帳號:guest(3.129.71.64)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳彥榕
作者(英文):Yan-Rung Chen
論文名稱:探討持久性有機汙染物在恆春半島沿海海參之生物累積
論文名稱(英文):Bioaccumulation of persistent organic pollutants in sea cucumbers along the coast of Hengchun Peninsula
指導教授:柯風溪
指導教授(英文):Fung-Chi Ko
口試委員:柯風溪
陳德豪
謝季吟
口試委員(英文):Fung-Chi Ko
Te-Hao Chen
Chi-Ying Hsieh
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610863006
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:103
關鍵詞:持久性有機汙染物海參生物累積指標生物
關鍵詞(英文):persistent organic pollutantssea cucumbersbioaccumulationbiological indicator
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
由苯環所構成的持久性有機汙染物(Persistent organic pollutants, POPs)化合物結構穩定,在環境中難以被分解及去除,進入生物體內易形成累積作用而影響其生理健康。由於POPs具有親脂特性,在海洋環境中傾向吸附於有機顆粒並隨之遷移,最終沉降在海底沉積物中。底棲無脊椎動物中:海參,攝食方式以濾食水中有機顆粒為主,來源包括水中懸浮顆粒(suspended particles)及湧起沉積物之顆粒(resuspended sediment particles),因此POPs可能隨著有機顆粒一同進入海參體內累積。過去對於POPs在海參體內之生物累積研究十分稀少,本研究探討POPs (多環芳香烴、多氯聯苯、有機氯農藥與多溴聯苯醚)在恆春半島沿海的四種海參(黑海參、蕩皮參、斑錨參、黑刺星海參) 體壁及消化道之生物累積,比較其個體大小、生長環境及攝食方式對POPs累積之差異,並探討海參成為POPs的環境汙染指標生物之可行性。分析結果顯示海參中的POPs累積濃度依序為蕩皮參 > 黑刺星海參 > 斑錨參 > 黑海參,但在同種海參間在大小及棲息環境上,其POPs累積差異上並不明顯,共同特點為其消化道濃度皆高於體壁。多環芳香烴(PAHs)在海參體內濃度為11-51ng/g dw,多氯聯苯及有機氯農藥在恆春半島水中及底泥的為濃度較低,導致其累積在海參體內濃度偏低,多氯聯苯在海參體內濃度為ND-0.0183ng/g dw,而有機氯農藥為ND-0.0079ng/g dw。多溴聯苯醚在海參體內濃度在1-109ng/g dw,以十溴的PBDE209為主。主成分分析顯示黑海參及蕩皮參體內PAHs組成與沉積物PAHs組成相近,因攝食方式以濾食沉積物中的有機物質為主;而斑錨參及黑刺星海參濾食水中的有機物質,故其PAHs汙染物組成則是與水中顆粒相近。本研究中四種海參在PAHs BSAF比值都沒有超過1,在PBDE BSAF上僅有蕩皮參的比值超出1,顯示黑海參、斑錨參及黑刺星海參在蓄積POPs的能力較差,而蕩皮參在累積PBDEs具有良好的累積能力,但與其他底棲生物比較下BSAF較低。由BSAF評估海參在累積POPs能力較弱,在非重汙染程度之地區難以敏銳監測出環境汙染程度的變化,較不適合成為POPs沿海環境監控的指標生物。
Persistent organic pollutants (POPs) composed of benzene rings are difficult to be decomposed and removed once they enter the environment due to their stable compound structure, and they enter the organism to form a cumulative effect and affect their physiological health. POPs have lipophilic properties and tend to adsorb to organic particles, causing particles to be adsorbed in suspended particles in the ocean and move with them and eventually settle in the sediments. The benthic invertebrate such as sea cucumbers feed mainly by filtering aquatic particles including suspended particles and resuspended sediments. Therefore, POPs may accumulate in the sea cucumber along with the organic particles. However, there are few studies on the bioaccumulation of POPs in sea cucumbers in the past. This study discusses the POPs, including PAHs, PCBs, PBDEs, OCPs, accumulated in the body wall and digestive tract in four spsecies of sea cucumbers (Holothuria atra, Holothuria leucospilota, Synapta maculata , Holothuria cinerascens) on the coast of Hengchun Peninsula. The differences of POP bioaccumulation in the sea cucumbers may caused by their individual size, growth habitate, and feeding behavior. The feasibility of sea cucumbers becoming an indicator organism of POPs environmental pollution is discussed in this study. The concentration of POPs in sea cucumbers is in the order of Holothuria leucospilota>Holothuria cinerascens> Synapta maculata> Holothuria atra. The POP levels among the same species of sea cucumbers is not significantly different, in terms of size and habitat variation. Thus, this study indicated that the POP concentration in the digestive tract is higher than the muscle wall. The concentration of PCBs and OCPs in the seawater and sediments of the Hengchun Peninsula is relatively low, resulting in low concentrations of PCBs and OCPs accumulated in the sea cucumbers. Principal component analysis shows that the composition of PAHs in Holothuria atra and Holothuria leucospilota is similar to the composition of PAHs in sediments, because the feeding method is mainly to filter organic substances in the sediments, In addition, Synapta maculate and Holothuria cinerascens filter suspended particles in the sea, so the composition of PAHs particles is similar to that of water particles. In this study, most BSAF values of sea cucumbers do not exceed 1 incidating that the sea cucumber may be less suitable to be an indicator organism for POP dialogue environment monitoring.
摘要 III
Abstract V
目錄 VII
表目錄 IX
圖目錄 XI
第一章、前言 1
1.1研究緣起 1
1.2研究目的 2
第二章、文獻回顧 3
2.1持久性有機汙染物 3
2.2多環芳香烴 4
2.3多氯聯苯 7
2.4多溴聯苯醚 8
2.5有機氯農藥 9
2.6有機顆粒 10
2.7海參 11
2.8指標生物 12
第三章、材料方法 13
3.1材料與儀器 13
3.1.1材料 13
3.1.2儀器 17
3.2試藥及器材前處理 18
3.3採樣以及樣品前處理 20
3.3.1採樣 20
3.3.2生物樣品前處理 23
3.4樣品處理及分析流程 24
3.4.1生物及環境樣品分析流程 24
3.4.2索式萃取(Soxhlet extraction) 24
3.4.3脂肪含量測定 25
3.4.4液液萃取法 (liquid-liquid extraction) 25
3.4.5氧化鋁管柱淨化 25
3.4.6中性矽膠淨化 26
3.4.7環境中顆粒性有機碳含量分析 27
3.5儀器分析 28
3.6定量方法 29
3.7品保及品管 (QC/QA) 30
3.7.1添加擬似標準品 30
3.7.2標準查核樣品分析 (Spike recoveries) 30
3.8實驗空白組分析 (Blank analysis) 31
3.9方法偵測極限 (Method detection limit, MDL) 31
3.10生物沉積物累積因子 (Biota Sediment Accumulation Factor) 32
3.11資料處理及統計分析 33
第四章、結果與討論 35
4.1恆春半島沿海海參之POPs含量分析 35
4.1.1不同測站海參平均濃度比較 35
4.1.2個體大小POPs濃度比較 42
4.1.3體壁與消化道的POPs濃度比較 42
4.1.4攝食方式比較 47
4.2恆春半島沿海海參PAHs濃度與環境因子線性迴歸分析 50
4.3恆春半島沿海海參與環境中POPs組成分析 50
4.4海參POPs濃度與環境的生物沉積物累積因子分析 51
第五章、結論 59
參考文獻 61
附錄 67

趙世民, 1998. 台灣礁岩海岸的海參. 自然科學博物館.
趙世民, 2005. 墾丁國家公園海域底棲無脊椎動物之變遷--以棘皮動物為例.
Akkanen, J., Kukkonen, J.V., 2003. Measuring the bioavailability of two hydrophobic organic compounds in the presence of dissolved organic matter. Environmental Toxicology and Chemistry: An International Journal 22, 518-524.
Akkanen, J., Tuikka, A., Kukkonen, J.V.K., 2012. On the borderline of dissolved and particulate organic matter: Partitioning and bioavailability of polycyclic aromatic hydrocarbons. Ecotoxicology and Environmental Safety 78, 91-98.
Alaee, M., Arias, P., Sjödin, A., Bergman, Å., 2003. An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environment international 29, 683-689.
Ankley, G.T., Cook, P.M., Carlson, A.R., Call, D.J., Swenson, J.A., Corcoran, H.F., Hoke, R.A., 1992. Bioaccumulation of PCBs from sediments by oligochaetes and fishes: comparison of laboratory and field studies. Canadian Journal of Fisheries and Aquatic Sciences 49, 2080-2085.
Bejarano, A.C., Widenfalk, A., Decho, A.W., Chandler, G.T., 2003. Bioavailability of the organophosphorous insecticide chlorpyrifos to the suspension‐feeding bivalve, Mercenaria mercenaria, following exposure to dissolved and particulate matter. Environmental Toxicology and Chemistry: An International Journal 22, 2100-2105.
Bodin, N., Ka, R.G., Le Loc’h, F., Raffray, J., Budzinski, H., Peluhet, L., de Morais, L.T., 2011. Are exploited mangrove molluscs exposed to persistent organic pollutant contamination in Senegal, West Africa? Chemosphere 84, 318-327.
Bouloubassi, I., Méjanelle, L., Pete, R., Fillaux, J., Lorre, A., Point, V., 2006. PAH transport by sinking particles in the open Mediterranean Sea: A 1 year sediment trap study. Marine Pollution Bulletin 52, 560-571.
Breivik, K., Sweetman, A., Pacyna, J.M., Jones, K.C., 2002. Towards a global historical emission inventory for selected PCB congeners — a mass balance approach: 1. Global production and consumption. Science of The Total Environment 290, 181-198.
Carvalho, F.P., Villeneuve, J.-P., Cattini, C., Rendón, J., de Oliveira, J.M., 2009. Pesticide and PCB residues in the aquatic ecosystems of Laguna de Terminos, a protected area of the coast of Campeche, Mexico. Chemosphere 74, 988-995.
Cavalieri, E., Rogan, E., 1985. Role of radical cations in aromatic hydrocarbon carcinogenesis. Environ Health Perspect 64, 69-84.
Cheng, J.-O., Chu, C.-H., Ko, F.-C., 2018. Concentrations of polycyclic aromatic hydrocarbons in tidal benthos and sediments of Nanwan Bay, Taiwan. Platax 2018, 45-54.
Conand, C., 1996. Asexual reproduction by fission in Holothuria atra: variability of some parameters in populations from the tropical Indo-Pacific. Oceanologica acta 19, 209-216.
Conand, C., 2004. Present status of world sea cucumber resources and utilization: an international overview. Advances in sea cucumber aquaculture and management, 13-23.
Conand, C., Byrne, M., 1995. A review of recent developments in the world sea cucumber fisheries. Oceanographic Literature Review 7, 570.
Daley, J.M., Paterson, G., Drouillard, K.G., 2014. Bioamplification as a bioaccumulation mechanism for persistent organic pollutants (POPs) in wildlife. Reviews of Environmental Contamination and Toxicology, Volume 227, 107-155.
Debruyn, A.M., Meloche, L.M., Lowe, C.J., 2009. Patterns of bioaccumulation of polybrominated diphenyl ether and polychlorinated biphenyl congeners in marine mussels. Environmental science & technology 43, 3700-3704.
Dinn, P.M., Johannessen, S.C., Ross, P.S., Macdonald, R.W., Whiticar, M.J., Lowe, C.J., van Roodselaar, A., 2012. PBDE and PCB accumulation in benthos near marine wastewater outfalls: the role of sediment organic carbon. Environmental pollution 171, 241-248.
Dyke, P.H., Foan, C., Fiedler, H., 2003. PCB and PAH releases from power stations and waste incineration processes in the UK. Chemosphere 50, 469-480.
Firth, D., O'Neill, B., Salie, K., Hoffman, L., 2019. Monitoring of organic pollutants in Choromytilus meridionalis and Mytilus galloprovincialis from aquaculture facilities in Saldanha Bay, South Africa. Marine Pollution Bulletin 149, 110637.
Gebbink, W.A., Sonne, C., Dietz, R., Kirkegaard, M., Born, E.W., Muir, D.C., Letcher, R.J., 2008. Target tissue selectivity and burdens of diverse classes of brominated and chlorinated contaminants in polar bears (Ursus maritimus) from East Greenland. Environmental science & technology 42, 752-759.
Grice, B.A., Nelson, R.G., Williams, D.E., Knowler, W.C., Mason, C., Hanson, R.L., Bullard, K.M., Pavkov, M.E., 2017. Associations between persistent organic pollutants, type 2 diabetes, diabetic nephropathy and mortality. Occupational and environmental medicine 74, 521-527.
Gustafsson, Ö., Gschwend, P.M., Buesseler, K.O., 1997. Settling removal rates of PCBs into the northwestern Atlantic derived from 238U− 234Th disequilibria. Environmental science & technology 31, 3544-3550.
Han, Q., Keesing, J.K., Liu, D., 2016. A review of sea cucumber aquaculture, ranching, and stock enhancement in China. Reviews in Fisheries Science & Aquaculture 24, 326-341.
Hickman, C.P., Roberts, L.S., Larson, A., l’Anson, H., Eisenhour, D.J., 2006. Integrated Principles of Zoology. 13th edn. McGraw-Hill, New York, NY, USA.
Hopcroft, R.R., Ward, D.B., Roff, J.C., 1985. The relative significance of body surface and cloacal respiration in Psolus fabricii (Holothuroidea: Dendrochirotida). Canadian journal of zoology 63, 2878-2881.
Hylland, K., 2006. Polycyclic Aromatic Hydrocarbon (PAH) Ecotoxicology in Marine Ecosystems. Journal of Toxicology and Environmental Health, Part A 69, 109-123.
IARC, 1991. Some Organochlorine Pesticides. IARC Monogr Eval Carcinog Risk Hum 5 (1974).
James, D., 2001. Twenty sea cucumbers from seas around India. Naga, The ICLARM Quarterly (Vol. 24, Nos. 1 & 2) January-June 2001.
Jones, K.C., de Voogt, P., 1999. Persistent organic pollutants (POPs): state of the science. Environmental Pollution 100, 209-221.
Keith, L., Telliard, W., 1979. ES&T special report: priority pollutants: Ia perspective view. Environmental science & technology 13, 416-423.
Kelly, B.C., Ikonomou, M.G., Blair, J.D., Morin, A.E., Gobas, F.A., 2007. Food web–specific biomagnification of persistent organic pollutants. science 317, 236-239.
Khazaali, A., Kunzmann, A., Bastami Kazem, D., Baniamam, M., 2016. Baseline of polycyclic aromatic hydrocarbons in the surface sediment and sea cucumbers (Holothuria leucospilota and Stichopus hermanni) in the northern parts of Persian Gulf. Marine Pollution Bulletin 110, 539-545.
Kitano, M., 2003. Effects of deposit feeder Stichopus japonicus on algal flourish and organic matter contents on bottom of enclosed sea. Mar. Poll. Bull. EMECS 2001.
Ko, F.-C., Chang, C.-W., Cheng, J.-O., 2014. Comparative study of polycyclic aromatic hydrocarbons in coral tissues and the ambient sediments from Kenting National Park, Taiwan. Environmental Pollution 185, 35-43.
Kolasinski, J., Taddei, D., Cuet, P., Frouin, P., 2010. AChE and EROD activities in two echinoderms, Holothuria leucospilota and Holoturia atra (Holothuroidea), in a coral reef (Reunion Island, South-western Indian Ocean). Journal of Environmental Science and Health, Part A 45, 699-708.
Krasnobaev, A., Ten Dam, G., Boerrigter-Eenling, R., Peng, F., van Leeuwen, S.P.J., Morley, S.A., Peck, L.S., van den Brink, N.W., 2020. Legacy and Emerging Persistent Organic Pollutants in Antarctic Benthic Invertebrates near Rothera Point, Western Antarctic Peninsula. Environ Sci Technol 54, 2763-2771.
Kwong, K.W., Ng, K.L., Lam, C.-C., Wang, Y.Y., Wong, W., 2013. Authentic human basic fibroblast growth factor produced by secretion in Bacillus subtilis. Applied microbiology and biotechnology 97, 6803-6811.
La Guardia, M.J., Hale, R.C., Harvey, E., 2006. Detailed polybrominated diphenyl ether (PBDE) congener composition of the widely used penta-, octa-, and deca-PBDE technical flame-retardant mixtures. Environmental science & technology 40, 6247-6254.
Lawson, M.C., Cullen, J.A., Nunnally, C.C., Rowe, G.T., Hala, D.N., 2021. PAH and PCB body-burdens in epibenthic deep-sea invertebrates from the northern Gulf of Mexico. Marine Pollution Bulletin 162, 111825.
Letcher, R.J., Bustnes, J.O., Dietz, R., Jenssen, B.M., Jørgensen, E.H., Sonne, C., Verreault, J., Vijayan, M.M., Gabrielsen, G.W., 2010. Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Science of the Total Environment 408, 2995-3043.
Li, Y., Lin, T., Chen, Y., Hu, L., Guo, Z., Zhang, G., 2012. Polybrominated diphenyl ethers (PBDEs) in sediments of the coastal East China Sea: occurrence, distribution and mass inventory. Environ Pollut 171, 155-161.
Ma, Y., Sun, Y., Li, Y., Zheng, H., Mi, W., 2020. Polycyclic aromatic hydrocarbons in benthos of the northern Bering Sea Shelf and Chukchi Sea Shelf. Journal of Environmental Sciences 97, 194-199.
Mac, M.J., Noguchi, G.E., Hesselberg, R.J., Edsall, C.C., Shoesmith, J.A., Bowker, J.D., 1990. A bioaccumulation bioassay for freshwater sediments. Environmental toxicology and chemistry 9, 1405-1414.
Mamane, H., 2008. Impact of particles on UV disinfection of water and wastewater effluents: a review. Reviews in Chemical Engineering 24, 67-157.
Markwell, R.D., Connell, D.W., Gabric, A.J., 1989. Bioaccumulation of lipophilic compounds from sediments by oligochaetes. Water Research 23, 1443-1450.
Maruya, K.A., Risebrough, R.W., Horne, A.J., 1997. The bioaccumulation of polynuclear aromatic hydrocarbons by benthic invertebrates in an intertidal marsh. Environmental Toxicology and Chemistry: An International Journal 16, 1087-1097.
Mojiri, A., Zhou, J.L., Ohashi, A., Ozaki, N., Kindaichi, T., 2019. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Science of The Total Environment 696, 133971.
Monirith, I., Ueno, D., Takahashi, S., Nakata, H., Sudaryanto, A., Subramanian, A., Karuppiah, S., Ismail, A., Muchtar, M., Zheng, J., 2003. Asia-Pacific mussel watch: monitoring contamination of persistent organochlorine compounds in coastal waters of Asian countries. Marine Pollution Bulletin 46, 281-300.
Moorthy, B., Chu, C., Carlin, D.J., 2015. Polycyclic Aromatic Hydrocarbons: From Metabolism to Lung Cancer. Toxicological Sciences 145, 5-15.
Pérez-Cadahía, B., Laffon, B., Pásaro, E., Méndez, J., 2004. Evaluation of PAH bioaccumulation and DNA damage in mussels (Mytilus galloprovincialis) exposed to spilled Prestige crude oil. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 138, 453-460.
Pawson, D.L., 2007. Phylum echinodermata. In: Linnaeus Tercentenary: Progress in Invertebrate Taxonomy, volume 1668 of Zootaxa (eds Z.Q. Zhang and W. Shear). Magnolia Press, Auckland, New Zealand, pp. 749–764.
Pichler, N., Maria de Souza, F., Ferreira dos Santos, V., Martins, C.C., 2021. Polycyclic aromatic hydrocarbons (PAHs) in sediments of the amazon coast: Evidence for localized sources in contrast to massive regional biomass burning. Environmental Pollution 268, 115958.
Rainbow, P., Smith, B., Lau, S., 2002. Biomonitoring of trace metal availabilities in the Thames estuary using a suite of littoral biomonitors. Marine Biological Association of the United Kingdom. Journal of the Marine Biological Association of the United Kingdom 82, 793.
Richman, L.A., Kolic, T., MacPherson, K., Fayez, L., Reiner, E., 2013. Polybrominated diphenyl ethers in sediment and caged mussels (Elliptio complanata) deployed in the Niagara River. Chemosphere 92, 778-786.
Richmond, R., 1996. The biology and ecology of sea cucumbers. A regional management plan for a sustainable sea cucumber fishery for Micronesia.
Roberts, D., Bryce, C., 1982. Further observations on tentacular feeding mechanisms in holothurians. Journal of Experimental Marine Biology and Ecology 59, 151-163.
Roos, A.M., Bäcklin, B.-M.V.M., Helander, B.O., Rigét, F.F., Eriksson, U.C., 2012. Improved reproductive success in otters (Lutra lutra), grey seals (Halichoerus grypus) and sea eagles (Haliaeetus albicilla) from Sweden in relation to concentrations of organochlorine contaminants. Environmental Pollution 170, 268-275.
Safe, S.H., 1994. Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Critical reviews in toxicology 24, 87-149.
Saha, M., Togo, A., Mizukawa, K., Murakami, M., Takada, H., Zakaria, M.P., Chiem, N.H., Tuyen, B.C., Prudente, M., Boonyatumanond, R., Sarkar, S.K., Bhattacharya, B., Mishra, P., Tana, T.S., 2009. Sources of sedimentary PAHs in tropical Asian waters: Differentiation between pyrogenic and petrogenic sources by alkyl homolog abundance. Marine Pollution Bulletin 58, 189-200.
Sander, L.C., Wise, S.A., 1997. Polycyclic aromatic hydrocarbon structure index. US Department of Commerce, Technology Administration, National Institute of ….
Santos, M.M.d., Brehm, F.d.A., Filippe, T.C., Reichert, G., Azevedo, J.C.R.d., 2017. PAHs diagnostic ratios for the distinction of petrogenic and pirogenic sources: applicability in the Upper Iguassu Watershed-Parana, Brazil. Rbrh 22.
Santschi, P.H., Presley, B.J., Wade, T.L., Garcia-Romero, B., Baskaran, M., 2001. Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores. Marine Environmental Research 52, 51-79.
Schecter, A., Colacino, J., Haffner, D., Patel, K., Opel, M., Päpke, O., Birnbaum, L., 2010. Perfluorinated compounds, polychlorinated biphenyls, and organochlorine pesticide contamination in composite food samples from Dallas, Texas, USA. Environmental health perspectives 118, 796-802.
Simhadri, J.J., Loffredo, C.A., Trnovec, T., Murinova, L.P., Nunlee-Bland, G., Koppe, J.G., Schoeters, G., Jana, S.S., Ghosh, S., 2020. Biomarkers of metabolic disorders and neurobehavioral diseases in a PCB- exposed population: What we learned and the implications for future research. Environmental Research 191, 110211.
Slater, M.J., Jeffs, A.G., Sewell, M.A., 2011. Organically selective movement and deposit-feeding in juvenile sea cucumber, Australostichopus mollis determined in situ and in the laboratory. Journal of Experimental Marine Biology and Ecology 409, 315-323.
Smith, A.G., 1991. Chlorinated hydrocarbon insecticides. Handbook of pesticide toxicology 2, 731-915.
Szczybelski, A.S., van den Heuvel-Greve, M.J., Kampen, T., Wang, C., van den Brink, N.W., Koelmans, A.A., 2016. Bioaccumulation of polycyclic aromatic hydrocarbons, polychlorinated biphenyls and hexachlorobenzene by three Arctic benthic species from Kongsfjorden (Svalbard, Norway). Marine pollution bulletin 112, 65-74.
Tobiszewski, M., Namieśnik, J., 2012. PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution 162, 110-119.
Toral-Granda, V., Lovatelli, A., M, V., Conand, C., J.-F, H., Mercier, A., Purcell, S., Uthicke, S., 2008. Sea cucumbers. A global review on fishery and trade. SPC Beche-de-mer Information Bulletin 28, 4-6.
Trinh, M.M., Tsai, C.L., Chang, M.B., 2019. Characterization of polybrominated diphenyl ethers (PBDEs) in various aqueous samples in Taiwan. Science of the total environment 649, 388-395.
Tsapakis, M., Stephanou, E.G., 2005. Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environmental Pollution 133, 147-156.
Turusov, V., Day, N., Tomatis, L., Gati, E., Charles, R., 1973. Tumors in CF-1 mice exposed for six consecutive generations to DDT. Journal of the National Cancer Institute 51, 983-997.
Turusov, V., Rakitsky, V., Tomatis, L., 2002. Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environmental health perspectives 110, 125-128.
Uthicke, S., Lovatelli, A., Conand, C., Purcell, S., Hamel, J., Mericer, A., 2004. Overfishing of holothurians: lessons from the Great Barrier Reef.
Vaezzadeh, V., Zakaria, M.P., Bong, C.W., Masood, N., Mohsen Magam, S., Alkhadher, S., 2019. Mangrove Oyster (Crassostrea belcheri) as a Biomonitor Species for Bioavailability of Polycyclic Aromatic Hydrocarbons (PAHs) from Sediment of the West Coast of Peninsular Malaysia. Polycyclic Aromatic Compounds 39, 470-485.
Van Ael, E., Covaci, A., Blust, R., Bervoets, L., 2012. Persistent organic pollutants in the Scheldt estuary: environmental distribution and bioaccumulation. Environment international 48, 17-27.
Wakeham, S.G., Schaffner, C., Giger, W., 1980. Poly cyclic aromatic hydrocarbons in Recent lake sediments—II. Compounds derived from biogenic precursors during early diagenesis. Geochimica et Cosmochimica Acta 44, 415-429.
Wang, Y., Rong, X., Zhang, C., Sui, H., 2004. Primary problems in the culture of Apostichopus japonicus Selenka and techniques of disease prevention. Shandong Fish 21, 29-31.
Webster, E., Mackay, D., Wania, F., 1998. Evaluating environmental persistence. Environmental Toxicology and Chemistry: An International Journal 17, 2148-2158.
WHO, 1973. Safe Use of Pesticides. WHO Technical Report Series No. 513. Geneva:World Health Organization, 1973.
WHO, 1989. DDT and Its Derivatives – Environmental Aspects. Environmental Health Criteria 83. Geneva:World Health Organization, 1989.
Witt, G., 1995. Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Marine Pollution Bulletin 31, 237-248.
Wolska, L., Mechlińska, A., Rogowska, J., Namieśnik, J., 2012. Sources and Fate of PAHs and PCBs in the Marine Environment. Critical Reviews in Environmental Science and Technology 42, 1172-1189.
Woodby, D., Smiley, S., Larson, R., 2000. Depth and habitat distribution of Parastichopus californicus near Sitka, Alaska. Alaska Fishery Research Bulletin 7, 22-32.
Woodwell, G.M., Craig, P.P., Johnson, H.A., 1971. DDT in the biosphere: where does it go? Science 174, 1101-1107.
Xiang, C.H., Luo, X.J., Chen, S.J., Yu, M., Mai, B.X., Zeng, E.Y., 2007. Polybrominated diphenyl ethers in biota and sediments of the Pearl River Estuary, South China. Environmental Toxicology and Chemistry: An International Journal 26, 616-623.
Yingst, J.Y., 1982. Factors influencing rates of sediment ingestion by Parastichopus parvimensis (Clark), an epibenthic deposit-feeding holothurian. Estuarine, Coastal and Shelf Science 14, 119-134.
Yokoyama, H., 2013. Growth and food source of the sea cucumber Apostichopus japonicus cultured below fish cages—potential for integrated multi-trophic aquaculture. Aquaculture 372, 28-38.
Yunker, M.B., Macdonald, R.W., Vingarzan, R., Mitchell, R.H., Goyette, D., Sylvestre, S., 2002. PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry 33, 489-515.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *