Jonassen, T.M., Hangstad, T.A., Falk-Petersen, I.B., 2019. Effect of incubation temperature on eggs and larvae of lumpfish (Cyclopterus lumpus). Aquaculture 498, 217–222. https://doi.org/10.1016/j.aquaculture.2018.08.061.
57. Isaac, A.O., Joshua, O.S., Jehu, A., 2017. Behavioural and some physiological assessment of glyphosate and paraquat toxicity to juveniles of African Cat fish, Clarias gariepinus. Pak. J. Zool. 49, 183–190. https://doi.org/10.17582/journal.pjz/2017.49.1.175.181.
58. Jones, D.L., 1993. Description of egg and early larval stages of two laboratory-reared tropical reefs labrids, Bodianus rufus (Linnaeus, 1758) and Thalassoma bifasciatum (Bloch, 1791). M.S. thesis. University of Puerto Rico, Mayagüez Campus.
59. Jones, K.E., Angielczyk, K.D., Polly, P.D., Head, J. J., Fernandez, V., Lungmus, J.K., Tulga, S., Pierce, S.E., 2018. Fossils reveal the complex evolutionary history of the mammalian regionalized spine. Science. 361, 1249–1252 https://doi.org/10.1126/science.aar3126.
60. Kanashiro, K., 1998. Morphology, and changes of distribution and food habits with growth, of late larvae and juveniles of black-spot tuskfish, Choerodon schoenleinii (Labridae), settled on seagrass beds of Okinawa Island, the Ryukyus, Nippon Suisan Gakkaishi 64, 427-434
https://doi.org/10.2331/suisan.64.427.
61. Kang, C.B., Myoung, J.G., Kim, Y.U., Kim, H.C., 2012. Early osteological development and squamation in the spotted sea bass Lateolabrax maculates (Pisces: Lateolabracidae). Korean J Fish Aquat Sci 45, 271-282. https://doi.org/10.5657/KFAS.2012.0271.
62. Kawarazuka, N., Béné, C., 2010. Linking small-scale fisheries and aquaculture to household nutritional security: a review of the literature. Food Secur 2, 343–357. https://doi.org/10.1007/s12571-010-0079-y.
63. Kemp, N.E., 1959. Development of the basement lamella of larval anuran skin. develop. Dev. Biol. 1, 459–476. https://doi.org/10.1016/0012-1606(59)90013-2.
64. Kendall, A.W., Ahlstrom, E.H., Moser, H.G., 1984. Early life history stages of fishes and their characters. In: Ontogeny and Systematics of Fishes. (eds. By Moser, H.G., Richards, W.J., Cohcn, D.M., Fahay, M.P., Kendall, A.W., Richardson, S.L.), pp. 11-23. Amier. Soc. Ichthyol. Herpetol. Spec. Pub. I. Lawrence.
65. Kelly, D.E., 1966. Fine structure of desmosome. Hemidesmosomes and an adepidermal globular ayer in developing newt epidermis. J. Cell. Biol. 28, 51–72. https://doi.org/10.1083/jcb.28.1.51.
66. Kimura, S., Kiriyama, T., 1993. Development of eggs, larvae and juveniles of the labrid fish, Halichoeres poecilopterus, reared in the laboratory, Japan. J. Ichthyol. 39, 371-377. https://10.1007/BF02905137.
67. Kim, Y.U., Han, K.H., Byun, S.K., 1993. The early life history of the rockfish, Sebastes inermis 2. Morphological and skeletal development of larvae and juveniles. Korean. J. Fish. Aquatic. Sci. 26, 465-476.
68. Kinne, O., 1964. The effects of temperature and salinity on marine and brackish water animals. II. Salinity and temperature salinity combinations. Oceanogr. Mar. Biol. 2, 281-339. http://garfield.library.upenn.edu/classics1983/A1983QG77900001.pdf.
69. Klinsukhon, S., 2014.Trading of live reef food fish from the southeast asian region: economic boon or bane? fish for the people, Southeast. Asian. Fish. Dev. Center. 12, 15-19.
70. Koumoundouros, G., Gagliardi, F., Divanach, P., Boglione, C., Cataudella, S., Kentouri, M., 1997a. Normal and abnormal osteological development of caudal fin in Sparus aurata L. fry. Aquaculture 149, 215–226. https://doi.org/10.1016/S0044-8486(96)01443-3.
71. Koumoundouros, G., Oran, G., Divanach, P., Stefanakis, S., Kentouri, M., 1997b. The opercular complex deformity in intensive gilthead sea bream (Sparus aurata L.) larviculture. Aquaculture 156, 165–177.
https://doi.org/10.1016/S0044-8486(97)89294-0.
72. Koumoundouros, G., Divanach, P., Kentouri, M., 2001. Osteological development of Dentex dentex (Osteichthyes: Sparidae): dorsal, anal, paired fins and squamation. Mar. Biol. 138, 399–406. https://doi.org/10.1007/s002270000460.
73. Kožul, V., Glavić, N., Tutman, P., Bolotin, J., Onofri, V., 2011. The spawning, embryonic and early larval development of the green wrasse Labrus viridis (Linnaeus, 1758) (Labridae) in controlled conditions, Anim. Reprod. Sci. 125, 196–203. https://doi.org/10.1016/j.anireprosci.2011.01.013.
74. Kubo, I., 1939. Notes on the development of a teleost, Thalassoma cupido (TEMMINCK & SCHLEGEL). Bull. Japan. Sci. Fish. 8, 165-167. https://doi.org/10.2331/suisan.8.165.
75. Lasker, R., 1975. Field criteria for survival of anchovy larvae - relation between inshore chlorophyll maximum layers and successful 1st feeding. Fish. Bull. 73, 453–462.
76. Last, J. M., 1979. The food of larval turbot Scohpthalmus maximus L. from the west central north sea. ICES J. Mar. Sci. 38, 308–313.
https://doi.org/10.1093/icesjms/38.3.308.
77. Leeson, C.R., Threadgold, L.T., 1961. The differentiation of the epidermis in rana pipien. Cells Tissues Organs 44, 159–173.
https://doi.org/10.1159/000141717.
78. Lee, S.J., Kim, Y.U., Han, K.H., 2001. Ostelogical development of larvae and juveniles of Hyporhampus sajori (Teleostei: Hemiramphidae). Korean J. Ichthyol. 13, 173-180.
79. Lee, C., Sadovy, Y., 1998. A taste for live fish: Hong Kong's live reef fish market, Naga. 21, 38-42.
80. Lenke, R., 1991. The opercular gland of the cleaner-wrasse Labroides dimidiatus (Labridae), a light-, electron and scanning electron microscopic investigation. J. Fish. Biol. 39, 383–392.
https://doi.org/10.1111/j.1095-8649.1991.tb04370.x.
81. Leu, M.-Y., Chen, I.H., Fang, L.-S., 2003. Natural spawning and rearing of mangrove red snapper, Lutjanus Agentimaculatus, larvae in captivity. Isr. J. Aquac. 55, 22-30.
https://doi.org/10.46989/001c.20332.
82. Leu, M.-Y., Liou, C.- H., Wang, W.- H., Yang, S.-D., Meng, P.-J., 2009. Natural spawning early development and first feeding of the semicircle angelfish [ Pomacanthus semicirculatus (Cuvier, 1831)] in captivity. Aquac. Res. 40, 1019-1030. https://doi.org/10.1111/j.1365-2109.2009.02192.x.
83. Li, Y.H., Wu, C.C., Yang, J.S., 2000. Comparative ultrastructural studies of the zona radiata of marine fish eggs in three genera in Perciformes. J. Fish. Biol. 56, 615–621.
https://doi.org/10.1111/j.1095-8649.2000.tb00759.x.
84. Li, W., Ai, Q., Mai, K., Xu, W., Luo, Y., Zhang, Y., 2013. Effects of dietary amino acid patterns on growth and protein metabolism of large yellow croaker (Larimichthys crocea) larvae. Aquaculture 406-407, 1–8.
https://doi.org/10.1016/j.aquaculture.2013.04.029.
85. Lim, C.E., Webster, C.D., 2006. Nutrient requirements. In: Tilapia: biology, culture and nutrition. Food Products Press, New York.
86. Lönning, S., 1972. Comparative electron microscopic studies of teleostean eggs with special reference to the chorion. Sarsia (Bergen, Trykt utg.), 49, 41–48. https://doi.org/10.1080/00364827.1972.10411206.
87. Long, J.H., Hale, M.E., McHenry, M.J., Westneat, M. W., 1996. Functions of fish skin: flexural stiffness and steady swimming of Longnose gar Lepisosteus osseus. J. Exp. Biol. 199, 2139–2151.
https://doi.org/10.1242/jeb.199.10.2139.
88. Long, J.H., Adcock, B., Root, R.G., 2002. Force transmission via axial tendons in undulating fish: a dynamic analysis. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 133, 911–929.
https://doi.org/10.1016/S1095-6433(02)00211-8.
89. Long, J.H., Koob, T.J., Irving, K., Combie, K., Engel, V., Livingston, N., Lammert, A., Schumacher, J., 2006. Biomimetic evolutionary analysis: testing the adaptive value of vertebrate tail stiffness in autonomous swimming robots. J. Exp. Biol. 209, 4732–4746.
https://doi.org/10.1242/jeb.02559.
90. Matsuo, Y., Kasahara, Y., Hagiwara, A., Sakakura, Y., Arakawa, T., 2006. Evaluation of larval quality of viviparous scorpionfish Sebastiscus marmoratus. Fish. Sci. 72, 948–954.
https://doi:10.1111/j.1444-2906.2006.01242.x.
91. McCarthy, I.D., Jones, N.J.E., Moore, D.M., Berlinsky, D.L., 2019. Determining the optimum temperature and salinity for larval culture, and describing a culture protocol for the conservation aquaculture for European smelt Osmerus eperlanus. J. Appl. Ichthyol. 36, 113-120.
https://doi.org/10.1111/jai.13992.
92. McGovern, J.C., Olney, J.E., 1996. Factors affecting survival of early life stages and subsequent recruitment of striped bass on the Pamunkey River, Virginia. Can. J. Fish. Aquat. Sci. 53, 1713–1726. https://doi.org/10.1139/f96-100.
93. Miller, S.B., Kendall, A.W., 2009. Early life history of marine fishesh. Published by: University of California Press.
https://doi.org/10.1525/california/9780520249721.001.0001.
94. Montalvo, A.J., Callan, C.K., 2016. The Oceanic Institute of Hawaii Pacific University, Waimanalo, HI; Judy St. Leger, Sea World Parks and Entertainment, San Diego, CA,
95. Mukai, Y., Chai, L.L., Shaleh, S.R.M., Senoo, S., 2007. Structure and Development of Free Neuromasts in Barramundi, Lates calcarifer (Block). Zool. Sci. 24, 829–835. https://doi.org/10.2108/zsj.24.829.
96. Mukai, Y., 2006. Role of free neuromasts in larval feeding of willow shiner Gnathopogon elongates caerulescens, Teletosei, Cyprinidae. Fish. Sci. 72, 709-705. https://doi.org/10.1111/j.1444-2906.2006.01207.x.
97. Munday, P.L., White, J.W., Warner, R.R., 2006. A social basis for the development of primary males in a sex-changing fish. Proc. Royal Soc. B. 273, 2845–2851. https://doi.org/10.1098/rspb.2006.3666
98. Munk, P., 1997. Prey size spectra and prey availability of larval and small juvenile cod. J. Fish Biol. 51, 340–351.
https://doi.org/10.1111/j.1095-8649.1997.tb06107.x.
99. Myoung, J.G., Mun, J.H., Kim, J.K., Park, K.D., Kang, C.B., Kim, Y.U., Park, J.T., 2001. Osteological development of larvae and juveniles of Korean mandarin fish, Siniperca scherzeri (Perciformes, Centropomidae). Korean J Ichthyol, 13, 129-135.
100. Myers, R.A., Barrowman, N.J., 1996. Is fish recruitment related to spawner abundance? Fish. Bull. 94, 707–724.
101. Nadol, J.B., Gibbins, J.R., Porter, K.R., 1969. A reinterpretation of the structure and development of the basement lamella: An ordered array of collagen in fish skin. Dev. Biol. 20, 304-331.
https://doi.org/10.1016/0012-1606(69)90017-7.
102. Nagano, N., Hozawa, A., Fujiki, W., Yamada, T., Miyaki, K., Sakakura, Y., Hagiwara, A., 2007. Skeletal development and deformities in cultured larval and juvenile seven-band grouper, Epinephelus septemfasciatus (Thunberg), Aquac. Res. 38, 121-130.
https://doi.org/10.1111/j.1365-2109.2006.01627.x.
103. Nakazono, A., Kusen, J.D., 1991. Protogynous hermaphroditism in the wrasse Choerodon azurio, Nippon Suisan Gakkaishi 57, 417-420.
https://doi.org/10.2331/suisan.57.417.
104. Nelson, J., Grande, T., Wilson, M.V.H., 2016. Fishes of the world. Fifth Edition. In Fishes of the World: Fifth Edition. https://doi.org/10.1002/9781119174844.
105. Olivotto, I., Zenobi, A., Rollo, A., Migliarini, B., Avella, M., Carnevali, O., 2005. Breeding, rearing and feeding studies in the cleaner goby Gobiosoma evelynae. Aquaculture, 250, 175–182.
https://doi:10.1016/j.aquaculture.2005.02.
106. Olivotto, I., Holt, S.A., Carnevali, O., Holt, G.J., 2006. Spawning, early development, and first feeding in the lemonpeel angelfish Centropyge flavissimus. Aquaculture 253, 270–278.
https://doi:10.1016/j.aquaculture.2004.12.
107. Olivotto, I., Leu, M.-Y., Blázquez, M., 2017. Life cycles in marine ornamental species - fishes as a case study, Marine Ornamental Species Aquaculture, Chapter 3. https://doi.org/10.1002/9781119169147.ch3.
108. Ottesen, O.H., Dunaevskaya, E., D’Arcy, J., 2012. Development of Labrus bergylta (Ascanius 1767) larvae from hatching to metamorphosis. J. Aquac. Res. Dev. 3, 127. https://doi.org/10.4172/2155-9546.1000127.
109. Park, J.M., Cho, J.K., Han, K.H., Kim, N.R., Hwang, H.K., Kim, K.M., Myeong, J, I., Son, M, H., 2014. Early life history of the sevenband grouper, Epinephelus septemfasciatus from Korea. Dev. Reprod. 18, 13-23.
https://doi.org/10.12717/DR.2014.18.1.013
110. Park, J.Y., Hong, C.G., Cho, J.K., Son, M.H., Han, K.H., Park, J.M., 2015. Early osteological development of the larvae and juveniles in sevenband grouper, Epinephelus septemfasciatus (Pisces: Serranidae). Korean. J. Ichthyol. 27, 189-198.
111. Park, J.Y., Han, K.H., Cho, J.K., Myeong, J.I., Park, J.M., 2016. Early osteological development of larvae and juveniles in red spotted grouper, Epinephelus akaara (Pisces: Serranidae). Dev. Reprod. 20, 87–101. https://doi.org/10.12717/dr.2016.20.2.087.
112. Pauly, D., Pullin, R.S.V., 1988. Hatching time in spherical, pelagic, marine fish eggs in response to temperature and egg size. Environ. Biol. Fisches. 22, 261– 271. https://doi.org/10.1007/BF00004892.
113. Perry, D.M., Mercaldo-Allen, R., Kuropat, C.A., Hughes, J.B., 1998. Laboratory culture of tautog. N. Am. J. Aquac. 60, 50–54.
https://doi.org/10.1577/1548-8640(1998)060<0050:LCOT>2.0.CO;2.
114. Perry, D.M., Mercaldo-Allen, R., Burgh, S., 2001. Growth and culture of larval and juvenile tautogs in a closed recirculating-seawater system. N. Am. J. Aquac. 63, 300–305.
https://doi.org/10.1577/1548-8454(2001)063<0300:GACOLA>2.0.CO;2
115. Peskin, B., Henke, K., Cumplido, N., Treaster, S., Harris, M.P., Bagnat, M., Arratia, G., 2020. Notochordal signals establish phylogenetic identity of the teleost spine. Curr. Biol. https://doi.org/10.1016/j.cub.2020.05.037.
116. Quignard, J., 1967. Le nid, l’oeuf et la larve de Symphodus (Crenilabrus) mediterraneus (LINNÉ, 1758). Rev. Trav. Fnst. Peches. Marit. 31, 355–358.
117. Randall, J.E., Ida, H., Kato, H.K., Pyle, R.R., Earle, J.L., 1997. Annotated checklist of the inshore fishes of the Ogasawara Islands. Natl. Sci. Mus. Monogr. 11, 1–74.
118. Reinboth, R., 1962. Morphologische und funktionelle zweigeschlechtlichkeit bei marinen teleostiern (Serranidae, Sparidae, Centracanthidae, Labridae). Zool. J. Physiol. 69, 405–480.
119. Rhyne, A., Tlusty, M., Szczebak, J., Holmberg, R., 2019.
Aquariumtradedata.org. https://www.aquariumtradedata.org/.
120. Riehl, R., Ekau, W., 1990. Identification of atarctic fish eggs by surface structure as shown by the eggs of Trematomus eulepidotus (Teleostei: Nototheniidae), Polar Biol. 11, 27-31. https://doi.org/10.1007/bf00236518
121. Roff, D., 1999. Phenotypic Evolution — A reaction norm perspective. Heredity 82, 344–344. https://doi.org/10.1038/sj.hdy.6885352.
122. Sadovy, Y. Cornish, A.S., 2000. Reef fishes of Hong Kong. Hong Kong University Press, Hong Kong.
123. Sadovy, D.M.Y., Tam, I., Muldoon, G., le Clue, S., Botsford, E., Shea, S., 2017. The trade in live reef food fish – going, going, gone. Volume 1: main report. Parts I, II & III, pp. 1-288. ADM Capital Foundation and The University of Hong Kong.
124. Sadovy, D.M.Y., 2019. The live reef food ish trade; undervalued, overfished and opportunities for change. International Coral Reef Initiative, Overfished and Opportunities. 23p.
125. Salpeter, M.M., Singer, M., 1959. The fine structure of the adepidermal reticulum in the basal membrane of the skin of the newt, triturus. J.Biophys.and Biochem. Cytol. 6, 35–40. https://doi.org/10.1083/jcb.6.1.35.
126. Sato, T., Kobayashi, M., Takebe, T., Hirai, N., Okuzawa, K., Sawaguchi, S., Matsubara, T., Yamaguchi, T., Shinoda, R,. Koiso, M,. Teruya, K., 2018. Induction of female-to-male sex change in a large protogynous fish, Choerodon schoenleinii. Mar. Ecol. 39, 1-8. https://doi.org/10.1111/maec.12484.
127. Scheffer, M., Carpenter, S., Young, B.d., 2005. Cascading effects of over-fishing marine systems, Trends. Ecol. Evol. 20, 579–581.
https://doi.org/10.1016/j.tree.2005.08.018.
128. Sfakianakis, D.G., Doxa, C.K., Kouttouki, S., Koumoundouros, G., Maingot, E., Divanach, P., Kentouri, M., 2005. Osteological development of the vertebral column and of the fins in Diplodus puntazzo (Cetti, 1777). Aquaculture, 250, 36-46. https://doi.org/10.1016/j.aquaculture.2005.03.042.
129. Sham, J.C.H., 1997. Destructive fishing—an action plan to tackle the issue. p. 98-104. In Proc. First Int. Symp. Mar. Cons. Hong Kong. Hong Kong Marine Conservation Society.
130. Shepherd, S.A., Clarkson, P.S., 2001. Diet, feeding behaviour, activity and predation of the temperate blue-throated wrasse, Notolabrus tetricus. Mar. Freshw. Res. 52, 311-322. https://doi.org/10.1071/MF99040.
131. Shimma, H., Tsujigado, A., 1981. Some biochemical quality of bred scorpion fish, Sebastiscus marmoratus, and activities of their larvae. Bull. Natl. Res. Inst. Aquaculture, 2, 11-20.
132. Shimizu, S., Endo, S., Sasaki, M., Murase, A., Msuko, M., Miyazawa, M., Sunobe, T., 2016. Masting system and group spawning in the wrasse Pteragogus aurigarius in tatayama, central japan. Coastal Ecosystems 3, 38-49.
133. Shirota, A., 1970. Studies on the mouth size of fish larvae. Nippon Suisan Gakkaishi 36, 353–368. https://doi.org/10.2331/suisan.36.353.
134. Song, J., Parenti, L.R., 1995. Clearing and staining whole fish specimens for simultaneous demonstration of bone, cartilage, and nerves. Copeia 1, 114-118 h
https://doi.org/10.2307/1446805.
135. Sparta, A., 1931. Contributo alla conoscenza di uova e larve nei Labridi. In: Uova e larve di Crenilabrus ocellatus Forsk, Raporto Comitato Talassografico Italiano, Venezia, pp. 1–6.
136. Stotz, W., 2000. When aquaculture restores and replaces an overfished stock:Is the conservation of the species assured? The case of the scallop Argopecten purpuratus in Northern Chile, Aquac. Int. 8, 237-247.
https://doi.org/10.1023/A:1009215119051.
137. Su, M., Duan, Z., Shi, H., Zhang, J., 2019. The effects of salinity on reproductive development and egg and larvae survival in the spotted scat Scatophagus argus under controlled conditions, Aquac. Res. 50, 1782-1794. https://doi.org/10.1111/are.14056.
138. Suzuki, K., Hioki, S., Kobayashi, K., Tanaka, Y., 1981. Developing eggs and early larvae of the Wrasses, Cirrhilabrus temminckii and Labroides dimidiatus, with a note on their spawning behaviors. J. Fac. Mar. Sci. Technol., Tokai Univ. 14, 369–377.
139. Suzuki, Y. Nijhout, F., 2006. Evolution of a polyphenism by genetic accommodation. Science 311, 650–652.
https://doi.org/10.1126/science.1118888.
140. Teh, L.S.L., Teh, L.C.L., Sumaila, U.R., 2013. A global estimate of the number of coral reef fishers. PLoS One. 8, e65397.
https://doi.org/10.1371/journal.pone.0065397.
141. Thorsem, D.H., Westnest, M.W., 2005. Diversity of pectoral fin structure and function in fishes with labriform propulsion. Int. J. Morphol. 263, 133-150. https://doi.org/10.1002/jmor.10173.
142. Vernerey, F.J., Barthelat, F., 2010. On the mechanics of fishscale structures. Int. J. Solids. Struct. 47, 2268–2275.
https://doi.org/10.1016/j.ijsolstr.2010.04.018.
143. Victor, B. C., 1986. Duration of the planktonic larval stage of one hundred species of Pacific and Atlantic wrasses (family Labridae). Mar. Biol. 90, 317–326. https://doi.org/10.1007/BF00428555.
144. Wang, W., Wang, A., Chen, L., Liu, Y., Sun, R., 2002. Effects of pH on Survival, Phosphorus Concentration, Adenylate Energy Charge and Na+-K+ ATPase Activities of Penaeus chinensis Osbeck Juveniles, Aquat. Toxicol. 60, 75-83. https://doi.org/10.1016/S0166-445X(01)00271-5.
145. Warner, R.R. Robertson, D.R., 1978. Sexual patterns in the labroid fishes of the western Caribbean, I: the Wrasses (Labridae). Contrib. Zoo. 254, 1–27. https://doi.org/10.5479/si.00810282.254.
146. Warner, R, R. Hoffman, S.G., 1980a. Local population size as a determinant of mating system and sexual composition in two tropical marine fishes (Thalassoma spp.). Evolution 34, 508–518. https://doi.org/10.2307/2408220.
147. Wainwright, P.C., Bellwood, D.R., 2002. Ecomorphology of feeding in coral reef fishes. In Coral Reef Fishes (P. F. Sale ed.), Academic Press, San Diego. https://doi.org/10.1016/B978-012615185-5/50004-9.
148. Watanabe, K., Tachibana, T., 1973. Transmission and scanning electron microscopic study of adepidermal granules of teleosts and amphibia. Z. Zellforsch. 142, 163-170. https://doi.org/10.1007/BF00307030.
149. Webb, J.F., Shirey, J.E., 2003. Postembryonic development of the cranial lateral line canals and neuromasts in zebrafish. Dev. Dyn. 228, 370–385. https://doi.org/10.1002/dvdy.10385.
150. Wittenrich, M.L., Rhody, N.R., Turingan, R.G. Main, K.L., 2009. Coupling osteological development of the feeding apparatus with feeding performance in common snook, Centropomus undecimalis, larvae: Identifying morphological constraints to feeding. Aquaculture 294, 221-227.
https://doi.org/10.1016/j.aquaculture.2009.06.006.
151. Wittenrich, M.L., Turingan, R.G., Creswell, R.L., 2007. Spawning, early development and first feeding the gobiid fish Priolepis nocturna. Aquaculture 270, 132-141. https://doi.org/10.1016/j.aquaculture.2007.03.025.
152. Yúfera, M., Darias, M.J., 2007. The onset of exogenous feeding in marine fish larvae. Aquaculture 268, 53–63.
https://doi.org/10.1016/j.aquaculture.2007.04.050.
153. Yun, S.M., Park, J.M., Han, K.H., 2020. Osteological development of the larvae and juvenile of Luciogobius grandis (Pisces: Gobiidae), Development & Reproduction 24, 125-133. https://doi.org/10.12717/DR.2020.24.2.125.
(此全文20251025後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *